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Abstract

Sparse unmixing aims at finding an optimal subset of spectral signatures
in a large spectral library to effectively model each pixel in the hyperspec-
tral image and compute their fractional abundances. In most previous work
concerned with the sparse unmixing, L2 norm is used to measure the error
tolerance and the L1 norm is added as the sparsity regularization. Howev-
er, in some applications, using L1 norm to measure the error tolerance has
significant robustness advantages over the L2 norm. Besides, in some cases,
using a smooth function to approximate the L0 norm can obtain more ac-
curate results than the L1 norm in the field of sparse regression. Thus, in
this paper, we consider the two alternative choices for sparse unmixing. A
reweighted iteration algorithm is also proposed so that the unconvex regu-
larizer (smoothed L0 norm) can be efficiently solved through transforming it
into a series of weighted L1 regularizer problems. Experimental results on
both synthetic and real hyperspectral data demonstrate the efficacy of the
new models.
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1. Introduction

Among the remote sensing modalities, hyperspectral imaging is a crucial
technique that can identify the materials and their compositions in an area
by making use of the spectral diversity of the different materials. Utilizing
the hyperspectral remote sensing technology, we can capture hyperspectral
images ranging from ultraviolet region to infrared band. As a result, we
can obtain a hyperspectral data cube which is a stack of images. Each
pixel of the hyperspectral imagery is represented by a spectral signature. As
the hyperspectral data contain hundreds of contiguous narrow spectral band
images, they have great value of applications such as mineral identification
[1], Space Object Identification (SOI) [2] and etc [3]. However, due to the low
spatial resolution of a sensor and the combination of distinct materials into a
homogeneous mixture, each pixel in the hyperspectral imagery often contains
more than one pure substance. Spectral unmixing which means to extract
the pure materials (endmembers) from the spectrum mixture and estimate
their corresponding fractions (abundances) is important to numerous tactical
scenarios, especially when the subpixel information is valuable.

To deal with the unmixing problem, linear spectral mixture analysis tech-
niques first identify a collection of pure constituent spectra, then express the
measured spectrum of each mixed pixel as a linear combination of endmem-
bers weighted by their fractional abundances [4]. Spectral unmixing includes
two main steps. The first step, called endmember extraction, aims at extract-
ing endmembers from the hyperspectral image. This step can be achieved
in a supervised manner when prior information about the image is available.
For example, one can recognize classes of pure materials in the image and
select the associated endmembers to create a learning set containing sam-
ples belonging to different classes. However, sometimes this information is
not available, so an automatic endmember extraction algorithm (EEA) is
necessary. There are many automatic endmember extraction algorithms and
we can categorize them into two types. Type one is the pure pixel based
algorithms, such as the N-FINDR [5], the pixel purity index (PPI) [6] and
the vertex component analysis (VCA) [7]. They assume that the data set
contains at least one pure pixel for each endmember, and then extract the
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purest pixels from the image. Type two is minimum volume based algorithm-
s, such as the minimum-volume enclosing simplex (MVES) [8], the minimum
volume simplex analysis (MVSA) [9], the iterated constrained endmember-
s (ICE) [10]. The second step, called inversion, consists of computing the
corresponding abundances under the constraints of nonnegativity and sum-
to-one [11]. Many different algorithms have been proposed in the literature to
estimate the abundances for the linear mixing model [12]. These algorithms
are based on the least square principle [13], maximum likelihood estima-
tion [14], or Bayesian methods [15, 16]. Besides the algorithms mentioned
above, there are also some algorithms which can pick up the endmembers
and compute the fractional abundances in one stage. One of them is the
nonnegative matrix factorization (NMF) [17, 18] based algorithms. Such
algorithms including minimum volume constrained nonnegative matrix fac-
torization (MVC-NMF) [19], L1/2 sparsity-constrained nonnegative matrix
factorization (L1/2-NMF) [20] and manifold regularized sparse NMF [21] can
factorize the observed data matrix into the endmember matrix and fractional
matrix. However, they need to know the number of endmembers in advance
and identify materials by comparing them to the pure spectral signatures in
the spectral library.

In recent years, as the spectral libraries become available, hyperspectral
unmixing problem can be solved in a semi-supervised fashion. The end-
members can be derived from a spectral library (potentially very large) and
used for unmixing [22]. As the libraries are usually very large, this approach
generally results in a sparse solution. Consequently, we call this approach
sparse unmixing. Several sparse regression techniques have been used for s-
parse unmixing in [22], including orthogonal matching pursuit (OMP), basis
pursuit (BP), BP denoising and iterative spectral mixture analysis (ISMA).
Recently, some sparse unmixing methods have been proposed that exploit the
contextual information [23, 24] and subspace nature [25] of the hyperspectral
images to obtain a much better result. As the approach of sparse unmix-
ing takes advantage of the increasing availability of the spectral libraries,
the abundance estimation process no longer depends on the availability of
pure spectral signatures nor on certain endmember extraction algorithms to
indentify such pure signatures.

To the best of our knowledge, in most previous work concerned with
sparse unmixing, the L2 norm is used to measure the error tolerance because
its computational simplicity compared with the L1 norm, and the convex
relaxation methods (namely adding an L1 regularization) are often considered
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as it can convert the untractable L0 norm problem into a more tractable one.
However, using the L1 norm to measure the error tolerance are known to have
significant robustness advantages over the conventional L2 norm in many
applications [26, 27]. Besides, using a smoothed L0 norm to replace the L0

norm can provide better accuracy than the L1 norm in some cases [28]. Thus,
in this paper, we consider exploring whether the two alternative modifications
can get better sparse unmixing results. Nonetheless, the smoothed L0 norm is
not a convex function. Thus, a reweighted iteration algorithm is proposed so
that the unconvex regularizer can be efficiently solved through transforming
it into a series of weighted L1 regularizer problems.

This paper is organized as follows. In Section 2 we introduce the sparse
hyperspectral unmixing model. Section 3 presents the unmixing algorithms
considered in our study. Section 4 conducts the experiments to compare the
performances of different algorithms using both the synthetic data and real
data. Finally Section 5 concludes with some remarks.

2. Sparse Hyperspectral Unmixing Model

Spectral unmixing aims at estimating the fractional abundances of end-
members in each mixed pixel. The linear mixing model assumes that the
observed spectrum of a pixel can be expressed as a linear combination of
the spectra of the endmembers. Assume y = (y1, . . . , yl)

T is the observed
hyperspectral spectrum, where l is the number of the spectral bands. The
i-th element of y represents the reflectance of the observed spectrum at band
i. The linear mixing model can be expressed mathematically as follows:

yi =

q∑
j=1

Mijvj + ni (1)

where q is the total number of endmembers in the hyperspectral data. Mij

is the reflectance of the j-th endmember at band i. vj is the fractional abun-
dance of the j-th endmember for the observed spectrum, and ni represents
the error term for the observed pixel at spectral band i. Eq. (1) can be
rewritten in a compact matrix form as:

y = Mv + n (2)

where M is an l-by-q matrix and each column of M represents the reflectance
of an endmember, v is a q-D vector containing the respective fractional abun-
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dances of the endmembers and n is an l-D vector which represents the error
term.

In the sparse unmixing model, endmembers are involved in a large spectral
library (denoted by A). Suppose there are p different spectra contained in
the spectral library, then Eq. (2) can be written as follows:

y = Ax+ n (3)

where A is an l-by-p matrix and x is a p-D vector each element of which cor-
responds to the fractional abundance of a signature in the spectral library for
the observed pixel. Because q is much smaller than p, the vector of fractional
abundances x is sparse. Fig. 1 shows the concept of sparse unmixing. Due to
the physical constraint, the fractional abundances of the endmembers cannot
be negative and their sum should be one. These constraints are known as
the sum-to-one and the nonnegativity constraints:

p∑
i=1

xi = 1 (sum-to-one) (4)

xi ≥ 0 (nonnegativity) (5)

where xi is the i-th element of x.
We first do not consider the two constraints in Eq. (4) and Eq. (5). To

find sparse solutions to the unmixing problem, we should solve the following
optimization problem:

min
x
∥x∥0 subject to y = Ax (6)

where ∥x∥0 is the number of non-zero entries in x. Because of noise and
modeling errors, most previous work about sparse unmixing replaced Eq.
(6) with the following optimization problem:

min
x
∥x∥0 subject to ∥y − Ax∥2 < ϵ (7)

where ϵ is a preset threshold corresponding to the noise and modeling errors.
However, L1 methods are known to have significant robustness advantages
over L2 methods in many applications [26, 27]. Thus in this paper, we con-
sider using the L1 norm to replace the L2 norm in Eq. (7)

min
x
∥x∥0 subject to ∥y − Ax∥1 < ϵ (8)
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Figure 1: Concept of the sparse hyperspectral unmixing.

The unconstrained versions of Eq.(7) and Eq.(8) are as follows:

min
x
∥y − Ax∥22 + λ∥x∥0 (9)

min
x
∥y − Ax∥1 + λ∥x∥0 (10)

where λ > 0 is the regularization parameter. Theoretically, a bigger λ leads
to a sparser solution for the two models in Eq. (9) and Eq. (10). The
relationship between λ and ϵ is that λ → 0 when ϵ → 0. In Eq. (9), when
we choose the parameter λ = 0, it becomes the well-known least square
estimation. The least squares estimator has the smallest mean squared error
of all linear estimators with no bias [29].

We call Eq. (9) and Eq. (10) as L2 − L0 model and L1 − L0 model,
respectively. The optimization problems presented in Eq. (7-10) are NP-hard
and it is difficult to solve them in a direct way. Therefore we consider some
algorithms which can get an approximate solution, such as greedy algorithms
[30] and convex relaxation. There are many greedy algorithms that can
compute a sparse solution, such as the classical pursuit algorithm Orthogonal
Matching Pursuit (OMP) [31], Simultaneous Orthogonal Matching Pursuit
(S-OMP) [32, 33] and Subspace Pursuit (SP) [34]. Convex relaxation method
such as Basic Pursuit [35] use L1 norm to replace the L0 norm in Eq. (7-10).
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By replacing the L0 norm in Eq. (9) and Eq. (10) with L1 norm, we can
have optimization problems as follows:

min
x
∥y − Ax∥22 + λ∥x∥1 (11)

min
x
∥y − Ax∥1 + λ∥x∥1 (12)

We call them L2 − L1 model and L1 − L1 model, respectively.

3. Algorithms for Sparse Unmixing

3.1. An Approximative Approach With Smoothed L0 Norm

As L0 norm is not continuous, it is not easy to solve the problems in
Eq. (9) and Eq. (10) directly. In this paper, we consider using a continuous
function to approximate L0 norm, which has three advantages. Firstly, such
a representation provides a smooth measure of sparsity. Secondly, such a
definition of sparsity could tolerate noise to some extend [28]. Thirdly, the
smoothed L0 norm can provide better accuracy than the L1 norm in some
applications [36]. To obtain these benefits, functions must have the following
properties: f(0) = 0 and f(1) = 1.

In this paper, we propose a new function to approximate the L0 norm.
For the i-th element in x, the proposed function is defined as:

f(a, xi) =
1

loga(axi)
(0 < a < 1, 0 ≤ xi ≤ 1) (13)

where a is a given scaler. Then the smoothed L0 norm of vector x is defined
as

F (a, x) =
∑p

i=1 f(a, xi) (14)

=
∑p

i=1
1

loga(axi)
(15)

The following theorem shows how the proposed function approximates
the L0 norm.

Theorem 1. F (a, x) converges to the L0 norm of vector x as a → 0,
where x = (x1, . . . , xp)

T .
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Figure 2: The graph of function F (a, x) with different parameter a.

Proof. From Eq. (13), we can get

lim
a→0

f(a, xi) = lim
a→0

1

loga(axi)

= lim
a→0

1

1 + loga(xi)

= lim
a→0

1

1 + 1
logxi (a)

= 1 ∀xi ∈ (0, 1] (16)

f(a, 0) = 0 ∀a ∈ (0, 1) (17)

Combining Eq. (16) and Eq. (17), we obtain

lim
a→0

p∑
i=1

f(a, xi) = ∥x∥0 (18)

Thus, the theorem is proved. �
Fig. 2 shows the sparsity property of the our function F (a, x) =

∑p
i=1 f(a, xi)

from the aspect of geometry for p = 1. From Fig. 2 and theorem 1, we can
find that the smaller value of a, the closer behavior of F (a, x) to L0 norm;
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and the larger value of a, the smoother F (a, x) (but worse approximation to
L0 norm).

Using the function
∑p

i=1 f(a, xi) to replace the L0 norm, we can get new
versions of Eq. (9) and Eq. (10), they can be expressed mathematically as
follows:

min
x
∥y − Ax∥22 + λ

p∑
i=1

f(a, xi) (19)

min
x
∥y − Ax∥1 + λ

p∑
i=1

f(a, xi) (20)

We call the models in Eq. (19) and Eq. (20) as L2−SL0 model and L1−SL0

model, respectively.

3.2. Algorithms For Minimizing Approximative Approach With smoothed L0

Norm

As the optimization problems in Eq. (9) and Eq. (10) are NP-hard, we
use Eq. (19) and Eq. (20) to replace them. Note that when 0 < a < e−2,
the smoothed L0 norm is not convex. And to make the behavior of the
smoothed function close to the L0 norm, we usually need a very small a
(we choose a = 10−5 in this paper). In this case, the problems in Eq. (19)
and Eq. (20) are not convex optimization problems. With the development
of the non-convex optimization techniques, some effective iterative weighted
algorithms have been proposed [37, 38, 39]. We use the first-order Taylor
expansion of f(a, xi) at the t-th iteration point xt

i to replace the f(a, xi), and
thus convex optimization problems can be obtained:

f(a, xi) ≈ f(a, xt
i) +

− loga e

xt
i log

2
a (ax

t
i)
(xi − xt

i) (21)

So Eq. (19) and Eq. (20) can be rewritten as follows:

min
x
∥y − Ax∥22 + λ

p∑
i=1

− loga e

xt
i log

2
a (ax

t
i)
xi (22)

min
x
∥y − Ax∥1 + λ

p∑
i=1

− loga e

xt
i log

2
a (ax

t
i)
xi (23)
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Now, we present an iterative weighted algorithm to solve the problems
in Eq. (22) and Eq. (23). We show that the problems of Eq. (22) and Eq.
(23) can be transformed into linear programming problem and quadratic
programming problem respectively. For simplicity, in the process of solving
the optimization problems in Eq. (22) and Eq. (23), we use the following
equation to represent the two problems:

min
x

P (x) + λQ(x, t) (24)

where P (x) and Q(x) corresponds with the first term and the second term
in Eq. (22) or Eq. (23), respectively. The algorithm is shown in Algorithm
1.

Algorithm 1 the iterative weighted algorithm for sparse hyperspectral un-
mixing.

1: Initialization and parameters setting
iteration index: t = 0
initialize x: x0 = argminx P (x)
set the maximum iteration step N and the error tolerance ϵ.

2: Main iteration
update x: xt+1 ←− argminx P (x) + λQ(x, t)
update iteration: t←− t+ 1

stop main iteration if t ≥ N or ∥xt−xt−1∥2
∥xt∥2 < ϵ is satisfied.

When P (x) = ∥y−Ax∥22 the optimization problem in step 2 is a quadratic
programming problem:

xt+1 = argmin
x

P (x) + λQ(x, t)

= argmin
x

xTATAx+ (λcT − 2yTA)x+ yTy (25)

where c = (c1, . . . , cp)
T and ci =

− loga e

xt
i log

2
a (axt

i)
xi. There are many methods that

can solve the problem in Eq. (25), such as active set method. In matlab we
can use the function ’quadprog’ to solve it. Similarly, the L2 − L1 problem
in Eq. (11) can also be solved by the quadratic programming.

When P (x) = ∥y − Ax∥1, we define vector s+ and s− as follows:

s+ =
|y − Ax|+ (y − Ax)

2
(26)

s− =
|y − Ax| − (y − Ax)

2
(27)
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Then the optimization problem in step 2 becomes a linear programming
problem:

xt+1 = argmin s+ + s− + λcTx

subject to s+ − s− + Ax = y (28)

We can use inner point method to solve it. In matlab we can use the function
’linprog’ to solve it. Similarly, the L1 − L1 problem in Eq. (12) can also be
solved by the linear programming.

Note that it is easy to add the nonnegativity constraint in Eq. (5) into
the four models and use the linear programming or quadratic programming
to solve them (we can also use the ’linprog’ function or ’quadprog’ function
in matlab to solve them). We do not explicitly add the sum-to-one constraint
in Eq. (4) all along because (i) the sum-to-one constraint should be replaced
with a so-called generalized sum-to-one constraint as there is a strong sig-
nature variability in a real image, and (ii) the nonnegativity of the sources
automatically imposes a sum-to-one generalized constraint [22].

4. Numerical Experiments on Hyperspectral Data

Having presented our method in the previous section, we now turn our
attention to demonstrate its utility for sparse unmixing. The proposed L2−
SL0 model and L1−SL0 model are compared with the L2−L1 model and L1−
L1 model. All the considered models take into the nonnegativity constraint.
Here, we employ synthetic data and real-world data in order to evaluate the
performances of the algorithms. The root mean square error (rmse) [4] is
used to evaluate the abundance estimations. For the i-th endmember, rmse
is defined as

RMSEi =

√√√√ 1

m

m∑
j=1

(Xij − X̂ij)2. (29)

Here, X denotes the true abundances matrix and X̂ represents the estimated
one each column of which corresponds with the abundances of a pixel. The
mean value of all the endmembers’ rmses will be computed. Generally speak-
ing, the smaller the rmse is, the more the estimation approximates the truth.
The stop conditions for the four models are the same: the error tolerance ϵ is
set to 10−3 and the maximum iteration number is set to 20 which is enough
to guarantee the convergence.

11



4.1. Experiments with Synthetic Data

Firstly, we test the four models on synthetic data. The spectral library
used in our synthetic experiments is the United States Geological Survey
(USGS) [40] digital spectral library. The reflectance values of 498 material-
s are measured for 224 spectral bands distributed uniformly in the interval
0.4−2.5 µm. We choose eight spectral signatures from the USGS digital spec-
tral library. They are Rhodochrosite HS67, Axinite HS342.3B, Chrysocolla
HS297.3B, Niter GDS43 (K-Saltpeter), Anthophyllite HS286.3B, Neodymi-
um Oxide GDS34, Monazite HS255.3B and Samarium Oxide GDS36. Their
spectral signatures are displayed in Fig. 3.

The synthetic data are created as follows:

1) Divide the scene, whose size is z2×z2 (z = 8), into z×z regions. Initialize
each region with the same type of ground cover, randomly selected from
the endmember class. The endmember number is q (q = 8). The size of
spectral signature matrix M is l × q (l = 224).

2) Generate mixed pixels through a simple (z+1)× (z+1) spatial low-pass
filter.

3) Replace all the pixels in which the abundance of a single endmember
is larger than 70% with a mixture made up of only two endmembers
(the abundances of the two endmembers both equal 50%) so as to further
remove pure pixels and represent the sparseness of abundances at the same
time; After these three steps, we obtain the distribution of q endmembers
in the scene and specific values are stored in V with a size of q × m
(m = z2 × z2).

4) Use linear spectral mixing model Y = M × V to generate hyperspectral
data and add 30dB Gaussian white noise at the same time. The size of
hyperspectral data Y is l ×m.

The final size of the synthetic hyperspectral data is 64× 64× 224. Note
that there is no pure pixel in the synthetic hyperspectral data. All the pa-
rameters of the four algorithms are tuned to the best performances. Specif-
ically, the λ’s in the L2 − SL0 model, L2 − L1 model, L1 − SL0 model and
L2 − SL0 model are set to be 0.1, 1, 0.2 and 1, respectively. As mentioned
before, the a’s in the L2 − SL0 model and L1 − SL0 model are set to be
10−5. In the L2 − SL0 model and L2 − L1 model, we set the initial solution
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Figure 3: The eight spectral signatures used in our synthetic data experiment.

Table 1: Results obtained by different algorithms on the synthetic hyperspectral data.

model L2 − L1 L2 − SL0 L1 − L1 L1 − SL0

rmse 0.0751 0.0329 0.0255 0.0222

x0 = argminx ∥y−Ax∥2. In the L1− SL0 model and L1−L1 model, we set
the initial solution x0 = argminx ∥y − Ax∥1.

The results obtained on the synthetic data are shown in Tab. 1. We can
find that the L1 − ∗ (∗ represents SL0 or L1) model behaves better than
the respective L2 − ∗ model. This result indicates that minimization of the
L1 norm of the error term can improve the unmixing results compared with
the minimization of the L2 norm of the error term. Besides, it can be also
observed that the Li−SL0(i=1,2) model behaves better than the respective
Li − L1(i=1,2) model. This observation demonstrates that the smoothed
L0 norm regularization can better approximate the sparsest solution than
the L1 regularization. Among all the models, the L1 − SL0 model gets the
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best performance. Fig. 4 displays the true abundance maps as well as the
abundance maps estimated by the four models.

4.2. Experiments With Real Data

In our real data experiment, we use a subimage of the AVIRIS Cuprite
dataset 1 with 70×70 pixels. The scene consists of 224 spectral bands between
0.4µm and 2.5µm, with spectral resolution of 10nm. Prior to the analysis,
bands 1− 2, 105− 115, 150− 170 and 223− 224 were removed due to water
absorption and low SNR in those bands, leaving a total of 188 spectral bands.
The Cuprite site is well understood mineralogically, and has several exposed
minerals of interest, all included in the USGS library. The spectral library
used here is the same with that in the synthetic experiment (including 498
different spectral signatures) with the corresponding bands removed. The
mineral map which was produced by a Tricorder 3.3 software product 2 is
shown in Fig. 5. Note that the Tricorder map was produced in 1995, while
the publicly available AVIRIS Cuprite data were collected in 1997. Thus, we
only adopt the mineral maps as a reference to make a qualitative analysis of
the performances of the different sparse unmixing methods.

As the L2 − SL0 model, the L1 − SL0 model and the L1 − L1 model
behave much better than the L2 − L1 model in the synthetic data experi-
ment, we only display the results obtained by these three best models. The
λ’s in the L2 − SL0 model, the L1 − SL0 model and the L1 − L1 model
are set to be 0.2, 0.2 and 1, respectively. Fig. 6 shows a qualitative com-
parison between the fractional abundance maps of 3 highly materials in the
considered scene estimated by the three models. The distribution maps of
these materials produced by Tricorder software are also displayed. Note that
the Tricorder maps and abundance maps estimated by the sparse unmixing
algorithms are indeed different. Tricorder maps consider each pixel in the
hyperspectral imagery pure and classify it as member of a specific class cor-
related to the representative mineral in the pixel. By contrast, as unmixing
can be regarded as a classification process at the subpixel level, the abun-
dances for a mixed pixel depend on the degree of presence of the mineral
in the pixel. This distinction can account for why the Tricorder maps and
the abundance maps can not be exactly the same. However, we can observe

1http://aviris.jpl.nasa.gov/html/aviris.freedata.html
2http://speclab.cr.usgs.gov/PAPERS/tetracorder/
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Figure 4: True abundance maps and abundance maps obtained by the four models on
the synthetic data. From the left column to the right column are true abundance map-
s and the results obtained by the L2 − SL0 model, the L2 − L1 model, the L1 − SL0

model and the L1 − L1 model, respectively. From the top row to the bottom row are
the abundance maps corresponding to Rhodochrosite HS67, Axinite HS342.3B, Chryso-
colla HS297.3B, Niter GDS43 (K-Saltpeter), Anthophyllite HS286.3B, Neodymium Oxide
GDS34, Monazite HS255.3B and Samarium Oxide GDS36, respectively.
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Figure 5: USGS map showing the distribution of different minerals in the Cuprite mining
district in Nevada.
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that the highest abundances estimated by the sparse unmixing algorithms
generally correspond with those pixels classified as members of the respective
class of materials. From a qualitative point of view, we can conclude that
the L2−SL0 model, the L1−SL0 model and the L1−L1 model are all valid
to unmix the real world hyperspectral data.

5. Conclusion

In this paper, to solve the sparse unmixing problem, we consider using the
L1 norm to replace the conventional L2 norm to measure the error tolerance
and propose a new smooth function to approximate the L0 norm to measure
the sparsity. Experimental results on both the synthetic data and real data
both demonstrate the efficacy of the new models.
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