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Abstract

Automatic oil tank detection plays a very important role for remote sensing image processing. To accomplish the

task, a hierarchical oil tank detector with deep surrounding features is proposed in this paper. The surrounding features

extracted by the deep learning model aim at making the oil tanks more easily to recognize, since the appearance

of oil tanks is a circle and this information is not enough to separate targets from the complex background. The

proposed method is divided into three modules: candidate selection, feature extraction and classification. Firstly, a

modified Ellipse and Line Segment Detector based on gradient orientation is used to select candidates in the image.

Afterwards, the feature combing local and surrounding information together is extracted to represent the target.

Histogram of Oriented Gradients which can reliably capture the shape information is extracted to characterize the

local patch. For the surrounding area, the Convolutional Neural Network trained in ImageNet Large Scale Visual

Recognition Challenge 2012 contest is applied as a blackbox feature extractor to extract rich surrounding feature.

Then the linear Support Vector Machine is utilized as the classifier to give the final output. Experimental results

indicate that the proposed method is robust under different complex background and has high detection rate with low

false alarm.

Index Terms

Oil tank detection, Surrounding information, Deep learning, Convolutional Neural Network, Ellipse and Line

Segment Detector.
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I. INTRODUCTION

With the success of remote sensing technology, more high-resolution data is now available, facilitating a wide

range of applications such as city surveying, disaster monitoring, military reconnaissance. In these applications,

automatic object detection plays a very important role and has received increasing research interests. Some relevant

works have been done for the task [1] [2] [3]. The feature extraction and learning methods [4] [5] [6] also provides

some helps and inspirations for this topic.

In the optical satellite images, oil tank storing such valuable products which are necessary for transportation and

industrial production is also one of the important targets [7]. Some early attempts about the oil tank detection have

been proposed. Chen et al. [8] proposed a hierarchical model for oil depot detection, including image segmentation,

circular oil tank detection and localization. Li et al. [9] applied a gradient fuzzy Hough transform for oil tank

detection to avoid computational complexity and false diffusion peaks, then a post-processing method was used to

remove false positives. Han et al. [10] raised a developed Hough transform to select oil tanks, and a graph search

strategy was presented to cluster the selected areas. Soon after, Han et al. [11] proposed a two step method based

on a saliency model and graph search. Yao et al. [12] presented a method based on salient region and geometric

features. Cai et al. [13] proposed an algorithm by visual saliency and Hough Transform. Zhu et al. [14] put forward

a coarse-to-fine framework for oil tank detection, and the framework was composed of two operations: oil tank

selection based on the probabilistic latent semantic analysis model and oil tank detection with Hough transform,

template matching. Kushwaha et al. [15] proposed a hierarchical model to detect circular shaped bright oil tanks

in satellite images. But there is a problem existing in the aforementioned methods that the focused targets are

selected from the well-contrast areas where the targets are generally brighter than the background. This may not

be the case for practical applications when the oil tanks are in low-contrast. In 2014 Ok et al. [16] proposed a

method based on the tank’s shadow information regardless of the contrast constraints, but this have a low efficiency

when the shadows are not visible or complete. Then in 2015 Ok et al. [7] [17] raised an approach considering the

symmetric nature of circular oil depots. However, the above methods still focused on the local area with simple

shape information and this could not be enough to discriminate oil tanks from the complex background (See the

first row in Figure 1), and there might not be further information that could be used in terms of the local patch.

To further investigate the existing problem, we proposed a novel algorithm taking the surrounding information

into consideration. Similar ideas have been used in other satellite object detection tasks as prior knowledge, for

instance, detecting cars in the asphalted area [18] [19], detecting aircrafts in the airport [20] [21], detecting ships

at sea [22] [23]. For oil tanks, the area around the target is apt to include shadows, pipelines and some other oil

tanks, and this information can help us distinguish targets from the background. In Figure 1, it’s hard to distinguish

the objects in the first row, but if the surroundings in the second row are taken into account, the objects are more

easily to recognize. In this case, we combine local and surrounding information together to represent the targets’

area.

The proposed algorithm can be divided into three operations: candidate selection, feature extraction and classi-
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Fig. 1. Objects and their surroundings. The first, the second and the third column are oil tanks and their surroundings; the forth (pool), the

fifth (crossroad) and the sixth (bush) column are negative samples with their surroundings.

fication.

The candidate selection herein is used to improve the efficiency of the system. Traditional manners using sliding

windows on satellite images were computationally inefficient and suffered from multi-scale trouble. Instead, the

problem is solved by using the “recognition using regions” paradigm which has been announced success for object

detection task [24] [25]. In this paradigm, the candidate regions are firstly selected and resized to the fixed size.

Then the resized regions are input to extract features and classify to generate the final output. A circle detection

method is utilized to select candidates in the image because of the circle shape of oil tanks. Automated circle

extraction has been an open research area. A classical method is standard circular Hough transform (SCHT) first

proposed by Duda and Hart [26]. It makes use of the edge detection result of the image and converses the result

to the parameter space whose dimension is predefined as three (radius and center coordinates) via an accumulation

process. The peaks in the parameter space correspond to the circles in the original image. A number of methods

were also proposed to decrease the computation complexity and improve the efficiency of the method [27] [28]

[29]. However, the Hough based methods may fail when the edge of oil tanks are not clear enough. In this case,

we apply a modified Ellipse and Line Segment Detector (ELSD) [30] in the paper for the candidate selection. The

ELSD based on gradient orientation shows robustness for oil tanks under low contrast with the background, and

the modified ESLD is much more accurate than the traditional manner.

Features combining local and surrounding information are then extracted on the regions announced by the

candidate selection method. Histogram of Oriented Gradients (HOG) [31] which shows good performance to capture

shape information is used to represent the local area. But what features should be extracted from the surroundings?

Adding a bad representation of the surrounding area may lead to a even worse result. Local Binary Pattern (LBP)

[32], HOG [2], Gabor [33] are the most popular handcrafted features for object detection task [3]. HOG can

capture the shape feature; LBP and Gabor can extract the texture of the image. But their performances are not that

satisfying as it is really hard to give accurate surrounding descriptions even for humans, and it is also tedious to

design another new feature. Deep learning, which has become a hot-spot since 2006 [34] [35] and made remarkable

achievements in many domains, can learn the surrounding features automatically. Convolutional Neural Network
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(CNN) is one of the typical deep learning models and shows good performance in image processing field [25] [36]

[37]. So it is appropriate and promising to apply the CNN to extract surrounding features. However, training a large

CNN is a very challenging task as the labeled oil data currently available is very scarce. In this case we utilize the

Krizhevsky’s CNN model [36] trained in ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

contest as a blackbox feature extractor and apply a classifier to give the final result. Then we just need to train the

classifier which does not demand too much training samples. Such algorithm can also be considered as a transfer

learning model from ImageNet to the oil tank detection task, and the transfer ability of Krizhevsky’s CNN model

has already been verified in RCNN [25], DeCAF [37]. In practice the CNN feature shows better performance than

the classical handcrafted features. A feature visualization method t-SNE (unsupervised learning feature visualization

algorithm proposed by Maaten and Hinton, 2008 [38]) is also applied in the experimental part to evaluate CNN

feature’s performance and the function of the surrounding information.

Support Vector Machine (SVM) proposed by Cortes and Vapnik is an important classification algorithm of

statistical pattern recognition [39]. It can select the optimal hyperplane with high confidence in terms of training

data and its corresponding labels. In recent years, SVM has been widely used in deep learning transfer models as

the final classifier [25] [40] [37]. DeCAF [37] used deep features with linear SVM, which shew better performance

compared with Logistic Regression in Caltech-101 and office dataset. RCNN [25] applied 4096-dimensional CNN

feature and linear SVM for PASCAL VOC detection challenge and achieved state-of-art results. DLSVM [40]

compared SVM with softmax for the deep features in MINIST and CIFAR-10 dataset, and SVM is better behaved.

The SVM’s performance may owe to the idea of the largest margin, which generates an optimal hyperplane separating

the positive and negative samples as much as possible, and this could improve the generalization ability between

different datasets. Therefore, switching from traditional softmax or logistic manners to the SVM seems to be credible

and appears to be helpful to the classification task in the transfer model. In this case, we utilize the linear SVM in

our algorithm to give the final detection result.

The overview of the whole oil tank detection system is shown in Figure 2. In the figure, the original image is

input to extract the candidates firstly. Afterwards, HOG features are extracted on the local area, CNN features are

extracted on the surrounding area, and then the linear SVM classifier gives the final output. In the final detection

result, the red circle indicates the missing target, the green circles refer to the correct detections, and the blue circles

would be also shown in the figure if there are some false positives .

The main contributions of our approach are summarized in two aspects below:

1) We propose a novel strategy combining local and surrounding information for oil tank detection, which can be

helpful to distinguish targets from the complex background.

2) The Krizhevsky’s CNN model is utilized as a blackbox feature extractor for the surrounding area of satellite

images in this paper for the first time and shows better performance than classical handcrafted features.

The remaining paper is organized as follows: Section II details the candidate selection process; Section III depicts

the feature extraction process; Section IV presents the experimental results; Section V provides the conclusions and

future works of this paper. Section VI gives the acknowledgement.
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Fig. 2. Outline of our algorithm, which can be divided into three modules: candidate selection, feature extraction and classification.

II. CANDIDATE SELECTION

Traditional detection approach using sliding window suffered from large computation and multi-scale problem.

For remote sensing process, the image is often very large and the oil tanks are in different scales. In this case

the sliding window manner may be infeasible for oil tank detection in high-resolution images. Thus, a candidate

selection method is utilized to improve the efficiency of the system. Since the circle shape of the oil tanks, it is

rational to think of a circle detection method for the candidate selection. Hough transform [9] [10] [26] is one of the

most popular choices, but it may fail to handle the real images when the edges of oil tanks are not clear enough.

Then the ELSD method which relies on the orientation of gradients shows robustness for oil tanks under low

contrast with the background. However there is still one problem that the ELSD has a lot of unrealistic selections

in the background making the computation a little more inefficient. To improve the property of the method, we

modify the method and give another validation step after the ELSD process. The detail of the modified ELSD is

stated below.

A. ELSD

ELSD, a parameterless line segment and elliptical arc detector [30], is a two-stage process in our algorithm:

curve candidate selection and validation.

In the candidate selection step, the process is similar to the region growing. Region growing groups pixels together

if they share same gradient orientation up to a given rule. For the curve candidate selection, the process chains

neighbor rectangle regions under some constraints. The rectangle regions can be accessed by the region growing.

The constraints presented here are that the candidate regions should be convex and roughly smooth. Additionally,

a conic fitting technique is used to compute the parameters that fit the selected regions.

The validation step, which is based on the probabilistic contrario approach introduced by Desolneux et al. [41],

makes a comparison between the candidate with a completely stochastic area. The number of aligned pixels in the

candidate region is firstly computed in this step. For a curve candidate c, a pixel p is said aligned up to a precision

σ if

Angle(∇x(p), dir⊥(tanc(p))) ≤ σπ (1)
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where Angle(a, b) indicates the absolute angle value between a and b, ∇x(p) is the gradient of the image x at p

and dir⊥(tanc(p)) indicates the direction orthogonal to the tangent line to the curve c in p. The parameter σ is set

to 1/8, which is proved to be satisfactory in practice [30] [42].

After that, kx(ci) is got as the number of aligned pixels in curve candidate ci in the original image x. Assume

the number of aligned pixels in stochastic image X is kX(ci). Making a comparison, the candidate region in the

original image can be said a false positive with a probability P (kX(ci) ≥ kx(ci)). In practice, a binomial law can

be used to compute the probability, as the pixels in X are independent variables with σ probably to be aligned in

stochastic image.

P (kX(ci) ≥ kx(ci)) = B(l(ci), kx(ci), σ)

=

l(ci)∑
i=kx(ci)

Ci
lσ

i(1− σ)l−i (2)

l(ci) is the total number of pixels in the candidate area ci.

Additionally, the size of the image and 6 free parameters representing the circular arcs are used to estimate the

candidates number in the image. Suppose the image is m× n, then the number of candidates in the image can be

estimated as (mn)3. The final circular arc validation standard is described as follows:

NFAcircle = (mn)3B(l, k, σ) ≤ ε (3)

ε can be considered as false detection under our tolerance in the image. It is set to a small number 1, and the same

value has been used in [30] [42].

So far, the process of the traditional ELSD is finished, and we can get the selected curves as well as their fitting

parameters.

B. Modified ELSD

The traditional ELSD based on the region growing manner can only detect continuous circular arcs and is sensitive

to outliers in the circle. In this case, only part of the circles and a lot of circular arcs in the background can be

detected at the same time. But these selections in the background do not stand for circles and can be further removed

if we just focus on the circle detection. Therefore, we propose another validation step after the ELSD process to

improve the computation efficiency of the traditional manner. Similar ideas have been used in [16] [17] to evaluate

the roundness of the selected circles.

In this paper, the fitting parameters (center coordinates and radius) announced of the valid curves are used to

create a complete circular ring firstly. The pixels on the ring should satisfy the following constraint:

|
√

(Cir r − Cen r)2 + (Cir c− Cen c)2 −R| ≤ η η ≥ 0 (4)

where Cir r and Cir c respectively indicate the row and column index of the pixels on the ring, Cen r and Cen c

respectively indicate the row and column index of the circle’s center, R is the circle’s radius. Cen r, Cen c and

R are obtained by using the traditional ELSD. η is the threshold that controls the thickness of the ring. In practice,
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a very large η could include some irrelevant pixels that do not have useful gradient information, a very small η for

example 0 could result in a discontinuous ring. The value of the parameter is experimentally set to be 1 in this

paper, the experiment part will give detailed explanations.

Then the number of the aligned pixels is computed on the ring not just on the circular arcs. The aligned principle

is the same as ELSD. The aligned ratio of the circle is computed as below:

Rcircle =
kx(circle)

lcircle
(5)

where lcircle indicates the total pixels of the ring, kx(circle) is the number of aligned pixels. A threshold is set to

segment the results to get the final validated selections. After this step, the circles with continuous or discontinuous

circular arcs can be reserved, and in the meantime some false positives are removed. Algorithm 1 gives the main

steps of the modified ELSD. In this algorithm, the traditional ELSD stops at step 14, and step 15 to step 18 indicate

the final circle validation in the modified ELSD. Some of the comparison results between the traditional ELSD and

Algorithm 1 Modified ELSD
1: Input: Gray-scale image x, parameters: Threshold r.

2: grad← compute the gradients of input image x;

3: for pixel pi in x do

4: RL← line region grows using seed point pi and gradient information grad;

5: RC ← initialize the curve region using line region RL;

6: for endpoints in RC do

7: RL← line region grows using endpoint in RC and gradient information grad;

8: line← estimate the rectangle parameters of the line region RL;

9: RC ← curve region grows using the previous curve region RC and line parameter line;

10: end for

11: curve← estimate the curve parameters of the curve region RC;

12: CvN ← compute the number of aligned pixels in the region RC using the parameter curve;

13: NFAcurve ← compute curve decision principle using aligned pixel number CvN and parameter curve;

14: Cv ← validate the RC using NFAcurve;

15: circle← get the center and radius parameters by the parameter curve in the validated curve Cv;

16: CN ← compute the number of aligned pixels on the circular ring using the parameter circle;

17: Cr ← compute the ratio of the circle using aligned pixel number CN and the parameter circle;

18: C ← validate the circle using the ratio Cr and threshold r;

19: end for

20: Output: list of valid circles.

the modified ELSD are shown in Figure 3. In the figure, the first column refers to the original images, the circular

arcs in the second column indicate the results announced by the traditional ELSD and the rectangles in the third

July 28, 2015 DRAFT



8

column reflect the results of the modified ELSD. We can see that the number of rectangles is much less than the

circular arcs, and the modified ELSD will not miss any targets.

Fig. 3. Comparison between the modified ELSD and the traditional ELSD. The first column refers to the original images. The circular arcs

in the second column indicate the selected results announced by the traditional ELSD. The rectangles in the third column reflect the results of

the modified ELSD.

III. FEATURE EXTRACTION

Features combining local and surrounding information are extracted in this step on the regions announced by

the candidate selection method. The surrounding area of the oil tank which is apt to include shadows, pipelines

and some other oil tanks can make the target more easily to recognize. A transfer learning CNN model trained in

ILSVRC2012 contest is applied for the oil tank detection task to extract rich surrounding feature, and we call it as

Surrounding-CNN feature. As for the local patch, it can reflect the characteristics of the oil tank. In practice, there

are some negative samples that contain more than one oil tank or are close to the target, and their surrounding

areas also include some oil tanks. Some examples are shown in Figure 4. In this case, just the surrounding feature

is probably confused and makes a wrong decision. Therefore the local feature is combined helping to improve the

system’s property. The HOG is used to extract the local feature, and we call it as Local-HOG feature. The final

combined feature is named as LHOG-SCNN (Local-HOG plus Surrounding-CNN) feature in this paper. The details

of the LHOG-SCNN feature process are stated below.

The size of the local patch is selected as 1.2 times of the circle’s diameter. The size of the surrounding area is

used as 3 times of the circle’s diameter. The experiment will give the explanation about the two parameters (local
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Fig. 4. Some negative samples whose surrounding areas include some oil tanks. These samples announced by the modified ELSD are cut from

different images. The first row indicates the local patches, the second row refers to their corresponding surroundings. The positions of the local

patches are shown with rectangles in their corresponding surrounding areas.

patch size and surrounding area size). The diameters of the circles are got from the candidate selection result. The

two kinds of features are chained together to represent the candidates at the end of this step.

A. Local-HOG Feature

HOG, which shows good performance to reflect the shape information [2] [31], is used to extract the local feature.

It is based on the idea that the distribution of gradient directions can characterize the shape or the appearance of

the objects rather well [31].

In the HOG process, the gradient image is firstly computed. After that, the histogram of gradient directions is

counted in each cell of the gradient image. Then the histograms are connected and normalized over a larger block

which contains several cells. At last the normalized histograms of blocks sliding over the whole image are combined

to generate the final HOG descriptor.

For example, in terms of a 50 × 50 patch from the original image, the cell size is 10 × 10, and the size of a

block containing four cells is 20 × 20. The gradient direction values are quantified into nine direction bins. Then

for each cell, a 9-dimension feature of the histogram is got from the gradient patch. Afterwards, the four cells’

histograms are connected and normalized by the energy of the block, and output the 4 × 9 = 36-dimension feature.

The block is set to slide through the gradient patch with the step of 10 pixels. At last the 16 × 36 = 576-dimension

HOG feature is got to express the 50 × 50 patch. Figure 5 shows the main process of HOG.

Fig. 5. Process of HOG feature extraction.

In our algorithm, the patch size, cell size and block size are just the same as the example stated before. The
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576-dimension HOG feature is extracted from the local candidate patch announced by the modified ELSD.

B. Surrounding-CNN Feature

Convolutional Neural Network (CNN) is a multi-layer structure. With the rise of deep learning [34] [35], it has

become one of the research hot spots and shows good performance in image processing. The structure of the CNN

model is shown in Figure 6.

Fig. 6. CNN models’ structure, the upper is a simple CNN model and the lower is Krizhevsky’s CNN model in 2012 [36].

In Figure 6, the upper is a simple CNN model and the lower is Krizhevsky’s CNN model in 2012 [36]. Both of

them are composed of two stage process: feature extraction and classification. The treatment of the each phase (set

of convolutions with optional pooling) within the feature extraction stage represents the information extraction from

raw pixels, to low-level features, to mid-level features, up to concept-level features that are fed into the classifier

(fully connected layers) to give the final output.

At a convolution layer, the feature maps of the previous layer are convolved with learnable kernels, and the

generated results plus a bias parameter are input to the activation function to form the output feature map. Each output

map may correspond to convolutions with multiple input feature maps. For example, considering the convolution

process between Layer2 and Layer3 in the simple CNN model in Figure 6, the kernels with the same color in

Kernel2 correspond to the two feature maps in Layer2 and generate one output feature map with the same color in
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Layer3. Its mathematical form is stated below:

xl
j = f

 ∑
i∈Mj

xl−1
i ∗ klij + blj

 (6)

Where xl
j represents the jth feature map in layer l, xl−1

i represents the ith feature map in the previous layer, klij is

the learnable kernel, blj is the bias parameter, f (·) refers to the activation function and Mj indicates a selection of

input feature maps. Usually, a convolutional layer is interspersed with a pooling layer to reduce algorithm complexity

and to gradually build up further rotation and translation invariance, but this is not absolute. At a pooling layer, the

number of output feature maps is the same as the input. It generates a downsampled version of the input feature

map. The process is simply described as follows:

xl
j = pooling(xl−1

j ) (7)

Where xl
j represents jth feature map in layer l, xl−1

j represents the jth feature map in layer l − 1 , ‘pooling’

corresponds to the downsample process. Considering the pooling process between Layer1 and Layer2 in the simple

CNN model in Figure 6, the number of feature maps between the two layers are the same and every feature map in

Layer2 generates one feature map with the same color in Layer3 using the pooling process. Some of the common

pooling manners include max-pooling, average-pooling, etc.

In practice, training a deep CNN is a very challenging task since the labeled oil data is very scarce. Therefore an

existing CNN model trained by Krizhevsky in the ILSVRC2012 contest is applied to extract surrounding feature in

our algorithm. The structure of the model can be seen in Figure 6. The network requires a colored image input with

fixed size (224×224), and generates 1000 dimensional output. Its structure includes five convolutional layers, some

of which are followed by max-pooling layers. The activation function of the convolutional layer is the non-saturating

nonlinearity function f(x) = max(0, x). Three fully connected layers are connected at last generating the final

result. Moreover, some tricks such as local response normalization, overlapping pooling and drop out have been

used in the network to improve its property. The network is trained through the training set of 1.2 million samples.

The training process may take five to six days on two NVIDIA GTX 580 3GB GPUs. The model outperformed all

other methods in the recognition challenge at that time.

This paper is the first to show the dramatic performance of Krizhevsky’s CNNs model for the oil tank detection

task. It can be considered as a transfer learning structure form ILSVRC-2012 to oil tanks. The transfer ability of

this model has already been verified in DeCAF [37] and RCNN [25].

DeCAF analyzed and visualized the deep convolutional features for scene recognition, object detection and

domain adaptation tasks. For scene recognition, the features trained in ILSVRC2012 were generalized to SUN-397,

and the features showed very good clustering performance. In the object detection task, the trained CNN model

outperformed the previous methods in the Caltech-101 database. For domain adaptation, the deep convolutional

features were used for office data from different camera devices and illustrated robust ability to resolution changes.
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RCNN applied the CNN model to the object detection task on the PASCAL VOC dataset, yielding state-of-art

detection performance.

In our algorithm, the CNN model is used as a blackbox feature extractor. Specially, the surrounding area of the

valid circle is firstly resized to the compatible CNN size (224× 224). After that, the gray scale image is copied to

3 channels generating the colored image that meets the model’s input requirement. The 4096-dimensional output

of the last feature extract layer is used as the extracted feature (DeCAF and RCNN have used the model in the

same way).

The main process of this step is shown in Figure 7.

Fig. 7. Process of the Surrounding-CNN feature extraction.

IV. EXPERIMENTS

The influence of some parameters and the performance of the proposed method are evaluated in this section.

A. Dataset

The process of the proposed algorithm is all based on the data downloaded from Google-Earth. Totally, we get

54 large colored images with unified resolution of 1m. 42 images are used for parameter selection and classifier

training, and the rest are used for the test. We compute the mean value of images’ three channels (RGB) to get

their gray-scale model and just use the gray-scale images in our algorithm. The purpose of this is to reduce the

requirement for the data resource and to make this method a general application for different image models.

The training samples used for the SVM classifier are got from the 42 training images according to the result

of the modified ELSD. We get 11383 samples with 4264 positive samples and 7119 negative ones. However, the

surrounding area of these samples do not include all situations, since the arrangement of oil tanks in the surrounding

area is directional. It can be seen in Figure 8, the samples are got from different training images. Therefore, we

enlarge the data by means of rotation to improve the system’s generalization ability. In detail, we rotate the samples

every 45◦. This means that we can get another 7 different new samples from the original one. Finally we get 91064

training samples with 34112 positive ones and 56952 negative ones. Details of the SVM training samples are shown

in Table I.
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Fig. 8. The arrangement of oil tanks in the surrounding area is somewhat directional (the samples are got from different training images).

TABLE I

DETAILS OF THE TRAINING DATA FOR SVM CLASSIFIER

Training image number Positive samples Negative samples Totally

Before expanding 42 4264 7119 11383

After expanding 42 34112 56952 91064

The test dataset includes 12 large images with different sizes (the largest is 3712 × 3008 pixels, the smallest is

1763 × 1356 pixels). In these images the diameter of the smallest oil tank is about 10 pixels, and the diameter

of largest one is about 50. Through observations, the oil tanks whose diameters are smaller than 10 pixels do not

have clear circle shape. In this case, we just focus on the targets whose diameters are larger than 10. Actually this

is also a very hard detection task. The whole training and test process is shown in Figure 9.

Fig. 9. Training and test process. (a) indicates the training images that can be used for the parameter selection of the modified ELSD. (b)

refers to the candidates of the training images. (c) reflects training samples used for the SVM classifier. (d) indicates the test images. (e) refers

to the candidates of the test images. (f) reflects the candidate samples of the test images. (g) indicates the final test results.
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B. Parameter Selection for the Modified ELSD

The traditional ELSD is a parameterless ellipse detector, and the parameter here refers to the ratio threshold

Rcircle and the circle threshold η in final circle validation step of the modified ELSD. Rcircle and η can be used to

measure the roundness of the selections. In this experiment, the precision-recall graph [43] is applied to evaluate

the performance. Precision and recall are defined as Figure 10. TP indicates the positive samples that are selected

Fig. 10. The definition of precision and recall.

as positive correctly, namely the correct detections. FN indicates the positive samples which are not selected as

positive, namely the missing targets. FP refers to the negatives that are considered to be the positive ones, namely

the false positives. In Figure 10, the red circle is the missing target FN , the blue circles are the false positives

FP , the green circles are the true positives TP . In this case, Precision = 5/(5 + 4), Recall = 5/(5 + 1). The

recall corresponds to the ratio of missing targets to the total targets, while the precision corresponds to the ratio

of false positives to the total detections. For a candidate selection method, a high recall rate should be guaranteed

firstly and on this basis a high precision can help to improve the computational efficiency of the system.

The controlling variables method is utilized in this part to select the two parameters since both of the parameters

have influence on the candidate selection result. Firstly for the ratio threshold Rcircle, we set a fixed η = 1 and

compute the results of different Rcircle (0, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55) on the 42 training images with 3401 valid

oil tanks whose diameters are larger than 10 pixels. The precision-recall graph is shown in Figure 11.

From Figure 11, it can be seen that when ratio threshold switches from 0.4 to 0.45, there is a big change of

the system’s recall rate. Additionally, when the threshold increases from 0 to 0.4, the recall only descents 0.6175%

while the precision grows from 7.77% to 26.12%. In this case, we choose 0.4 as the final validation threshold,

and it shows good performance to improve the system’s property. Moreover, another issue can be also found in

Figure 11 that when the ratio threshold is set 0, there are still some missing targets. These targets are missed by

the traditional ELSD process. Through observations, most of them are very small oil tanks, the others are the oil

tanks in very low contrast. Both of them do not have clear shape information, and it’s really hard to recognize them

even for humans. Figure 12 shows some of the missing targets.

Secondly for the parameter η, we set a fixed Rcircle = 0.4 which shows good performance in the previous

experiment. Then we choose different circle thresholds (0, 0.5, 1, 1.5, 2, 4) and compute precisions and recalls on

the 42 training images. The result is shown in Table II. From the table, one can find that, it is impossible to choose
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Fig. 11. Precision-recall graph of the modified ELSD considering the ratio threshold.

Fig. 12. Some of the missing targets of the modified ELSD when the ratio threshold is set 0. The rectangles in the second row indicate the

positions of the missing circles.

a η with the best recall and precision simultaneously. However, a relative balanced results could be obtained if we

set η = 1.

TABLE II

SELECTION RESULT WITH DIFFERENT CIRCLE THRESHOLDS η

Circle threshold η 0 0.5 1 1.5 2 4

Recall 0.8808 0.9082 0.9074 0.9032 0.8999 0.88

Precision 0.1036 0.1795 0.2062 0.2180 0.2439 0.2780
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C. Parameter Selection for the Penalty Factor of SVM

The classifier used in our algorithm is a linear SVM which is a simple manner but has shown good performance

for the CNN transfer learning model. Its mathematical form is described as follows:

min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξn (8)

s.t. yn(w
Txn + b) ≥ 1− ξn, n = 1, · · · , N

ξn ≥ 0, n = 1, · · · , N

(xn, yn), n = 1, · · · , N , xn ∈ RD, yn ∈ {−1,+1} indicate the training data and its corresponding labels, w ∈

RD, b ∈ R are learning parameters, ξn is slack variable penalizing data point that violates margin demand. The

penalization coefficient C is the only parameter that needs to be determined in this part.

The cross validation process is applied for the parameter selection. Firstly, the training data is equally divided

into 4 groups. Every time, three groups are used for the SVM training and the left one is used for the test. Then

the SVM with a determined penalty factor can have 4 test accuracies. We can get their mean value to measure the

performance of the penalty factor.

The LHOG (Local HOG feature) is used in this experiment to choose the penalization coefficient. The same

parameter is used for other SVM classifiers considering the surrounding features. In this case, the result can be

more persuasive to evaluate the performance of the surrounding information. We compute the accuracies of different

penalty factors (0.01, 0.1, 1, 10) in this experiment. The size of the local patch is set as 1.2 times of the circle’s

diameter fixedly. The experiment result is shown in Table III. It can be seen that when the penalty is set to be

1, the average test accuracy is higher than the results of other values. Therefore, we select 1 as the value of the

penalization coefficient in this paper.

TABLE III

CROSS VALIDATION RESULT WITH DIFFERENT PENALTY FACTORS

Penalty factor 0.01 0.1 1 10

Average test accuracy 0.9271 0.9291 0.9293 0.9290

D. Parameter Selection for the feature extraction

The experiments for setting the local patch size and the surrounding area size are discussed in this section. The

cross validation result of SVM is utilized to measure different features’ performances. The penalty factor of the

linear SVM is set to be 1 and the division of the data set is similar as the experiment for the SVM parameter

selection. Intuitively, these two parameters are relevant to the size of oil tanks. Both of them can be represented as

x×R. x refers to the variable in this experiment and R indicates the circle’s diameter announced by the candidate

selection result.
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For the local patch size, we set different x values (1, 1.1, 1.2, 1.3) and extract HOG features on the local patches

with different sizes. We compute the average test accuracies of these HOG features. The result is shown in Table

IV. When x is set to be 1.2, the average test accuracy is higher than the results of other values. Therefore, we

TABLE IV

CROSS VALIDATION RESULT OF LOCAL HOG FEATURES WITH DIFFERENT LOCAL PATCH SIZE

x 1 1.1 1.2 1.3

Average test accuracy 0.9265 0.9284 0.9293 0.9247

select the local patch size as 1.2 times of the circle’s diameter.

For the surrounding area size, we set different x values (2, 3, 4, 5) and extract CNN features on the surrounding

areas with different sizes. These CNN features are then combined with the local HOG feature to represent the targets.

The size of the local patch is set as 1.2 times of the circle’s diameter. We compute the average test accuracies of

different combined features. The result is shown in Table V. When x is set to be 3, the average test accuracy is

TABLE V

CROSS VALIDATION RESULT OF COMBINED FEATURES WITH DIFFERENT SURROUNDING AREA SIZE

x 2 3 4 5

Average test accuracy 0.9744 0.9754 0.9753 0.9680

higher than the results of other values. In this case we select the size of the surrounding area as 3 times of the

circle’s diameter.

E. Comparison of Modified ELSD, ELSD and Hough Transform

In this part, the modified ELSD is compared with the traditional ELSD and the Hough transform. At first, the

parameters of the three methods are set to get relative good results. The parameters of the modified ELSD are

set according to the previous experiment, and there are not any parameters that need to be set in the traditional

ELSD. In terms of the Hough transform, it makes use of image’s edge detection result and converses the result

to the parameter space whose dimension is predefined as three (center coordinate and radius) via an accumulation

process. The peaks segmented by the accumulator threshold in the parameter space correspond to the circles in

the original image. The function in opencv library is used to get the Hough Transform result in this experiment.

Different parameters are set according to the image’s standard deviation as it’s really hard to set unified parameters

for all input images. The result of different methods on the 42 training images along with their average processing

time is presented in Table VI. The unit of the processing time is second. It can be seen that the two ELSD methods

are faster and more accurate than the Hough transform. Moreover it’s really hard to get a relatively optimal Hough
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TABLE VI

RESULTS OF DIFFERENT CANDIDATE SELECTION METHODS

Method Recall Precision Average Processing Time

Hough Transform 0.6521 0.003507 75.56

Traditional ELSD 0.9136 0.07771 31.98

Modified ELSD 0.9074 0.2612 33.64

transform model with a lot of parameters that need to be selected. The modified ELSD has a much higher precision

rate than the traditional manners. It means that much less candidates will be input for the following processes

(feature extraction and classification). Therefore, the modified ELSD improves the efficiency of the whole detection

system.

However, the precision of the modified ELSD is still not satisfying if we consider it as the final detection result.

The reason for the low precision can be summarized in two aspects. One is that there are actually some circles in

the background such as the bushes. The other one is that the oil tanks are not always critical circles especially for

small oil tanks and the oil tanks in low contrast. If we want to detect these ones, we have to loosen our constraints.

In this case, some objects with circular arcs or similar to circles in the background can be detected at the same

time. This can also reflects that just the circle shape is far from enough for the oil tank detection task. But, the

modified ELSD just plays as a candidate selection method in our algorithm. Its performance is already enough for

the detection task.

F. Visualization and Comparison of Different Features

A feature visualization method t-SNE (unsupervised learning feature visualization algorithm proposed by Maaten

and Hinton, 2008) is applied in this section to find a 2-dimensional embedding of the high-dimensional feature

space.

Firstly, the LHOG-SCNN feature is compared with Local-HOG feature to evaluate the function of the surrounding

information. The visualization of surrounding-CNN feature alone is also represented in this part. The experiment is

tested on the training samples with 34112 positive ones and 56952 negative ones. The result is shown in Figure 13.

We can see that the LHOG-SCNN feature combining local and surrounding information together is more separable

than the Local-HOG feature. Moreover, in the LHOG-SCNN feature visualization, the positive and negative features

are apt to cluster together depending on their labels, and this indicates that the targets’ features combining the

surrounding information are more consistency than those just focusing on the local patch. As for the visualization

of SCNN feature, the samples are also very separable (but shows a little worse cluster ability than the LHOG-SCNN

feature). This can demonstrate that the surrounding information is the driving force that can make oil tanks more

easily to recognize.

Secondly, the t-SNE algorithm is used to visualize the performances of different features in the surrounding area.
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Fig. 13. t-SNE visualization of LHOG-SCNN feature, SCNN feature and Local-HOG feature.

LBP, Gabor and HOG which are widely used for object detection task, are compared with the CNN feature. The

result is also obtained on the training dataset.

For LBP feature, each pixel is compared with its 8 neighbors and encoded with the 8 binary values in the

uniformed manner to get the Local Binary Pattern image. After this, the histograms in different blocks divided from

the image are computed and chained to get the final LBP feature. Specially, the surrounding area is firstly resized

to the 225 × 225 which is almost the same as the capable CNN size (224 × 224), and then the resized area is

divided into 5 × 5 blocks with block size 45 × 45. We count and normalize the histogram of the uniformed LBP

in each block, and connect all block histograms to form the final 1475-dimensional LBP feature of the area. The

t-SNE visualization result is demonstrated in the upper right corner in Fig. 14.

For Gabor feature, the 48 feature maps after Gabor filter are firstly got. Gabor filter could be written as:

g(x, y;λ, θ, σ) = exp

(
−x′2 + y′2

2σ2

)
exp

(
i

(
2π

x′

λ

))
where

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

λ indicates the wavelength of the sinusoidal function, θ refers to the orientation, σ is the standard deviation of the

Gaussian envelope, x and y indicate the coordinates of the pixels in the filter. In this paper, 0.8, 1, 1.2 are set as

wavelengths λ, 0, 45, 90, 135 are set as flip angles θ and 1, 2, 3, 4 are set as standard deviations σ. Therefore, we

get 48 feature maps after the Gabor filter. Afterwards, each feature map is resized to 225 × 225, and the resized

feature map is divided into 5 × 5 blocks (45 × 45) similar to LBP. We compute the mean and variance values

of each block, and normalize them of all blocks in each feature map. Then we chained the 50-dimensional feature

in each feature map to get a 2400-dimensional (48 feature maps × 50-dimensional feature of each feature map)

feature of the surrounding area. The t-SNE visualization result is shown in the lower left corner in Fig. 14.

For HOG feature, the process is almost the same as the local patch feature extraction. We just need to replace

the local patch with surrounding area. The size of the resized surrounding area is 225 × 225, the block size is 90

× 90, the cell size is 45 × 45, and the step size is 45. The t-SNE result is revealed in upper left corner in Fig. 14.

From Fig. 14, it can be seen that the CNN feature outperforms all other features and shows good cluster ability

in the surrounding area.
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Fig. 14. t-SNE visualization of different features in the surrounding area.

Moreover, we test and record the training accuracy of different features through the training samples. The result

is shown in Table VII. The liblinear library in MATLAB form provided by Chih-Jen Lin is applied to accomplish

the training task. The training time of different features is also shown in the table. The unit of the training time is

second. It illustrates that different features except for LHOG-SCNN and SCNN are not capable to accomplish the

difficult training task let alone the test data.

TABLE VII

TRAINING ACCURACY OF DIFFERENT FEATURES ON THE TRAINING DATA

Local Feature Surrounding Feature Training Accuracy Training Time

HOG None 0.9467 22.14

HOG HOG 0.9619 68.54

HOG LBP 0.9778 45.06

HOG Gabor 0.9782 56.26

None CNN 1 50.03

HOG CNN 1 49.87

The precision-recall graph is also drawn to show the performance of different features on the test dataset. We

use the output of SVM (wTxn + b) as the score of the sample to a positive detection and set different thresholds

to compute different precisions and recalls. The result is shown in Figure 15, and the LHOG-SCNN feature is the

best performed.

From the performances of LHOG and SCNN feature in Table VII and Figure 15 we can also conclude that the
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Fig. 15. Precision-recall graph of different features, the points indicate the results using different segment thresholds for SVM outputs.

SCNN feature considering the surrounding information could be the driving performance data set and the LHOG

is just additive to the SCNN feature.

G. Final Detection Result

The processing time of modified ELSD plus LHOG-SCNN feature classification is compared with Ok proposed

method in [7]. The detail of the test time is shown in Table VIII, the unit of the processing time is second. For the

method in [7], the implementation is performed in MATLAB and on a computer with Intel i7 processor with 2.40

GHz and 16 GB RAM. The result is provided by the author. In terms of the method proposed in this paper, all our

application is on an computer with Intel i7 processor with 4.0 GHz, 16 GB RAM and a GPU of GeForce GTX

760. The candidate selection process is performed with C++ code, the SCNN feature extraction is accelerated by

GPU and the others are in MATLAB form. It can be seen from Table VIII, the processing time of our method is

acceptable.

The result of the method in [7] is also compared with the results of different features in this part. Some pieces of

the result are shown in Figure 16. In the figure, the red circles indicate the missing targets, the blue circles reflect

the false positives, the green circles are the true positives. The precisions and recalls of different methods along

with their processing time in the test dataset are shown in Table IX. The unit of the processing time is second. The

recall after using the modified ELSD is 0.9497 and the precision is 0.2182. The implementations of HOG, LBP

and Gabor are all in the MATLAB form. It can be seen that the LHOG-SCNN achieves better performance than

the method in [7] and the other features. The results of LHOG-SCNN in the large size images are shown in Figure

17.

V. CONCLUSIONS AND FUTURE WORKS

A hierarchical oil tank detector for optical satellite images is presented in this paper. It is built on the applications

of surrounding information and deep learning. The surrounding area which is apt to include shadows pipelines and

some other oil tanks makes the oil tanks more separable from the complex background. The deep learning which has
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Fig. 16. Detection result of different features and OK’s proposed method in [7]. The longitude of the image in the first column is -95.105483

and the latitude is 29.751176. The longitude of the image in the second column is 44.994777 and the latitude is 10.427440. The longitude of

the image in the third column is -1.672366 and the latitude is 52.571756. The longitude of the image in the forth column is -118.250652 and

the latitude is 33.840113.
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Fig. 17. Detection results with LHOG-SCNN feature in the large size images. The size of the image in the first row is 2781 × 2445, the

longitude is -118.238100 and the latitude is 33.801487. The size of the image in the second row is 2158 × 2290, the longitude is -95.128800

and the latitude is 29.744275. The size of the image in the third row is 3712 × 3008, the longitude is -1.672366 and the latitude is 52.571756.
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TABLE VIII

PROCESSING TIME

ImageID Image Size

Prop. Method

Method in [7]Candidate Selection Feature Extraction
Total Time

ELSD Post Process LHOG SCNN

1 3712×3008 113.31 10.21 1.97 1.36 126.84 118.6

2 2114×1858 31.45 3.90 2.98 2.05 40.38 71.1

3 1792×1536 25.33 1.29 2.90 5.00 34.50 23.7

4 1813×2000 35.91 3.73 2.04 2.36 44.03 44.4

5 2500×1379 41.85 2.93 1.23 2.03 48.04 56.2

6 2158×2290 57.2 3.90 1.80 1.95 64.85 114.3

7 1858×2016 30.97 3.88 2.02 2.08 38.95 55.2

8 1892×1618 28.17 2.42 1.50 1.81 33.90 39.3

9 1765×1356 13.88 2.38 1.05 1.08 18.39 27.2

10 2781×2445 66.92 8.58 3.57 4.70 83.77 194.5

11 1958×2023 46.54 2.61 0.99 0.99 51.12 34.7

12 2712×2652 50.33 3.31 1.74 1.75 57.12 59.1

Average Time 53.49 69.86

TABLE IX

DETECTION RESULT OF DIFFERENT METHODS

Method in [7] LHOG LHOG-SHOG LHOG-SGabor LHOG-SLBP SCNN LHOG-SCNN

Recall 0.8620 0.8880 0.8845 0.8872 0.9054 0.8715 0.9184

Precision 0.9019 0.7762 0.8592 0.9490 0.9684 0.97 0.9751

Average Processing Time 69.86 51.23 62.64 410.85 77.47 51.51 53.49

a lot of achievements in many fields help us find a better surrounding representation than the traditional handcrafted

features. The deep learning algorithm applied in this paper is an existing CNN model trained by Krizhevsky in the

ILSVRC2012 contest because of the lack of labeled oil data. Additionally, a modified ELSD method is proposed to

select candidates to improve the system’s efficiency. Experimental results demonstrate that the proposed method is

robust under different complex background and has high detection rate with low false alarms. Moreover, we have

found that:

1) The gradient direction is more robust than the gradient amplitude for satellite images especially for the samples

in low contrast with the background. This could be one of the reasons that the ELSD based method shows better

performance than the traditional Hough transform manner.

2) The surrounding feature is the driving performance feature set and the local feature is simply additive to the

surroundings. After all, the surrounding area consists of more information than the local patch. However, the

local information is still necessary especially for the negative samples whose surrounding areas contain some

oil tanks.
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3) Not all surrounding features combining the local information can show better performance than the feature just

focusing on the local patch. On the one hand such features remove some false positives, but on the other their

detection accuracy could be even lower if they can not reliably grasp the surrounding information. This is hard to

see from the statistics, but we can find the negative impact of the surrounding information in some specific cases.

In the second column in Figure 16, the features (HOG, LBP and Gabor) combining surrounding information can

remove some false positives but they miss some targets in the mean time. The complex surrounding information

needs a higher requirement for the feature.

4) The idea using the surrounding information can be applied to other target detection task and could have a better

performance than the manner just focusing on the local patch.

For further works, there are three aspects of the paper that need to be more deeply studied. Firstly, the method is

sensitive to different resolutions. A higher resolution could bring more false positives and a lower resolution could

result in more missing targets. Therefore it will require another training process with different resolution samples

in such cases. Secondly, the targets near the image borders may not include enough surrounding area and may give

a wrong decision result because of the poor representation of the surrounding features. For this problem, we will

train the classifier with the new samples whose surrounding areas contain black borders. Thirdly, the CNN model

used as a blackbox feature extractor in our algorithm is not targeted to the oil data. The property of the system can

be further improved if we can fine tuning the transfer model with our own data set.
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