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Hyperspectral Image Classification Based on

Nonlinear Spectral-Spatial Network
Bin Pan, Zhenwei Shi, Ning Zhang and Shaobiao Xie

Abstract

Recently, for the task of hyperspectral images classification, deep learning-based methods have revealed promising

performance. However, the complex network structure and time-consuming training process have restricted their

applications. In this letter, we construct a much simpler network, nonlinear spectral-spatial network (NSSNet),

for hyperspectral images classification. NSSNet is developed from the basic structure of PCA network. Nonlinear

information is included in NSSNet, so as to generate more discriminative feature expression. Moreover, spectral and

spatial features are combined to further improve the classification accuracy. Experimental results indicate that our

method achieves better performance than state-of-the-art deep learning-based methods.

Index Terms

Hyperspectral image classification, deep learning, NSSNet.

I. INTRODUCTION

Hyperspectral remote sensing is an advanced earth observation tool, which is developed based on spectroscopy

technique. Hyperspectral imaging sensors can provide data with spatial and spectral information simultaneously.

Hundreds of contiguous and narrow spectral bands values are recorded as a data cube, with the spectral resolution

up to nm-level. A common application of the hyperspectral data is materials classification for each pixel. In the

last decade, plenty of hyperspectral image classification methods have been developed. Researchers usually design

reliable classifiers [1], [2], [3], or further utilize spatial-spectral information [4], [5], [6], [7].
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Recently, deep learning-based algorithms have been introduced to hyperspectral image classification, and presented

promising performance. The idea of deep learning is to extract higher level features which represents more abstract

semantics of the original data. To put it simply, deep learning may be considered as a nonlinear feature expression

process, while the network structure could be regarded as the mapping relationship. Autoencoder (AE) is a

popular deep architecture-based models. In [8], Chen et al. proposed a deep learning framework to deal with

hyperspectral image classification for the first time, where AE is used to learn deep features of hyperspectral data

in an unsupervised manner. Then in [9], the framework was improved by Deep Belief Network (DBN). Some

variations of AE were studied in literatures, such as stacked denoising autoencoders [10], [11] and convolutional

autoencoder [12]. Another kind of deep learning method, convolutional neural networks (CNN), were also reported

in recent research on hyperspectral image classification [13], [14], [15]. However, deep learning methods usually

suffer from complex network structure and time-consuming training process. Many tricks have to be used in the

process of designing the basic structure of the network, and the experimental results are difficult to reproduce.

In this letter, we propose a nonlinear spectral-spatial network (NSSNet) for hyperspectral image classification,

which is developed from PCA network (PCANet) [16]. PCANet is a much simpler network while it is already on

par with state-of-the-art deep learning-based methods for many image classification tasks [16]. Motivated by this,

we attempt to propose a new network for hyperspectral image classification whereas achieve better performance

than deep learning methods. However, the spectral data cannot be directly utilized by PCANet. Moreover, spatial

information, which provides additional discriminant information that may lead to more accurate classification results,

is not considered by PCANet. In this letter, we propose a novel joint spectral-spatial network utilizing the spectral

and spatial information simultaneous. Furthermore, considering that nonlinear information may generate more

discriminative feature expression for each pixel, we improve the structure of PCANet by adding some nonlinear

elements. Our work can be regarded as a simplified deep learning method, but better performances are observed in

the experiments.

The remainder of this letter is organized as follows. In section II we present detailed description of the proposed

NSSNet-based hyperspectral image classification method. Section III reports the experimental comparison with

state-of-the-art deep learning-based methods. Conclusions are drawn in Section IV.

II. NSSNET-BASED HYPERSPECTRAL IMAGE CLASSIFICATION

The NSSNet-based hyperspectral image classification method includes two parallel modules: spectral and spatial

features extraction. In each module, different imaging strategy is adopted to generate 2-D samples, and an improved

PCANet with nonlinear information is followed for feature extraction. Then, we fuse the spectral and spatial features,

and SVM is used to obtain the final results. The flowchart of our NSSNet-based method is shown in Figure 1. In

this section, we first give a brief introduction to PCANet, and then, we discuss how nonlinear information is used

to improve the performance of our network. Finally, spectral and spatial information are combined to construct the

proposed NSSNet.
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Fig. 1. Flowchart of the NSSNet method.

A. A Brief Introduction to PCANet

PCANet is first proposed to handle the task of classification for single image. The works about PCANet try to

achieve two goals: First, designing a simple deep learning network. Second, providing a baseline for different tasks

where more advanced and sophisticated architectures can be utilized [16]. Compared with CNN, the most important

change in PCANet is that the original data-adopting convolution filter banks between layers are replaced by basic

PCA filters, and thus the complex supervised optimizing process is avoided. Furthermore, binary quantization

(hashing), histogram features and linear support vector machine (SVM) are also adopted to simplify traditional

deep learning methods such as CNN. Generally, PCANet contains three processing components: PCA filters, binary

hashing, and histogram features. More details are shown in [16].

PCA filters are used to construct a cascaded network. Suppose Ii is a given input image of size m×m. PCANet

first take a k1 × k2 patch around each pixel, and collect all the vectorized patches, the mean values of which

have been removed, to form a matrix Xi ∈ R(k1k2)×n, where n is the number of patches extracted from Ii. Then,

construct the same matrix for each input image and combine all the matrices:

X = [X1,X2, . . . ,XN] ∈ R(k1k2)×(Nn), (1)

where N is the number of input images. PCA minimizes the reconstruction error within a family of orthonormal

filters:

min
V ∈R(k1k2)×L1

‖X−VVTX‖2F , s.t.VTV = EL1
, (2)

where E is an identity matrix with size L1 × L1, V are the principal eigenvectors of XXT, and L1 denotes

the number of principal eigenvectors. In PCANet, L1 also corresponds to the number of filters in the first layer.

Therefore, the filters can be expressed as

W1
l
.
= mat(k1k2)(ql(XXT)) ∈ Rk1×k2 , l = 1, 2, . . . , L1, (3)
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where mat(k1k2)(·) is a function that reshapes a vector to a matrix, and ql(XXT) denotes the l-th principal

eigenvector of XXT. Then, the first layer of PCANet can be obtained by

Ili
.
= Ii ∗W1

l , i = 1, 2, . . . , N. (4)

Conducting the same process as in the first layer for all the obtained Ili, the second layer of PCANet is obtained.

Assuming that the number of filters used in the second layer is L2, PCANet would output L1L2 images. One can

build a multiple-layer PCA network, by repeating the above process, to extract higher level features. In [16], the

authors suggested that two layers are enough for most tasks.

After establishing the structure of the network, a binary quantization process is followed. Subsequently, each of

the L1 images is separated into many local blocks. The histogram of each block (with 2L2 bins) is computed, and

all the histograms are concatenated into one vector. This vector is the feature expression for image Ii. Finally, a

linear SVM is used to determine the classification results.

B. Nonlinear Information

Original PCANet is completely a linear network, where the construction of convolution kernels are simple PCA

filters. By contrast, in typical (convolutional) deep learning-based methods such as CNN, the convolution kernels

are obtained by complex nonlinear optimization process. In NSSNet, we adopt two nonlinear strategies, kernel

method and nonlinear mapping, to improve the performance of PCANet. Note that although nonlinear information

is added, the NSSNet is still much simpler than traditional deep learning-based methods.

Kernel method is an effective approach for transforming input data to a higher dimensional space. If the selected

kernel meets the Mercer theorem, then the obtained space is actually a Reproducing Kernel Hilbert Space. In

NSSNet, we utilize the Kernel PCA (KPCA) to replace the original PCA filter in PCANet. KPCA is a nonlinear

extension of classical PCA. Compared with PCA, KPCA is able to capture the nonlinear information among input

data, while requires nothing about the data distribution in the original space. Based on KPCA, we modify the

construction of filters by:

KWj
l
.
= mat(k1k2)(ψl(K(xa,xb))) ∈ Rk1×k2 , l = 1, 2, . . . , Lj , (5)

where K(xa,xb) is a kernel function, xa,xb ∈ X are column vectors, j is the j-th layer, and ψl(·) denotes the

l-th principal dimension-reduced data. Instead of using principal eigenvectors, in NSSNet we construct the filter

banks by the dimension-reduced data directly, because KPCA cannot give the explicit eigenvectors for the input

data. Eq. (5) indicates that the inner product operation is simply replaced by a kernel function. Consequently, the

computation cost does not increased a lot. There are many popular kernel functions can be used, such as linear

kernel, Radial Basis Function (RBF) kernel and polynomial kernel. In NSSNet, the most popular kernel, RBF, is

adopted, which is defined by

K(xa,xb) = exp(−‖xa − xb‖2

2σ2
), (6)

where σ is a parameter that controls the width of radial basis function.
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To further enhancing the nonlinear structure, we introduce nonlinear mapping for the NSSNet. In traditional

deep learning-based methods such as CNN, the hidden neurons usually include a Sigmoid function for nonlinear

mapping. This strategy can not only avoid the multilayer networks equalling to single layer, but also extract more

nonlinear information from the original data. However, in PCANet, there is no nonlinear mapping between layers.

In NSSNet, we improve the original PCANet by adding Sigmoid function to the convolved results, which can be

mathematically expressed by

Iinl =
1

1 + exp(−Iil)
(7)

Note that the nonlinear mapping is conducted on Iil .

Overall, both kernel method and Sigmoid function are used in NSSNet, so as to extract nonlinear information in

hyperspectral data.

C. Spectral-Spatial Classification Network

The inputs for PCANet are many single images, and the goal of PCANet is determining the label of each

image. However, in hyperspectral image classification, we aim at giving a label to each pixel which is represented

by a observed 1-D spectrum. Furthermore, it has been proved by many researchers that spatial information can

significantly improve the classification accuracy, while the original PCANet does not consider the spatial relationship.

In NSSNet, we propose the imaging strategy to handle the problem of hyperspectral image classification. Spectral

and spatial features are extracted by different imaging methods, and a feature fusion process is followed to obtain

the final feature expression for each pixel.

1) Spectral Feature Extraction: Instead of using the spectra vectors directly, we first conduct data imaging. Data

imaging refers to transform a 1-D vector to a 2-D image. Let yi ∈ Rp denote an observed spectrum vector of a

pixel, then the imaging form of y can be expressed by

yi
reshape−−−−−→ YSpec

i ∈ Rk×k. (8)

Here we set the width and height of the imaged data the same for simplifying. In the imaging process, the reflectance

value in each band of a pixel vector is considered as the “texture” in an image. Compared with real-world images,

the generated imaging data can be regarded as texture-stable images which are immune to illumination, scales and

rotation. By this means the problem of hyperspectral image classification is transformed to image classification.

Subsequently, the improved nonlinear-PCANet is used to extract the feature extraction for each pixel. Some samples

of imaged spectra for Indian Pines dataset are shown in Figure 2(a).

2) Spatial Feature Extraction: Researchers have verified that spatial information can significantly improve

accuracy of deep learning-based hyperspectral image classification [8], [9]. In NSSNet, we construct an image

for each pixel by utilizing the spectra of the pixel and its neighbors. Different from the imaging process for spectral

information, for a pixel spectrum yi, here we connect yi and its neighbors side by side, which can be denoted by

[yi−s, . . . ,yi, . . . ,yi+s]
reshape−−−−−→ YSpat

i ∈ Rs
2×p, (9)
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(a)

(b)

Fig. 2. Samples of imaged data. (a) Spectral images. (b) Spatial images.

where s× s is the window size for a pixel. Generally, 3×3 is appropriate to describe the spatial information. We

adopt this imaging strategy mainly because the spatial correlation between pixel and its neighbors is an important

concern. Some samples of spatial imaged data for Indian Pines dataset are displayed in Figure 2(b). Note that this

is only an available imaging method, other similar approaches also work.

After extracting the spectral and spatial features, we directly connect them to compose the final feature expression

for each pixel. At last, a SVM classifier is used to determine the labels, which is also adopted in original PCANet

[16].

III. EXPERIMENTAL RESULTS

A. Datasets and Experimental Setup

Two popular real-world hyperspectral images are used in the experiments, namely Indian Pines and Pavia

University scenes1.

• Indian Pines image was collected by airborne visible/infrared imaging spectrometer (AVIRIS) in Northwestern

Indiana, with 145× 145 pixels size. After removing the water-absorption bands, 200 spectral bands remain in

this image. There are totally 10249 labeled pixels in the ground truth, and they are classified into 16 classes

(Figure 3(a-b)).

• Pavia University image was acquired by reflective optics system imaging spectrometer (ROSIS-3) sensor over

the city of Pavia, Italy. The size of this image is 610×340, and 103 bands are used for classification after

removing the noise bands. Totally 42776 labeled pixels are available in the ground truth, and contains 9

different classes (Figure 4(a-b)).

The labeled samples are randomly divided into training set and test set with a ratio of 1:1, as is adopted in [9],

for a fair comparison. In addition, the default network parameters setting of PCANet is adopted by NSSNet: 2

layers, 7×7 patch size, 8 filters in each layer, 7×7 size of block histograms and 0.8 overlap ratio. As discussed in

[16], different parameters only have slightly influence on the final results. Our unreported works also indicate the

1Available online: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes
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(a) (b)

(c) (d)

Fig. 3. Classification results for Indian Pines dataset. (a) False color composition image. (b) The ground truth. (c) Results of PCANet. (d)

Results of NSSNet.

(a) (b)

(c) (d)

Fig. 4. Classification results for Pavia University dataset. (a) False color composition image. (b) The ground truth. (c) Results of PCANet. (d)

Results of NSSNet.

same phenomenon. Therefore, the same setup as PCANet is used to construct the basic structure of NSSNet. Note

that our spectral-based and spatial-based networks share the same parameters.
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B. Compared Methods

Since we aim at designing a simple deep learning method for hyperspectral image classification, we compare

our NSSNet with two state-of-the-art deep learning-based methods, SAE-LR [8] and DBN-LR [9]. Both spectral

and spatial information are used in SAE-LR and DBN-LR. Furthermore, to demonstrate the effectiveness of the

nonlinear and spectral-spatial joint information used in NSSNet, we also compare our method with original PCANet

[16]. However, as discussed above, original PCANet is used for single image classification, whereas it cannot be

directly used for hyperspectral image classification. Here we adopt the same imaging process as NSSNet so that

PCANet is able to conduct. In addition, a traditional method, Representative Multiple Kernel Learning (RMKL)

[3], is also compared in the experiments.

TABLE I

CLASSIFICATION RESULTS AND TRAINING TIME FOR THE TWO DATASETS.

Indian Pines Pavia University

OA(%) AA(%) κ Time(m) OA(%) AA(%) κ Time(m)

PCANet 86.58 85.16 0.8471 12.4 93.20 91.01 0.8997 28.6

RMKL 95.61 94.20 0.9499 - 96.06 94.48 0.9443 -

SAE-LR 92.58 90.38 0.9152 359.6 98.69 98.17 0.9829 1788.4

DBN-LR 95.95 95.45 0.9539 - 99.05 98.48 0.9875 -

NSSNet 96.08 96.40 0.9547 20.3 99.50 99.03 0.9910 66.1

C. Results and Discussion

The classification results for the two datasets by the original PCANet and the proposed NSSNet are depicted

in Figure 3(c)-(d) and Figure 4(c)-(d). We can see that the performance of NSSNet is better than that of the

PCANet, which may indicate that the nonlinear and spectral-spatial joint information have improved the feature

expression capability of the network. In Table I, the quantified evaluation results about accuracies and running

time are displayed. We note that all the compared methods perform well in hyperspectral image classification,

while our method achieves the best results in both of the datasets. The NSSNet takes more time than PCANet

in the training process, but the overall accuracies (OA) of the NSSNet surpass that of the PCANet by about 9.5

percentages in Indian Pines image and 6.2 percentages in Pavia University image, which verifies the effectiveness

of our improvements. Similar results are also observed in average accuracies (AA) and Kappa coefficients (κ). The

accuracies of RMKL are lower than that of the proposed method, especially in Pavia University dataset. The reason

may be that Pavia University dataset can provide more training sample, which would improve the performance of

the proposed method significantly. Compared with SAE-LR and DBN-LR, the NSSNet outperforms them slightly.

However, as discussed in [8] and [9], the training process of deep learning-based methods is quite time-consuming,

and usually requires special as well as expensive equipments (such as GPUs). For example, the training time of
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SAE-LR for Pavia University image is up to 1788.4 minutes2, while the same process of NSSNet takes only

66.1 minutes. The NSSNet performs similarly, and even better, when compared with some state-of-the-art deep

learning-based methods, whereas it has simpler network structure and faster processing speed.

Furthermore, we also perform a paired t-test between NSSNet and DBN-LR methods to validate whether the

observed improvements in OA is statistically significant (at confidence level 95%) [9]. We assume that the mean

OA of NSSNet (a1) is larger than that of DBN-LR (a2). We accept the hypothesis only if

(a1 − a2)
√
n1 + n2 − 2√

( 1
n1

+ 1
n2

)(n1s21 + n2s22)
> t1−α[n1 + n2 − 2], (10)

where s1 and s2 are the standard deviations of the two results, and n1 and n2 are the number of realizations of

experiments reported which is set as 20 in this letter. For Indian Pines and Pavia University datasets, the standard

deviations of our method are 0.1675% and 0.0853%, respectively. Therefore, the increases on OA are statistically

significant (at the level of 95%) for the two test datasets.

Overall, we may infer from the experiments that the NSSNet is a promising and efficient method for the task of

hyperspectral image classification.

IV. CONCLUSION

In this letter, we introduced a novel hyperspectral image classification framework, nonlinear spectral-spatial

network. The NSSNet could be regarded as a simplified deep learning-based method, where the original hyperspectral

data were transformed to a new feature space by nonlinear mapping. Furthermore, besides spectral features, the

spatial information was also involved in the NSSNet, which has significantly improved the final classification results.

Experiments indicated that the NSSNet outperforms some state-of-the-art deep learning-based methods. Future work

will be devote to reducing the number of training samples and further improving the accuracies.
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