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ABSTRACT

Abundance estimation is one of the key steps in hyperspectral unmixing. Usual-
ly, abundance estimation is based on linear mixing. However, in real hyperspectral
image, this assumption is not physically rigorous enough, because nonlinear mix-
ture may be observed. Nonlinear models present an improvement by considering
the microscopic interactions. However, in most cases, a nonlinear unmixing method
should assume a specific nonlinear mixture model, and the corresponding abundance
estimation process is only applicable for this model. Recently, supervised machine
learning, especially deep learning methods, have achieved promising performance in
hyperspectral image processing. Supervised learning is able to capture the mapping
between input and output data. In this letter, a new supervised abundance estima-
tion method is proposed, which aims to learn the mapping between pixels spectra
and the fractional abundances. To overcome the difficulty that no groundtruth is
available in real hyperspectral images, we propose a training samples generation
strategy based on synthetic data. The major contribution of this work is that the
proposed method can handle the abundance estimation problem in a uniform frame-
work without assuming specific linear or nonlinear mixing model. Experiments on
both synthetic and real data are conducted to validate the effectiveness of the pro-
posed method.
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1. Introduction

Hyperspectral images have the ability of covering hundreds of continuous spectral
bands with abundant ground information. Recently, the research of hyperspectral re-
mote sensing field is active and has attracted much attention. However, compared with
the spectral resolution, the spatial resolution of hyperspectral images are relatively low.
The earth surface region a pixel covers may include several materials. Hyperspectral
unmixing is a technique aiming at separating the pixels into several elementary spec-
tral signatures (endmembers) and their associated areal proportions (abundances).
Generally, hyperspectral unmixing involves two steps: endmembers determination and
abundances estimation. However, due to the problems such as model inaccuracies and
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ill-posed abundance inversion, hyperspectral unmixing is still challenging (Keshava
and Mustard 2002).

Hyperspectral unmixing relies on the predesigned mixing model which can be de-
scribed either linearly or nonlinearly. Linear mixing model (LMM), which neglects the
effects of multiple scattering and intimate mixture, is the most prevalent (Bioucas-Dias
et al. 2012). A number of efforts have been devoted to solving the linear unmixing
problem, including geometry, statistics, nonnegative matrix factorization and sparse
based unmixing (Bioucas-Dias et al. 2012; Xu and Shi 2017). However, LMM is not
a rigorous expression of hyperspectral image in many real scenarios, such as intimate
mineral mixtures, planetary remote sensing and some urban scenes (Heylen, Parente,
and Gader 2014). Physically, the nonlinear components, i.e., microscopic interactions
among endmembers, should also be taken into account. Recently, many researchers at-
tempted to represent the nonlinearity as an extra component of LMM, such as the Fan
model (Fan et al. 2009), generalized bilinear model (GBM) (Halimi et al. 2011), modi-
fied GBM (MGBM) (Qu, Nasrabadi, and Tran 2014), polynomial postnonlinear model
(PPNMM) (Altmann et al. 2012) and multilinear mixing model (MLM) (Heylen and
Scheunders 2016). However, for abundance estimation, most nonlinear unmixing algo-
rithms are model-dependent, i.e., an unmixing method is only applicable for a certain
nonlinear model assumption (Heylen, Parente, and Gader 2014). If the assumed model
does not exactly match the real situation, the unmixing results cannot be guaranteed.
Unfortunately, in real-world hyperspectral images, it is almost impossible to obtain
the prior mixing model of different image. Moreover, the commonly used nonnegative
least square algorithm (NNLS) may not perform well for most nonlinear models.

In order to solve the above problem, in this letter, we propose a new supervised
abundance estimation method. Supervised machine learning, especially deep learn-
ing methods, have achieved promising performance in hyperspectral remote sensing,
e.g., hyperspectral image classification (Pan, Shi, and Xu 2017). Supervised learning
aims at representing the mapping between input and output data via a data-driven
manner. Recently, deep learning, which could be regarded as an extension of tradi-
tional machine learning, has received special attention. In Cybenko (1989), Cybenko
proposed the Universal Approximation Theorem, revealing that the multi-layer per-
ception model can approximate any continuous function with any precision as long as
enough neurons are given. Motivated by the powerful expression ability of supervised
learning, in this letter, we develop a new supervised approach to deal with the problem
of abundance estimation via learning the mapping relationship between pixels spectra
and the abundance fractions. In addition, considering that it is almost impossible to
obtain labeled pixels from real-world hyperspectral data, we try to create training
samples based on synthetic data.

The major contributions of this work can be summarized as follows,

e We propose a novel supervised method which could handle the abundance es-
timation problem in a uniform framework without assuming specific linear or
nonlinear mixture model.

e A training samples generation strategy is developed based on synthetic data and
diverse mixture models.

o We explore the feasibility of deep learning methods in hyperspectral unmixing,
and a series of experiments are designed.

Experiments on synthetic and real data are conducted to verify the effectiveness
of the proposed method, and the results indicate that deep learning methods are
promising for the task of hyperspectral unmixing. Specially, we find that even the
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Figure 1.: Illustration of the overall framework of the proposed supervised unmixing
method.

mixing manner of testing data is not embedded in training data, the proposed method
still performs well.

2. Supervised hyperspectral unmixing

NNLS is commonly used in abundance inversion for LMM-based unmixing, whereas
it is not appropriate in nonlinear conditions. Usually, for a nonlinear model, there
must be a specific abundance estimation algorithm. Based on supervised learning, the
proposed abundance estimation method overcomes the limitation and does not require
strict linear or nonlinear model. Since the unmixing groundtruth of hyperpsectral
image is difficult to obtain, we propose a training samples generation strategy. LMM
as well as five published nonlinear models are used to create training samples, namely,
LMM, Fan, GBM, MGBM, PPNMM, MLM. These models stem from the physical
analysis of hyperspectral imaging mechanism, which are representative in this field.
Based on the obtained training samples and the corresponding label, we use four kinds
of regression methods to estimate the abundances of testing data, namely, support
vector regression (SVR) (Smola and Scholkopf 2004), recurrent neural network (RNN)
(Elman 1990), principal component analysis network (PCANet) (Chan et al. 2015)
and stacked autoencoder (SAE) (Palm 2012). The overall framework of the proposed
supervised unmixing method is illustrated in Fig. 1. And the procedure is shown in
Algorithm 1.

2.1. Training samples generation

Because hyperspectral unmixing is a subpixel-based problem, it is difficult to obtain an
effective groundtruth. In this letter, we propose a training sample generation method
based on synthetic data. Since we mainly focus on the process of abundance esti-
mation, here, we assume that the endmembers have been obtained by endmember
extraction methods such as vertex component analysis (VCA) (Nascimento and Dias



Algorithm 1 Procedure of the proposed method

Input:
Y: hyperspectral image data; e;: spectra of endmembers.

Training samples generation:

1: for endmember e; do

2: Create an abundance map based on spatial low-pass filter or Dirichlet distribution.

3: end for

4: Generate a hyperspectral image according to LMM, Fan, GBM, MGBM, PPNMM, MLM.
Supervised abundance estimation:

5: Use the synthetic data and abundance maps to train the SVR, RNN, PCANet, SAE respectively.
6: Estimate the abundance map of Y based on the four methods.
Output:

7: The abundance map of Y.

2005). Abundances of the synthetic samples are generated by spatial low-pass filter
and Dirichlet distribution. Then synthetic training data are created based on the six
well-known linear and nonlinear models. Specially, all the pure pixels are removed.
The detail description of the data generation method is shown in the experimental
section. It is worth mentioning that any number of samples can be generated based
on different methods.

Theoretically, in order to make the regression methods be able to handle any nonlin-
earity, it is necessary to generate training data by all nonlinear models. However, the
spectral mixture model is unknown in reality. In addition, the mixture models in dif-
ferent hyperspectral data is likely to be diverse. Therefore, it is impossible to generate
the training data that exactly match all real cases. In this letter, we use the existing
nonlinear models as many as possible to better approximate the actual mixture. The
six well-known linear and nonlinear models are introduced as follows.

2.1.1. Linear model

For LMM, each pixel can be approximated as a linear combination of several pure
spectral signatures in a spectral library (Keshava and Mustard 2002):

m
y = Zaiei +n (1)
i=1

where y € RI*! is the measured spectrum of a mixed pixel, e; € R™*! denotes the ith
spectral signature (m is the number of endmembers), a; is the abundance of the ith
endmember, and n is the noise and modeling error term.

2.1.2. Fan model

Fan model is derived from the Taylor series expansions of the assumed nonlinear func-
tion and simplified by only reserving the first-order item. It considers the interaction
among two different materials (Fan et al. 2009):

m m—1 m
y = Z a;e; + Z Z aaje; ©e;+n (2)
=1

i=1 j=i+1

where e; © e; is the Hadamard (term-by-term) product.



2.1.8. Generalized bilinear model

GBM is an extension of Fan model. The interaction between two endmembers is reg-
ulated by introducing an additional coefficient +;; (Halimi et al. 2011):

m m—1 m
y = Zaiei + Z Z Yijaiaj€; O e; +n (3)
=1 i=1 j=it1
2.1.4. Modified GBM

MGBM improves GBM by adding endmembers’ self-product and also considers the
effects of materials from nearby pixels (Qu, Nasrabadi, and Tran 2014):

m m m
y:Zaiei—i-ZZ%jei@ej—i-n (4)
=1

i=1 j=i

2.1.5.  Polynomial postnonlinear model

PPNMM is inspired by the Weierstrass approximation theorem, which indicates that
polynomials can uniformly approximate any bounded continuous function with any
precision. It models the nonlinearity mixing as (Altmann et al. 2012):

m m m
y = Z a;e; + b (Z aiei> ® (Z aieZ-) +n (5)
i=1 i=1 i=1
where b scales the nonlinear effects and makes PPNMM flexible.

2.1.6. Multilinear mizxing model

MLM extents PPNMM to include all higher order interactions, which makes nonlinear
models more physically. In this case, the nonlinear model is defined by (Heylen and
Scheunders 2016):

y= Z a;e; + <Z aiei> © (Z aiei> +-- (6)
i=1 i=1 i=1

However, our method does not restrict to the hyperspectral data that complies
with these six models. In fact, the proposed method has good expandability. The
main reason is that the relationship between different models can also be learned by
the regression methods. This conclusion is verified in the experimental section.

2.2. Supervised abundance estimation

In this letter, supervised regression methods are used to learn the mapping between
image data and abundances. The basic idea of the proposed method is that machine
learning, especially deep learning, can learn the complex relationship between input
and output data. Then abundance estimation can be effectively performed by the re-
gression methods. In this letter, the following four methods are utilized for abundance



estimation: SVR, RNN, PCANet and SAE. Among them, SVR is a traditional ma-
chine learning method, which can be used as a baseline. RNN is a neural network
based regression forecasting method, and has made great achievements in language
processing. PCANet and SAE are deep learning based methods, which have becom-
ing one of the most hot topics in computer version. PCANet is a simplified version of
convolution-based deep learning network, and has been applied in hyperspectral image
classification (Chan et al. 2015). SAE is a deep learning network that can extract deep
features of hyperspectral images.

First, we generate a group of synthetic data based on the above 6 mixing models. The
synthetic data are composed of many mixed pixels and the corresponding abundance
maps. Second, we consider each pixel and the endmember abundance as a feature
vector and the label, respectively. Then, all the features and labels are used to train
a regression model (SVR, RNN, PCANet or SAE). Finally, the obtained model is
utilized to estimate the endmember abundances in real-world hyperspectral images.
Since the synthetic data are generated by various mixing models, the proposed method
does not need to assume a particular mixing model.

3. Experiments

A series of synthetic and real-world experiments are designed in this section. Synthetic
data are generated by five materials and six mixing models (LMM, Fan, GBM, MGBM,
PPNMM and MLM). The number of training samples are shown in Table 1. SVR,
RNN, PCANet and SAE are used to verify the proposed method respectively. Radial
Basis Function kernel is used in SVR. Parameters of these networks are adjusted
according to unmixing problem. The proposed method is actually a framework for
abundance estimation, therefore the parameters analysis is not included in this letter.
The Matlab code of this letter is published online!.

3.1. Synthetic experiments

The spectral signatures used in synthetic data are from the USGS spectral library re-
leased in 20072. Five similar spectral signatures named Actinolite HS116.3B, Actinolite
HS22.3B, Actinolite HS315.4B, Actinolite NMINH80714 and Actinolite NMNHR 16485,
are selected specially to generate the synthetic data. All the synthetic data are created
as follows.

e Create a 22 x 22 scene and block it into several z x z patches. Each patch is

initialized pure of a randomly selected signature.

e Generate abundances based on a (z+1) x (z+1) spatial low-pass filter or Dirichlet
distribution.

e Find all the pixels in which an endmember occupies larger than 70% abundance,
and replace them by random variety of endmembers and fraction combinations.
The replacement is to avoid pure pixels and better test the proposed method.

e Use the LMM, Fan, GBM, MGBM, PPNMM and MLM to generate hyperpsec-
tral data. It is worth to note that MGBM and PPNMM have the same parameter
setting for experiment, so we only use PPNMM for representative.

1 Available online: http://levir.buaa.edu.cn/
2 Available online: http://speclab.cr.usgs.gov/spectral.lib06



Table 1.: The SRE results of SVR, RNN, PCANet and SAE with 30-dB correlated noise. The
number of training samples for different regression models is presented in brackets.

training data  testing data SVR (50) RNN (100) PCANet (100) SAE (2000) NNLS GBM
LMM 12.98 9.49 8.40 14.49 14.34 15.94

LMM, Fan, Fan 13.37 9.36 8.28 14.35 6.65 3.72
PSI\]?DI\//IIM, GBM 13.46 9.86 8.81 14.53 10.68 11.87
MLM PPNMM 12.57 9.53 8.08 13.45 10.48 6.47
MLM 12.35 9.14 8.55 13.61 12.61 9.58

Table 2.: The SRE results of SAE on different noise levels, noise types and abundance
generation mode. ‘20c¢’ and ‘20w’ denote 20-dB correlated and white noise respectively.

20c 20w 30c 30w 40c 40w
Low-pass filter 7.11 7.11 14.19 14.19 18.05 18.14
Dirichlet distribution | 7.20 7.07 14.61 14.61 18.74 18.78

The synthetic experiments are divided into two groups.

3.1.1.  FEwvaluation on Synthetic Data 1

Synthetic data 1 are generated by all the linear and nonlinear models and randomly
sorted as training samples. White and correlated noises with different signal-to-noise
ratios (SNR = 10log;,(||Y||2/||N||%)) are added to the testing data respectively. For
each regression method, we test its performance on five data types created by LMM,
Fan, GBM, PPNMM and MLM respectively. The testing data are certainly regener-
ated. We also evaluate the proposed method with a popular linear unmixing method,
NNLS, as well as a nonlinear method, GBM, as shown in Table 1. Table 1 is the sig-
nal to reconstruction error (SRE) (SRE = 10log;(E[||X||z]/E[||X — X||3])) results of
SVR, RNN, PCANet and SAE with 30-dB correlated noise. SVR, RNN and PCANet
are traditional classifiers or shallow neural networks, so 50-100 samples are enough for
training. SAE is a deep learning model, thus we use 2000 samples for training. Accord-
ing to the results, GBM performs best in LMM, and SAE present similar performance
as NNLS. However, the major advantage of the proposed method is that we do not
need to design specific algorithm to handle different models. The testing results of d-
ifferent data type have small fluctuation. This is reasonable since the training samples
can cover all the five data types. It can also be observed that SAE performs the best
among all the four regression methods. Therefore, the SAE results on different noise
level, different noise type, and different abundance generation mode are presented in
Table 2 to test their effect. The testing data is generated based on MLM in this case.
From Table 2, the results become better for weaker noise, and are not sensitive to the
noise type and the generation mode of abundance.



Table 3.: The SRE results on Synthetic Data 2 with 20-dB, 30-dB and 40-dB correlated noise.

training data testing data | 20c 30c 40c

LMM, Fan, GBM, PPNMM MLM 6.78 14.02 15.76
LMM, Fan, GBM MLM 7.64 13.66 16.02
LMM, Fan, GBM, MLM PPNMM 6.78 13.32 15.04
LMM, MLM PPNMM 6.85  8.65 9.95

Fan, GBM, PPNMM, MLM LMM 6.81 14.38 16.81

Figure 2.: Abundance maps obtained by the four regression methods. From top to the bottom are abundance
maps of the five materials obtained by SVR, RNN, PCANet, SAE, NNLS, respectively.



3.1.2.  FEvaluation on Synthetic Data 2

We designed the second synthetic experiment, where testing data are obtained by
none of the mixing models in training data. In this experiment, training and testing
data are generated based on different mixing models, as shown in Table 3. Here we
only report the results by SAE, because SAE performs better than other methods
according to Table 1. Comparing the results in Table 1 and Table 3, we note that
the gaps are little in 30-dB noise. Furthermore, it is observed that, for a given testing
model, more training models will bring better results, as shown in lines 2 and 3, line 4
and 5 at Table 3. This experiment indicates that by utilizing mixing models as many
as possible for training, the abundance estimation results are satisfying, even though
the real mixing model is not included in training data.

3.2. Real-world experiments

A real-world data is also used to test the performance of the proposed method. The
hyperspectral data we use is a 150 x 150 subset from the well-known Washington
DC data3, which has 191 bands after low-SNR bands removed. It is known that the
image mainly contains five cover types, including tree, grass, road, roof and water.
Because the groundtruth of real-world data is not available, we resort to the synthetic
data to generate training samples and make a qualitative analysis in this case. The
training data are generated synthetically by the above five models. In order to verify
the performance of the proposed method, we take the results of NNLS as comparison
for SVR, RNN, PCANet and SAE. The abundance maps of the five materials are
shown in Fig. 2. We can see that all the five methods have shown similar performance.
In endmember 2, the four regression methods perform better than NNLS. Experiments
on this real world dataset could verify that the proposed method is effective. At least,
the idea of the new supervised unmixing is promising.

4. Conclusion

Abundance estimation is one of the key steps in hyperspectral unmixing. Although the
LMM assumption is prevalent for unmixing methods, it is not rigorous in real-world
cases. Nonlinear model makes up for this problem by considering more physical mech-
anism in imaging process. However, the corresponding nonlinear unmixing method is
usually model-dependant. In this letter, a supervised abundance estimation method
is proposed. This method can avoid the use of strict linear or nonlinear models and
the functional inversion in abundance estimation. Considering the lack of groundtruth
of hyperspectral unmixing, training samples are generated based on synthetic data.
For the generating process, we resort to the recently presented linear and nonlinear
models. Furthermore, machine learning especially deep learning are used to model the
relationship between the image data and abundance fractions. Our experiments on
both synthetic and real hyperspectral data demonstrate the good performance of the
proposed method. The proposed work is actually a framework for abundance estima-
tion, and it is easy to improve the performance by using more representative learners.
Our future work will be designing a more powerful deep learning based network to
achieve better abundance estimation performance.

3 Available online: https://engineering.purdue.edu/biehl/MultiSpec
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