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Abstract

Sparse hyperspectral unmixing has attracted increasing investigations during the past decade. Recent research has
indicated that library pruning algorithms can significantly improve the unmixing accuracies by reducing the mutual
coherence of the spectral library. Inspired by the good performance of library pruning, in this paper we propose a
new hyperspectral unmixing algorithm which integrates the idea of library pruning and sparse representation. An
obvious challenge for pruning algorithms is that the real endmembers must be preserved after pruning. Unfortunately,
recent proposed pruning algorithms such as multiple signal classification are actually pre-pruning strategies, which
cannot guarantee that the endmembers exactly exist in the selected spectral subset when the image noise is strong.
To overcome this difficulty, we develop a simultaneous optimization approach which involves the pruning operation
into the optimization process. Compared with existing pre-pruning based unmixing methods, the proposed algorithm
can gradually compress the search space of sparse representation, which may relieve the loss of spectral information
caused by the rapid compression of the library. Instead of simply designing a regularizer, in this paper we utilize a
multi-objective based framework where reconstruction error, sparsity error and the pruning projection function are
considered as three parallel objectives, so as to avoid the manually settings of regularization parameters. Moreover, we
have provided theoretical analysis and proof for the reasonability of our pruning objective. Experiments on synthetic

hyperspectral data may indicate the superiority of the proposed method under high-noise conditions.
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I. INTRODUCTION

Hyperspectral remote sensing imagery includes abundant spectral information which is quite beneficial to land-
cover identification task. However, current imaging technology cannot improve spatial and spectral resolutions at
the same time [1], thus hyperspectral imagery has to suffer relatively low spatial resolution. In this case, one pixel
in hyperspectral imagery usually contains several materials, and this pixel is called “mixed” [2]. Spectral unmixing
is the process that extracts the pure materials spectra (called endmembers) in the mixed pixels and estimates their
fractional proportions (called abundances) [2], [3]. Correspondingly, endmember extraction and abundance inversion
are two general cascade tasks during unmixing. According to different mixing assumptions, unmixing methods can
be divided into linear and non-linear mixing models. In this paper we adopt linear mixing assumption.

Recent linear unmixing methods can be roughly divided into 4 categories [3]: geometry, statistics, nonnegative
matrix factorization and sparse regression based approaches. Geometrical based methods usually try to maximize
or minimize the simplex volume whose vertices are considered as the endmembers [4]-[6]. Statistical methods
perform well when the materials are highly mixed [7]-[10], but they usually accompany with higher computational
complexity. Nonnegative matrix factorization can divide the hyperspectral data into two nonnegative matrices [11].
With reasonable constraints and initialization, these two matrices can be transformed to endmember and abundance
matrices [11]-[14].

Sparse regression-based unmixing (also called sparse unmixing) is a semi-supervised fashion, where it assumes
that the spectral signatures can be expressed in the form of linear combinations of a number of pure spectral
signatures known in advance [15]. The prior spectral signature set is called spectral library. Sparse unmixing is
immune to pure pixel constraint, and the computation cost is acceptable. Due to the above advantages, sparse
unmixing has become a hot topic. Therefore, in this paper our method is developed under the framework of sparse
unmixing.

Sparse unmixing methods usually focus on 3 research aspects: sparsity handling, spatial information and spectral
variability. Sparse unmixing is a combinational optimization problem in mathematics which targets the NP-hard L.O
problem. How to address the LO sparsity problem is one of the major challenges in sparse unmixing. In literature
[15], L1-norm based convex relaxation was used and the sparsity was represented by a regularizer. Following this
work, improved approaches such as L,-norm (0 < p < 2) [16], [17], weighted Lg;-norm (d = 1,2) [18] and
greedy algorithms [19], [20] were proposed. Spatial information is also widely used, which assumes that the types
of endmembers and the corresponding abundances in a single pixel are closely related to their neighboring ones. A
variety of spatial information has been included for sparse unmixing, such as total variation [21], reweighted sparse
[22], [23], region clustering [24] and multiscale decomposition [25]. Since sparse unmixing methods should rely
on a priori spectral library, the spectral variations between the library and real hyperspectral data were considered
[26]. Besides, the spectral variability within hyperspectral images were investigated [27], [28].

Recently, researchers have attempted to improve the performance of sparse unmixing by library pruning, which

became the motivation of our work. Most sparse unmixing methods were designed under the basis of an overcomplete
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spectral library. Then there is a question: Whether the quality of the spectral library will affect the unmixing results.
In recent studies, Iordache et al. have pointed out that directly using the spectral library may make the sparse
regression problem severely ill-conditioned [29]-[32]. This is mainly because of the high mutual coherence of
the signatures in the spectral library [29]. To address this challenge, Iordache et al. proposed a multiple signal
classification (MUSIC) and collaborative sparse regression based hyperspectral unmixing method called MUSIC-
CSR [31]. MUSIC-CSR is a two-stage approach, where it firstly uses MUSIC to prune the spectral library, and then
conducts collaborative sparse unmixing. The authors further proved that the obtained spectral subset after MUSIC
would include all the endmembers if there was no noise in the hyperspectral image. Based on this work, there are
many improved works, such as [32]-[36]. MUSIC-CSR has indicated that library pruning is a promising manner
to enhance the performance of sparse unmixing, which is the major motivation of our work.

However, existing library pruning algorithms may suffer endmember loss in high-noise conditions, since they
adopted a two-stage manner. Although literature [31] has validated that the real endmembers will not be removed
by MUSIC in noise-free hyperspectral imagery, it is nearly impossible to guarantee that no noise exists in real
hyperspectral images. The situation will become even worse when the materials are highly mixed.

In this paper, we propose a new multi-objective based one-stage algorithm which simultaneously conducts library
pruning and sparse unmixing. The idea of MUSIC is reorganized as an optimization objective via an equivalent
mathematical transformation, and this objective is further used to participate in a multi-objective optimization
process. The proposed method is abbreviated as Pruning-based Multi-objective Sparse Unmixing (PMoSU). Multi-
objective optimization refers to optimizing several objectives at the same time, rather than combining them into a
single one. Recently, multi-objective methods have already been applied to hyperspectral unmixing [37]-[42]. In
PMoSU, we design three objectives: reconstruction error, sparsity error and signal projection error. PMoSU is not
affected by the numerical values of objectives and thus there is no regularization coefficients required, and this is also
the major reason why we select multi-objective optimization to construct our unmixing model. It seems that PMoSU
has similar effects as adding a new regularizer. Unfortunately, adding a regularizer may bring in new problems:
Many studies have demonstrated that the adjustment on regularization coefficients is quite an empirical work [18]—
[21], [37]. Therefore, instead of adding new regularizer, we transform the pruning and sparse representation to a
multi-objective optimization problem, and propose a simultaneous sparse unmixing and library pruning method to
avoid the endmembers loss caused by pruning in high-noise conditions.

On the other hand, it is not feasible to directly adopt existing multi-objective framework to PMoSU. Multi-
objective based sparse unmixing methods may present a general problem: There are weakly Pareto optimums [43].
The weakly Pareto optimal problem may lead to non-uniqueness of the solutions, i.e., there are several solutions
that are equally optimal. The reason is that one of the objectives in sparse unmixing, sparsity error, is discrete. As
analyzed in literature [43], the discrete range is doomed to result in weakly Pareto optimal for the Tchebycheft-
based decomposition approach. In this paper, we consider the adaptive-penalty-based boundary intersection (APBI)
approach which was provided in literature [43], and improve it to a 3-direction extension. The improved APBI

approach will guarantee that PMoSU can obtain the theoretically unique solution set. Overall, the major contributions
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of PMoSU can be summarized as follows:

e We propose a pruning-based sparse unmixing method which can significantly reduce the mutual coherence
of signatures in the spectral library. Compared with pre-pruning methods such as MUSIC-CSR, PMoSU can
gradually compress the search space of sparse representation, while MUSIC-CSR directly compresses the
search space, in which case, real endmembers may be missed when the noise is strong. Meanwhile, we have
provided theoretical analysis and proof for the reasonability of the pruning strategy.

e We adopt a multi-objective based optimization approach so as to realize simultaneous pruning and unmixing,
where the pruning projection is described as one of the objectives. Moreover, we further improve the APBI
based decomposition during the optimization process to a 3-direction extension, in which case the weakly
Pareto optimal problem could be avoided and the theoretical unique solution set for sparse unmixing could be
obtained.

This paper is an extension for our conference version [44]. However, paper [44] only reports an idea, while

detailed discussion and theoretical analysis are given in this paper, especially the proofs for reasonability of the
pruning strategy. Besides, more sufficient experiments are supplemented. Therefore, this paper can be considered

as a new and complete work.

II. RELATED WORKS

In this section we will introduce the linear mixing model and the definition of sparse unmixing, both of which

are the basis of PMoSU.

A. Linear mixing model

Let y € REX! denote a pixel vector in a hyperspectral image with L dimensions. Then this pixel can be expressed
by the following linear combination:

y=Ax+n. (1)

Eq. (1) is the famous Linear Mixing Model (LMM), where A € REX™ g the endmember matrix with m materials,
x € R™*1 is the abundance vector for all the m materials, and n € RE*! is an additive perturbation including
noise and modeling errors. Assume that there are n pixels in a hyperspectral image, then Eq. (1) can be organized
as a matrix form:

Y = AX + N, 2

where Y = [y1, -+ ,¥n), X =[x1, - ,X,] and N = [ny,--- ,n,] are the spectra, abundance and noise matrices,
respectively. In order not to violate the physical meaning of abundance, abundance nonnegativity constraint (ANC)

and abundance sum-to-one constraint (ASC) are usually imposed into LMM [45],

ANC : X >0,
3)
ASC : vx; e X, 1Tx; =1.

Literature [15] has pointed out that ASC is a little too strong, meanwhile, ANC could give an automatic imposition

to generalized ASC. So in this paper ASC is ignored.
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B. Sparse unmixing

Sparse unmixing is implemented under the basis of LMM. Sparse unmixing is a semi-supervised process, where
there is a prior spectral library including many real-world spectra available. To be specific, the endmember matrix
A in LMM corresponds to the spectral library in sparse unmixing, and it is overcomplete. In this case, unmixing
amounts to finding the optimal subset from the library that can best model the mixed pixels. Usually, the spectra
number m in the library A is much larger than the real materials number. Therefore, the unmixing process can be

written as a sparse representation problem:

min | X|lrow—0
x=0 )
st |Y — AX|2 <,

where || X||row—0 [46] is the number of nonzero rows in matrix X, and § > 0 is the error tolerance due to noise
and modeling errors.

Obviously, Eq. (4) is NP-hard. Usually, Eq. (4) is transformed to an L1-norm relaxation and a regularizer:

min ;|Y—AX|%+)\;|XZ'||1 s
sit. X >0,

where )\ is a regularization coefficient that should be manually set. Some methods have also introduced new
regularizers such as [21], [24], [25], or used L,-norm (p < 1) instead of L1 [16], [17]. Let R(X) denote a certain

regularizer, then the general sparse unmixing problem can be described by the following optimization form:

mn 1Y = AXJE+ 0 Y [l + A ROX)
i=1 (6)
st. X>0.

However, the hyperparameters A; and A, have serious impact on the unmixing results. Users have to change A\;
and A5 for different hyperspectral images. To some extent, the existence of A\; and A, may make the sparse unmixing
problem a little ill-posed. This situation becomes even worse when more regularizers are added. Furthermore, Eq.

(6) is still a relaxation for the original LO-norm sparse problem, which may not obtain the real optimal solutions.

III. METHODOLOGY

In this section, we first introduce our multi-objective based model. Then, the pruning operation is described by
the signal projection error which acts as one of the objectives. Finally, we go into details about the multi-objective

based optimization process, and our improvements are elaborated.

A. Multi-objective based model

To address the above problems, in this paper we utilize a multi-objective based model for sparse unmixing.

Instead of using Eq. (6), in this paper we consider the reconstruction error, sparsity error and the regularizer as
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three parallel objectives, and design the following multi-objective optimization problem:

min  F(s) = [fi(s), f2(s), f3(s)]"

s€{0,1}™
fi(s) = Y — AsX|%
fa(s) =isllx

f3(s) = | R(X) &
Eq. (7) is not a simple transformation for Eq. (6), actually, it attempts to overcome the drawbacks of Eq. (6). The

(7

variable s=[sq, ..., s;,,] is a binary representation of the library A, where |s|=supp(X). For hyperspectral unmixing
problem, s;=1 denotes that the i-th spectral signature is selected as an endmember and O otherwise. Ag and X
are the subsets of A and X, where only the positions with s;=1 remain. Different from Eq. (6), Eq. (7) is a subset
selection problem in which case the solution contains all the selected endmembers. The corresponding abundances
are calculated via non-negative least squares. Note that f3(-) can be any objective function, and in this paper we
will introduce pruning term. More details about f3(-) will be shown in section III-B.

According to literature [47], Eq. (7) is a multi-objective problem, where f1(s), f2(s) and f5(s) will be optimized
simultaneously. Using the multi-objective framework will generate a significant advantage: There is no need to
balance each objective and thus the setting of regularization coefficients A\; and A\s can be avoided. Furthermore,
because we replace the decision variable from X to s, it is possible to optimize LO problem directly without any

relaxation. Inspired by the above advantages, in this paper we construct a multi-objective model which is denoted

by Eq. (7).

B. Integrating pruning and unmixing

In the method MUSIC-CSR [31], MUSIC algorithm was used as pre-processing for sparse unmixing. MUSIC is
a pruning strategy which can remove the redundancy spectra from the library. According to literature [31], MUSIC
can weaken the high mutual coherence of the spectral library and thus improve the unmixing accuracy. However,
MUSIC-CSR is a pre-pruning method. When the hyperspectral imagery includes noise, the real endmembers may
miss after pruning [31].

In this paper, we integrate the pruning operation into the process of optimization. Assume that the noise matrix

N = 0, then the objectives f1(s) and f2(s) can be reorganized as the following problem:

min || s]|o -
st. Y =AX,

In other words, we will target the problem described in Eq. (8) instead of the original sparse unmixing problem.

Here we give a theorem that Eq. (8) is equivalent to the original sparse unmixing problem, i.e.,

THEOREM 1. The problem:
min [|X]|o

9
sit. Y =AX
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is equivalent to the following problem:

min ||s]|o
(10)
st. Y =AX,

where s is the subset of the column index set of A, Ag is a submatrix of A with columns indexed by s, and

X, € Rlslxn,

Proof: For the solution X of problem (9), let s be the set of indices of non-zero rows of X. By interchanging

rows, X can take the form
Xs

0

Y

where X, consists of all non-zero rows of X. Also, A can take the form of [A,, A] with the same column

interchanging. Therefore,

Y = AX
_1 [ X
~ [A..4]
0 (12)
=AX,+A0
=A:X;
Then, the corresponding s is the solution of Eq. (10), and vice versa. Since ||s|lo = | X]|o, accroding to the

description in literature [48], Eq. (10) has a unique solution iff

spark(A) 4+ rank(Y) — 1
2 )

[sllo < (13)

where spark(A) is the smallest number of linearly dependent columns of A. ]

In hyperspectral unmixing problem, Eq. (13) can be satisfied by increasing rank(Y'). According to Eq. (8) and
Eq. (13), we can imply that rank(Y) < ||s|lo and ||s|lo < spark(A) — 1. This theorem also guarantees that our
multi-objective strategy will not change the final target of sparse unmixing, and it only adjusts the optimization
process.

Considering the physical meaning of A and ||s||o, we can approximately simplify rank(Y) < ||s]|o to rank(Y) =
Isllo = k, where k is the number of linearly independent basis vectors of Y, i.e., the number of endmembers. In this
case, the support set supp(X) can be uniquely recovered as follows. If ignoring the noise N, the hyperspectral data
can be reconstructed by Y = A X,. Since A, and X are both full rank matrices, we can get range('Y )=range(A ;).
Therefore, the orthogonal basis of range(A ) can be replaced by the singular value decomposition for Y.

Here we use a projection to describe the pruning objective in PMoSU, which can be defined by the following

theorem:
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THEOREM 2. Given the hyperspectral data Y = AX, if it has the form Y = A;Xg in the problem (10), where

rank(Y) = rank(As) = rank(Xs) = ||s|lo. Then the column index j € s iff Px_a; = 0, where Py _ is the

projector on Range(Ag)*.

Proof: By Autonee-Eckart-Young Theorem, Y has the following singular value decomposition

Y =Uxv7T,
where U and V' are orthogonal matrices, and ¥ = diag(o1,- - ,0%,0,---,0).
Write it as the following block matrix:
U= [Uk U}
V= [Vk f/}
ST b
Onfk
-1 | 2k vr
v- (o 1] g
On_i| |VT
= UpXp Vi

Since Xj, f/kT has full column rank, we have
Range(Y) = Range(Uy).

By the orthogonality of U, we have Range(U) = Range(U)*, and

I1=vU"
A |or
- [U’“ U} 0T
=UUF +U0".

Therefore, UUT = I — Uy, U,CT .
By Theorem 1,
Range(Y) = Range(Aj).

It follows from (16) and (18) that Range(A ) LRange(U).
And hence

j € s < a; LRange(U)
@UTaj =0
(:)UUTaj =0

Let Py =UUT, then j € s > P4 a; = 0, equivalently, Py is the projector on Range(A,)L.
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Theorem 2 is the mathematical foundation of applying MUSIC to the hyperspectral unmixing problem, which
indicates that the MUSIC-based pruning approach can be represented by a projection function in our multi-objective
framework. Based on the above discussion, we can safely integrate Theorem 2 to the optimization process of PMoSU,

and construct the following simultaneous optimization objectives:

min  F(s) = [fi(s), f2(s), f3(s)]"

se{0,1}m™

= Y_AsXs 2;
fils) = I3 o0

fa(s) = sl

f3(s) = HPXSASH%
where Ag = [ay,...,a;], k is the number of selected spectral signatures. |[Px Ag|Z = s lelh [P, a;]? is the
sum of projections.

There are two major differences between the proposed method and MUSIC-CSR [31]. One difference is that
f3(s) takes all selected spectral signatures into consideration, so that we do not need to calculate the projection
one by one. Better spectral signature corresponds to a smaller projection HP}&saj |2, thus better spectral signatures
combination may have a smaller ||Pﬂ;‘s Ag||2. Another difference is that our method keeps updating the selected
A during the optimization process, and the final determined A is the very solution. By comparison, MUSIC-
CSR is a pre-pruning operation. In fact, the obtained A in MUSIC-CSR is still overcompleted, and users have to
further conduct sparse unmixing by considering A, as a new library. To some extent, our method is a relaxation
for MUSIC-CSR. According to Theorem 1, our transferred subset selection problem is equivalent to the original
sparse unmixing problem. By comparison, MUSIC-CSR actually has changed the original form of sparse unmixing,
since the dictionary is only a subset of the original one. Although we have ignored the noise in the derivation
of Theorem 1, the endmembers loss in PMoSU can be considered as random error, while the endmembers loss
in pre-pruning methods is systematic error. When the hyperspectral data are noisy, f1(s), f2(s) and f3(s) work

together to generate better reconstruction results as well as avoid pruning the real endmembers by mistake.

C. APBI based optimization

We solve Eq. (20) using the framework of Multi-Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) [49]. Because the range space of Eq. (20) is discrete which may result in weakly Pareto optimal, in
PMoSU we use adaptive-penalty-based boundary intersection to improve MOEA/D. Fig. 1 is a simplified illustration
for the optimization process of PMoSU. We will explain the terms in Fig. 1 during the introduction to the algorithm
steps.

The optimization process is iteratively conducted, which mainly includes 5 steps: Initialization; New individuals
generation; New population determination; Pareto Front update; Stopping criteria. Among them how to determine

new population is the key point, and our improvements are also conducted on this step.
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Objective Range

716

0N

Fig. 1: A simplified illustration for the optimization process of PMoSU. To make the figure clearer, here we only

use 2 objectives for example.

1) Initialization: PMoSU begins with an initial solution set S = {s1,--- , s,}. Please note that multi-objective
methods usually generate a solution set rather than a single solution. The set S is also called population during
the optimization process, and its size is p. Each element in S corresponds to a solution s for Eq. (20). During the
optimization process, the element s is called individual. In PMoSU, we set S by zero vectors for initialization.
Individuals in S will be diverse after updating.

2) New Individuals Generation: Bit-wise flipping strategy [38] is conducted for all the individuals among current
population to generate new individuals. For one individual s; which is a binary vector, bit-wise flipping refers to
flipping each element from 0 to 1 (or 1 to 0) with a probability 1/m. After flipping, the individual s; is changed
to s}. Conducting this strategy on all in individuals in S, we can get a new set .S’.

3) The Principle for Population Update: Here we firstly introduce two terms, dominate and ideal point. Assume

s, and s, are two solutions for Eq. (20), we say s, dominates s,, iff
Vi € {172u3}7 fz(su) < fi(sv)' (21)

A natural idea to determine the new population is finding all the optimal non-dominated solutions among the union
set {S,S’}. Actually this is also the idea used by early multi-objective methods such as NSGA-II [50]. However,
these methods were usually time consuming, because users have to conduct pairwise comparison on {S,S’}. For
example, assume S and S’ each have 100 individuals, then there should be C%,, comparisons.

To overcome the efficiency problem, decomposition based multi-objective methods were proposed, and MOEA/D
is one of the representatives. MOEA/D tries to update the population by comparing the distance between an ideal

point and the individuals before and after flipping. In PMoSU, the ideal point (noted by z*) is a virtual point which
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is calculated by the following equation:

*

z = (Zikvzgvzg)T

(22)
where 2] = min{f;(s)|s € S}.

Z*

is a virtual point which is updated along with the population during each iteration. PMoSU tries to force the
solution set to approach the ideal point using an iteration manner.
4) Population Update: In MOEA/D, the distance between an individual s; and the ideal point z* is calculated

by weighted Tchebycheff decomposition:

a7 (s 2) = max (N]1f(s0) = =), @3)
where A; = [A1, Ag, )\3]T is a direction vector for the i-th individual. A; is a uniformly distributed direction vector
with (A1 + X2+ A3 = 1). The usage of A; can partly avoid the influence of data scalar. For more detailed description
about weighted Tchebycheff decomposition, please refer to literature [49].

For all the individuals in S and S’, Eq. (23) can provide their distances to z*. Since weighted Tchebycheff
decomposition is a direction-based distance measure, users only require to compare the distances between s; and s/
for the i-th individual. Therefore, if we still assume there are 100 individuals, MOEA/D only needs 100 comparisons,
which is much less than NSGA-II. This is the major reason why MOEA/D is much more efficient than NSGA-II,
which makes MOEA/D become more and more popular in recent years. In practice, users usually not only compare
the optimality between s; and s, but also slightly expand the comparison scope to the neighbors around s;. Let
B; denote a subset of S, which contains several closest individuals around s;. During each iteration, MOEA/D
updates the i-th individual by minimizing the Tchebycheff distances between z* and {s;,s},B;}. The number of
individuals in B; is a hyperparameter, which is set as 20 in PMoSU.

However, the solution range of PMoSU is discrete, as shown in Eq. (20), fa(s). For weighted Tchebycheff
decomposition based multi-objective methods, the discrete range may result in weakly Pareto optimal. In this paper,
we have improved the weighted Tchebycheff decomposition approach by APBI [43].

APBI is a new distance measure aiming at weakly Pareto optimal problem. According to the conclusion of [43],

the distance between an individual s; and the ideal point can be obtained by

1
93 (si|Ai,z*)=d1 + 6 (arctan(i\;)) do (24)
where
d, = NFsi) = 2D Aille
[Aille ’
dy = | F(si) = (2" + 1Al (25)

AL AL 2
0 (arctan(é}) = 0.47 (arctan()\;) = 0.78) +0.7

6(-) is an adaptive penalty function. Different from literature [43], in PMoSU there are 3 objectives, in which case

Xi = [AL A2 03T includes 3 elements. Therefore we improve Eq. (26) to a 3-direction form:
1

AL
gL (si|Xiyz*) =dy + 0 (arctan(M)) ds. (26)

(s K2
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Algorithm 1: The pseudocode for PMoSU
Input: hyperspectral image data Y, spectral library A.

Output: abundance fractions X.

1 Initialization:

2 population size p, maximum iteration number T, a population S = {sy, ..., s, }, a set of weight vector
A ={Aq,..., A}, the ideal point z*.

3 Endmember Selection:

4 while ¢t < T do

5 t=t+1;

6 fori=1,...,p do

7 Generate a new individual s;» from s; based on bit-wise flipping strategy, where each location is
flipped with a probability 1/m;

8 if [ F(s%)ll2 > [|F(s7)]]2 then

9 Set z* = F(s;)

10 for j € B; do

1 if g7 (s;| A, 2%, 8%) < 95 (sj|Aj, 2%, 8*) then

12 L Set s; = s; and F(s;) = F(s;)

13 Return the final solution as s* and record the corresponding spectral signatures.
14 Abundance Estimation:
15 Compute the abundances for the whole hyperspectral image based on nonnegative least squares algorithm:

X =argminx>o [|[Y — As+ X]||r

The distance measure in PMoSU is finally calculated by g} (b;|A;, z*).

After comparing the g% (s;|A;, z*) and ¢¥(s}|A;, z*), we can determine which one is closer to z*. The closer
individual is collected to the new population, and the farther one is abandoned. Conducting this process for all the
pairs in S/S’, a new population will appear.

5) Pareto Front Update and Stop Criteria: We first introduce the definition of Pareto Front (PF). PF refers to
function values of all the optimal non-dominated solutions in current population. In each iteration, the PF is updated
along with the population. With the increase of iterations, the PF will tend to the Pareto Optimal Front (POF). POF
is the global optimal objective values, and in PMoSU we try to force PF as close to POF as possible.

The optimization process will stop as long as the solution set keeps stable among several iterations. To be specific,
the optimization process will stop if the solution set is not changed within 10 iterations. We consider that current
PF is approximately equal to POF. In this case, the final solution set is obtained. Please note that after sufficient

iterations we will get a solution set S = {s1,- - , s, } rather than a single solution. Although S contains p solutions,
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some of them are overlapped. Therefore, the final number of solutions is less than p.

So far, all the terms in Fig. 1 have been defined. Then the overall flow of PMoSU can be described as follows.
Firstly, initialize a population Sy, and calculate an ideal point; Second, conduct bit-wise flipping for all the
individuals in Sy, and thus generate new population S{; Then, compare the APBI distance among individuals
in {So, Sé}, and collect all the nearest individuals to construct S; as well as new ideal point; Run the above
process iteratively until the population keep stable. Current population are considered as the final solution set. The
pseudocode of PMoSU is shown in Algorithm 1.

Similar to general multi-objective methods, the final solution is selected from the solution set by the knee point
[37], [38], [40]. The knee point is one of the solutions on PF for which any improvement in one objective will result
in a severe degradation in at least another one [51], [52]. Based on the obtained solution s, the final endmember
matrix Ag can be determined. The final abundance maps Xy can be solved by non-negative constrained least squares

(NCLS).

IV. EXPERIMENTS AND DISCUSSION

Two synthetic data and one real hyperspectral image are used to validate the effectiveness of PMoSU. Our

experiments mainly include three aspects:

e Unmixing accuracies comparison among PMoSU and other state-of-the-art sparse unmixing methods.

e The discussion on the pruning process. Since PMoSU is a one-stage simultaneous pruning and classification
algorithm which is improved from the two-stage method MUSIC-CSR, we should verify that PMoSU can
avoid endmembers missing.

e We will validate that the improvement by APBI can eliminate the influence of weakly Pareto optimal solutions.

We compare PMoSU with 7 recently proposed sparse unmixing methods, namely SUnSAL [15], SUnSAL-TV

[21], MUSIC-CSR [31], RSFoBa [19], SMP [20], SMoSU [41] and CM-MoSU [42]. SUnSAL was a classical
sparse unmixing method which adopted convex relaxation to address the LO problem. SUnSAL-TV, RSFoBa and
SMP have improved SUnSAL by adding new regularizers. RSFoBa and SMP adopted greedy algorithms to solve
the sparse unmixing problem. SMoSU and CM-MoSU are recently proposed multi-objective based sparse unmixing
methods which mainly focused on the optimization process. MUSIC-CSR is our baseline where pruning was used
as a pre-processing approach.

The unmixing accuracies are evaluated by signal-to-reconstruction error (SRE) for the estimated abundance maps,

which is defined by
SRE = 101g(E[| X|2]/E[|X — X[3]) @7)

where X is the estimated abundance by algorithms. SRE is a popular criterion for unmixing problem, and it is also

used in quite a few literatures, e.g., [15], [16], [25].
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(a) SunSAL  (b) sunsaL-Tv  (C) MUSIC-CSR (d) SMP (e) RSFoBa  (f) SMoSU  (g) CM-MoSU  (h) PMoSU (i) Ground truth

Fig. 3: Abundance maps on synthetic data 2 with 5 endmembers and 25dB noise. From left to right: abundance
maps obtained by SUnSAL, SUnSAL-TV, MUSIC-CSR, SMP, RSFoBa, SMoSU, CM-MoSU, PMoSU and the

ground truth. From top to bottom: the maps corresponding to endmembers #1 to #S5.

A. Synthetic and real data

Because it is almost impossible to obtain the ground truth of real hyperspectral data, researchers usually use
synthetic data for the quantitative analysis in hyperspectral unmixing task. In this paper, we construct 2 synthetic
data by different generation manners. Since the target of PMoSU is to avoid the endmember loss by MUSIC in high-

noise conditions, we mainly discuss the comparison results with 20/25/30dB noise. To be specific, we manually
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TABLE I: The SRE values (dB) by different methods on synthetic data 1 and 2 with 20dB correlated noise. The second column corresponds

to the number of endmembers that are used to generate the synthetic data.

Data Num. || SUnSAL SUnSAL-TV MUSIC-CSR SMP RSFoBa SMoSU CM-MoSU PMoSU
4 3.286 2713 6.123 2524 7.922 9.376 10.02 13.05
5 3.018 2.333 4.627 3284 8561 8.859 8.859 8.817
6 3.363 2.878 6.712 5701 5.144 5.096 9.122 10.22

Synthetic 1 7 3.252 2.936 4.103 4000  3.805 6.145 8.004 8.111
8 2.382 2227 0.488 3973  4.627 5.485 7.705 6.098
9 2.760 2.667 2.420 3.893  3.825 6.604 8.493 8.577
10 3.104 2.888 1.335 4712 3.256 5.562 9.412 9.650
4 5.927 9.530 6.058 7469 7915 10.08 11.21 10.42
5 5.174 9.362 5.183 7.029  4.892 9.098 10.76 10.76
6 5.224 8.787 4.995 6.774  3.445 7.735 7.597 7.735

Synthetic 2 7 4.638 7.878 5.063 5417 1.137 5.856 6.788 7.880
8 3.895 6.992 4704 5207  3.105 6.663 6.663 7.069
9 3.972 7.092 5.973 2.644  1.288 3.523 5.268 6.364
10 2.824 6.624 0.063 3.642  1.546 4.399 4.631 5.411

add 20/25/30dB correlated noise to all the synthetic data, and the noise intensity is defined by signal-to-noise
ratios (SNR, SNR=10lg(||Y||%/|IN||#)). Besides, we use a real hyperspectral image for qualitative illustration. The
experiments on real data aim at validating the effectiveness of PMoSU, rather than its superiority. Please note that
all the synthetic data generation manners are widely used by many sparse unmixing works [36]-[38], [40]-[42].

1) The generation of synthetic data: The synthetic data are randomly constructed using the spectra of the
United States Geological Survey (USGS) digital spectral library (splib06a) !. Splib06a is composed of 498 spectral
signatures with 224 spectral bands. Specially, splibO6a is also used as the library of all the compared methods,
i.e., the matrix A in Eq. (6). We select 10 spectra from splibO6a to construct the synthetic data. To increase the
unmixing difficulty, 5 similar spectra are selected, namely Actinolite HS116.3B, Actinolite HS22.3B, Actinolite
HS315.4B, Actinolite NMNH80714 and Actinolite NMNHR 16485, and the remaining 5 are randomly selected. We
validate the unmixing methods with endmember numbers varying from 4 to 10.

Synthetic data 1 contain 64x64 pixels whose abundance maps are Dirichlet distribution. Synthetic data 2 are
generated using the same approach as literature SUnSAL-TV [21], where pixels among them are spatially dependent.

Literature [21] only provided the 5-endmember synthetic data generation approach. To better validate the influence

! Available online: http://speclab.cr.usgs.gov/spectral-lib.html
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TABLE II: The SRE values (dB) by different methods on synthetic data 1 and 2 with 25dB correlated noise. The second column corresponds

to the number of endmembers that are used to generate the synthetic data.

Data Num. || SUnSAL SUnSAL-TV MUSIC-CSR SMP RSFoBa SMoSU CM-MoSU PMoSU
4 4.007 5.124 11.33 8292 9334 12.15 12.35 13.24
5 2.774 4354 3.382 3710 3.738 11.71 11.71 14.60
6 2.259 4.965 7.265 1.961  2.999 10.83 11.04 13.11
Synthetic 1 7 2.875 5.235 4.525 3.643 7367 9.485 10.91 12.39
8 3.123 3.276 5.237 4534 4.080 9.652 10.22 11.58
9 2.367 2.617 9.051 7.108  2.906 6.756 11.25 12.58
10 2.057 2.459 3.115 1.627 2437 6.387 11.88 10.44
4 8.806 11.84 9.428 1499  15.76 14.26 13.29 13.63
5 7.473 11.40 8.240 1195  13.19 12.17 12.17 13.57
6 7.530 11.60 8.244 1192 1147 12.24 12.43 13.17
Synthetic 2 7 6.940 10.33 7.849 10.62  8.677 11.19 11.39 11.20
8 6.261 9.415 7.527 8.886  7.645 9211 9.312 9.703
9 6.423 9.193 8.172 8.090  9.906 7.178 10.64 9.906
10 5.656 9.174 7.545 7330  8.773 8.439 9.035 9.370

of endmember numbers, in PMoSU we extend the original data generation approach to any number of endmembers.
The major difference between synthetic data 1 and 2 is that the pixels in the latter have spatial correlations, while the
former do not. We force all the abundances smaller than 0.7 so as to make the unmixing process more challenging.

2) Real data: A subscene of the AVIRIS Cuprite dataset’ is used for comparison. As a practice, several water
absorption and noisy bands (bands 1-2, 105-115, 150-170, and 223-224) are removed, and 188 bands remain. A

false-color composite image of this data is shown in Fig. 2.

B. The comparison of unmixing accuracies

Table I-III display the quantitative evaluation results on the two synthetic data which are generated by different
endmember numbers. We consider that Table II is the most meaningful among the three tables, which reports
the results on 25dB noise. Therefore we first focus on Table II. It can be observed that PMoSU outperforms
other methods in most cases. Generally, with the increasing of real endmembers numbers, the accuracies of all the
methods tend to decline. This is because synthetic data with more endmembers can better simulate the highly mixed

situation. It is observed that most of the compared methods have presented significant declines when spectra are

2 Available online: http://lesun.weebly.com/hyperspectral-data-set.html
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TABLE III: The SRE values (dB) by different methods on synthetic data 1 and 2 with 30dB correlated noise. The second column corresponds

to the number of endmembers that are used to generate the synthetic data.

Data Num. || SUnSAL SUnSAL-TV MUSIC-CSR SMP RSFoBa SMoSU CM-MoSU PMoSU
4 4.139 8.963 12.87 1526  10.26 25.10 25.10 25.10
5 3.610 7.667 9.360 8.549  5.899 31.92 31.92 31.92
6 2.474 7.919 7.409 4197 4139 21.89 22.36 22.36

Synthetic 1 7 4.116 7.850 6.469 5.484  7.428 16.36 16.36 16.36
8 2.462 7.190 4321 4239  6.076 17.34 18.00 17.89
9 3.344 7.522 6.177 8.819  4.308 20.40 20.40 20.40
10 4.573 8.095 8.480 6.827 4919 15.09 15.09 15.09
4 10.73 16.39 14.08 1781  16.85 18.77 20.72 20.72
5 9.326 15.27 1273 1672 14.25 16.81 18.05 15.70
6 9.359 15.25 11.89 1625  13.81 16.58 16.52 17.43

Synthetic 2 7 8.599 13.56 10.76 10.41 12.77 14.40 15.36 14.92
8 7.859 11.90 10.06 1126 11.51 13.88 13.88 13.88
9 8.057 11.82 10.37 10.69  12.29 13.61 13.61 13.61
10 7.662 11.42 9.989 5.826  11.40 10.62 1135 12.26

highly mixed, and this situation is especially serious on synthetic data 1. PMoSU has presented 3-4dB SREs gaps
between endmember number 4 and 10. CM-MoSU and SUnSAL-TV decline less, which indicates that they may not
be sensitive to the change of endmembers. However, when the endmember number is fixed, PMoSU achieves higher
SREs. Specially, the robustness of PMoSU can be inferred from the comparison with MUSIC-CSR. In synthetic
data 1, MUSIC-CSR achieves 11.33dB SRE value when endmember number is 4, but it decreases to 3.115dB when
endmember number increases to 10. The reason for this phenomenon is that MUSIC algorithm has missed some
endmembers during the pruning process, which is the very issue that PMoSU hopes to solve.

Table I shows the different unmixing results on 20dB noise. Unfortunately, 20dB is too strong for most algorithms.
Both MUSIC-CSR and PMoSU have observed missing endmembers. As is discussed above, endmember missing
will result in larger SRE decline than endmember redundancy. However, in addition to these endmembers missing
situations, PMoSU performs well in most cases. Specially, PMoSU outperforms MUSIC-CSR by a large margin,
which may indicate that the endmembers missing in PMoSU is less serious than that in MUSIC-CSR. Compared
with SMoSU and CM-MoSU, the proposed simultaneous pruning strategy has presented significant advantages,
similar to the results of 25dB experiments. On the other hand, although SUnSAL-TV performs well on synthetic
data 2, the selection of hyperparameters is difficult. Actually, different hyperparameters will significantly affect the

accuracies of SUnSAL-TV, which may harm the robustness of SUnSAL-TV. By comparison, hyperparameters have
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(a) SunSAL  (b) SunSAL-TV (c) MUSIC-CSR (d) SMP (e) RSFoBa (f) SMoSU  (g) CM-MoSU (h) PMoSU

Fig. 4: Comparison of abundance maps on Cuprite data. From left to right: abundance maps obtained by SUnSAL,
SUnSAL-TV, MUSIC-CSR,SMP, RSFoBa, SMoSU,CM-MoSU and PMoSU respectively. From top to bottom: the

maps corresponding to Alunite+Muscovite/Kaolinite, Hematite, Alunite.

little influence on PMoSU, because the most important ones, regularization coefficients, do not exist in PMoSU.

Table III reports the unmixing results by different algorithms on 30dB noise. We note that in Table IIl CM-MoSU
and PMoSU have presented comparative accuracies which are slightly better than SMoSU, and all of them performs
better than others. Actually, in most cases, CM-MoSU and PMoSU can find the exact endmembers neither less
or more. Since they are all constructed under the basis of MOEA/D framework, they may make similar mistakes
on the same condition. Generally, with the increase of endmember numbers, the performance of most unmixing
methods decline. However, the significance of Table III seems not apparent, because previous methods such as
CM-MoSU have presented nearly exact results. Therefore, we can safely conclude that 30dB is not a strong noise
for multi-objective based unmixing methods.

Fig. 3 is an illustration for the abundance maps obtained by different methods. Here we take synthetic data 2
with 5 endmembers and 25dB noise for example. We can find the noise in this data is strong, which may harm
the unmixing results. The maps by SMoSU and CM-MoSU are the same, because they have extracted the same
endmembers. Because SunSAL-TV has considered the spatial information, its abundance maps look clearer, but the
SRE can be further improved. By comparison, PMoSU slightly outperforms others.

The experimental results on real data are shown in Fig. 4. Please note that in hyperspectral unmixing problem,
it is almost impossible to obtain the abundances ground truth of different materials in real data. Besides, some
popular criterions such as reconstruction error and the average spectral angle distance are affected by the selection

of objective functions, which may not accurately describe the superiority of different algorithms. Therefore, real
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data are usually used for qualitative analysis, and they cannot be used to evaluate which unmixing method is
quantitatively better. According to Fig. 4, most methods perform well. Note that in Fig. 4(c) MUSIC-CSR appears
an endmember missing, which may be caused by the complex mixing condition in real hyperspectral data. It is

difficult to judge which method is superior, but we can safely conclude that all of them are effective.

C. The analysis for pruning and weakly Pareto optimal

This section includes 2 aspects: (1) The discussion about pruning process, and (2) the discussion about weakly
Pareto optimal.

Firstly, we compare PMoSU with two simplified versions, MoSU and MMoSU. MoSU only uses two objectives,
f1() and f5(+), and MMoSU conducts MUSIC algorithm before MoSU. All the settings in MoSU, MMoSU and
PMoSU keep the same. Note that MMoSU is different from MUSIC-CSR. Both MoSU and MMoSU are modified

from PMoSU. We design this experiment to validate the effectiveness of the simultaneous pruning strategy.

TABLE IV: The selected endmembers’ serial numbers by different methods on synthetic data 2, 25dB noise. The column “Time” refers to the

required iteration time until the solutions keep stable, and it is denoted by MoSU/MMoSU/PMoSU.

Num. MoSU MMoSU PMoSU Time(s)
1,2,3,4, 1,2,3,4, 1,2,3,4,
4 100/5.3/23.9
87,235 18,44 118,170
2,3,5,29, 1,2,34, 1,2,3,4,5,30,
5 60.7/22.4/138

54,195,218 5,13,31 110,170,186

1,2,4.6, 1,234, 1,2,3.4,5.6,
6 98.4/60.3/129

197,217,230 5,6,10 19,53,115,170

1,2,5,36, 1,234, 1,2,3,4,5,
7 155/14.5/180
161,192,234 5,6,7 6,7,19,68
1,4,5.49, 1,234, 1,2,3,4,5,6,
8 115/28.9/117
186,200,240 5,6,7 7,8,103,125
1,4,5,6, 1,234, 1,2,3,4,5,6,
9 226/18.3/135
9,42,95 5,79 7,8,36,170
1,4,5,6,10, 1,2,3,4,5, 1,2,3,4,5,6,
10 305/24.7/130

11,36,43,115  6,7,10,43 7,8,9,10,146

We take synthetic data 2 as an example, and the results are shown in Table IV. This table displays the selected
endmembers’ serial numbers by different methods. We number the 1-st to the 498-th spectra of the library in order.
For simplicity, we set spectra at the front as the real endmembers that are used to generate synthetic data. For

example, “Num.=4" means the 1-st to 4-th spectra are used in synthetic data, and the [1-st, 2-nd, 3-rd, 4-th, 118-th
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and 170-th] spectra are selected as the endmembers by PMoSU. The optimization process will stop if the solutions
are not changed within 10 iterations.

It is observed that both MMoSU and PMoSU perform better than MoSU in most cases, which demonstrates that
the pruning strategy works well. MMoSU seems to achieve more precise results than PMoSU, especially when the
endmembers number is below 7. However, we can see that MMoSU has missed 1/2/2 endmembers in the cases
Num.=8/9/10, while PMoSU only misses 1 endmember among all the cases. This phenomenon is consistent with
our analysis: When the noise is strong, MUSIC may ignore real endmembers. When the materials are highly mixed
(endmember number is large), the situation will become even worse, because a single spectral signal will account
for a smaller proportion of the total. Our previous work [42] has discussed that endmember missing will give rise
to much more serious effects on the abundance inversion results than endmember redundancy. In other words, recall
is more important than precision in unmixing problem. Therefore, we may conclude that the proposed simultaneous
pruning strategy is superior to pre-pruning approaches under certain circumstances.

The second analysis is about weakly Pareto optimal. As is discussed in Section II-D, Tchebycheff based decom-
position may result in weakly Pareto optimal. Fig. 5 is an illustration, where the results on synthetic data 2 with 5
endmembers are taken for example. Each point corresponds to an individual on POF. Here we only show 2-D figures
with f1(-) and fa(-) for simplicity. It is observed that Fig. 5(a) has presented obvious weakly Pareto optimums.
Theoretically, all the individuals in Fig. 5(a) are equally optimal, even though it seems that some individuals are
completely below others. The reason is that the Tchebycheff decomposition will generate a rectangular contour
on which all the points share the same Tchebycheff distance (rather than Euclidean distance) to the ideal point.
It is worth noting that although it seems that we can directly use the bottom points on each column as the final
solutions, this manner is unreasonable. If selecting the bottom points as the final solutions, the Euclidean distance
is implicitly used. However, Tchebycheff distance is used during the whole optimization process. In this case, the
final solutions of a formula calculated by Tchebycheff distance cannot be determined by minimizing the Euclidean
distance. Minimizing the Euclidean distance makes no difference to random selection.

To overcome the weakly Pareto optimal problem, PMoSU proposes an improved APBI approach to replace
the Tchebycheff decomposition, and the results are shown in Fig. 5(b). Obviously, the weakly Pareto optimums
are eliminated. Similar results can also be observed in other datasets. Please note that the solution obtained by
APBI may not necessarily outperform every solution of Tchebycheff decomposition. Eliminating the weakly Pareto
optimums is to guarantee the uniqueness of the solution, rather than improve the unmixing performance. We utilize

APBI only to get the theoretically unique solution.

V. CONCLUSION

In this paper, we propose a simultaneous sparse unmixing and library pruning method for hyperspectral imagery.
The proposed method is motivated by the effectiveness of pruning operation. Research has demonstrated that pruning
can reduce the mutual coherence of the spectral library and thus enhance the unmixing accuracy. However, traditional

two-stage methods usually consider pruning as a pre-processing operation, which may lead to endmembers missing
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Fig. 5: An illustration about the weakly Pareto optimal. We take the results on synthetic data 2 with 5 endmembers
and 25dB noise for example. (a) PMoSU with Tchebycheff decomposition. (b) PMoSU with APBI decomposition.

Each point corresponds to an individual on POF.

when the noise is strong. In PMoSU, we integrate the pruning and endmember extraction into a uniform process

via transforming the pruning to an objective function. To avoid the manually balance among different objectives,

we use a multi-objective based method for optimization. Furthermore, considering that the discrete range of sparse

unmixing problem may lead to weakly Pareto optimal, we improve the optimization process by adaptive-penalty-

based boundary intersection. Experiments indicate that the proposed method has achieved our targets.
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