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ABSTRACT

Band selection refers to finding the most representative chan-
nels from hyperspectral images. Usually, certain objective
functions are designed and combined via regularization terms.
Owing to the parameters independence and the optimal solu-
tions, multi-objective based methods have presented promis-
ing performance. However, the characteristics of the hyper-
spectral band selection problem make its range to be discrete.
In this case, recently proposed weighted Tchebycheff based
multi-objective band selection methods could only reach the
weakly Pareto optimal, which would result in non-unique so-
lutions. In this paper, we improve the decomposition pro-
cess of the multi-objective based band selection method via
a boundary intersection approach. Compared with weighted
Tchebycheff decomposition, the proposed method is able to
change the shape of the contour lines between Pareto Fron-
t and the ideal point, and this approach is particularly suit-
able for discrete-range problems. The effectiveness of our
improvement is demonstrated by comparison experiments.

Index Terms— Multi-objective optimization, band selec-
tion, hyperspectral imagery

1. INTRODUCTION

Hyperspectral imagery (HSI) includes abundant spectral in-
formation which contributes to many remote sensing appli-
cations. However, in some certain circumstances only part
of the information is required [1], i.e., bands are redundan-
cy. Thus band selection methods are developed. There are
two manners for HSI band selection: supervised and unsu-
pervised. The former usually targets at some particular appli-
cations such as classification, while the latter utilizes the hy-
perspectral data characteristics which have attracted broader
research. In this paper we focus on unsupervised band selec-
tion.
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Researchers usually defined certain objective functions to
constrain the bands correlation [1-3]. However, it is difficult
to determine which objective is the most effective. Although
objectives can be combined via regularization terms, the regu-
larization coefficients usually require manual setting. To over-
come this problem, multi-objective (MO) [4] based methods
were used for HSI band selection. MO-based methods could
optimize several objectives simultaneously without the setting
for regularization coefficients. Moreover, MO-based methods
can directly generate a series of subsets corresponding to d-
ifferent numbers of bands in a single run, so as to avoid the
setting of band numbers. Therefore MO-based methods are
promising for HSI band selection.

Recent works about MO-based hyperspectral band s-
election are not many, where these proposed by Gong et
al. [5] and Xu et al. [6] are two typical ones. These two
methods were both developed under the framework of multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) [7]. Literature [5] (MOBS for short) introduced
the MO based method to hyperspectral band selection for the
first time, which was an exploratory work. Method of [6]
(RMOBS for short) mainly tried to solve the decision mak-
ing problem in band selection, where its objectives were not
completely equal to MOBS.

However, because the range of band selection problem is
discrete, MOEA/D is hard to reach Pareto optimal. In other
words, in this case several solutions will reach optimal at the
same time. This situation is called weakly Pareto optimal [4].
For some real applications such as band selection, we hope
that the solution must be unique. Thus weak Pareto solutions
should be avoided.

Targeting at the weakly Pareto optimal problem, in this
paper a new multi-objective based band selection method
is proposed. Mathematically, the weak Pareto solutions of
MOEA/D in discrete range problems are generated in the
weighted Tchebycheff decomposition process. This de-
composition process will lead to rectangular contour lines
between Pareto front and the ideal point. Inspired by this
observation, we propose a boundary intersection based multi-



objective band selection method (BiMOBS). The key idea
of BIMOBS is using a boundary intersection approach to
improve the decomposition process in [5] and [6], where the
shape of contour lines around ideal point is transferred to be
elliptical. By this means the weakly Pareto optimal problem
is solved in principle.

The major contribution of this paper is that a new bound-
ary intersection decomposition based MO method is devel-
oped, which is able to overcome the problem that weight-
ed Tchebycheff decomposition usually only leads to weakly
Pareto optimal in HSI band selection.

2. PROPOSED METHOD

2.1. Objectives

One of the advantages of MO-based band selection method-
s is that they provide a feasible manner to combine several
preferred objectives. Let X = [x1,%a,--- ,x7]|T € REXM
denote the HSI data with L bands and M pixels. Define
b = [b1, b, -+ ,by] as a binary vector representation for X,
where b; = 1 if the i-th band is selected and b; = 0 oth-
erwise. Since the novelty of BIMOBS exists in the process
of optimization, for a fair comparison, here we use the same
objectives as [5]:

min F(b) = [fi(b), f2(b)]
fi(b) = bllo

1 1

where H (x}) is the information entropy of the i-th band. Bi-
MOBS tries to optimize the two objectives f1(-) and fa(+) si-
multaneously. It is worth noting that f;(-) is non-convex and
NP-hard. Usually, convex relaxation or greedy algorithms are
used for LO problem. However, these methods cannot guar-
antee that the obtained solution is optimal. By comparison,
BiMOBS can directly handle LO problem without any relax-
ation. This is also another advantage of MO-based method-
s [5,6,8].

ey

2.2. Optimization Process

The optimization process of BIMOBS can be described by
3 steps: (1) Initialize a solution set; (2) Calculate an ideal
point according to current solutions; (3) Update the solutions
based on the boundary intersection decomposition approach
and random flipping strategy. During each iteration the so-
lution set is updated. The iterations stop when the solutions
keep stable. The final result is called Pareto (optimal) front
which is a solution set. As a conference paper, some back-
grounds for MO-based methods are not shown. We recom-
mend the readers find more detailed description about MO
from [4].

2.2.1. Initialization

BiMOBS begins with an initial solution set B = {b1,bs,--- ,b,}

called population, each of the solution in B is called individ-
ual, and p is the population size. For the ¢-th individual a
uniformly distributed direction vector A; = [A1, Ag] corre-
sponding to the two objectives with (A1 +X2) = 1 is assigned.
Because the objectives in BIMOBS is sparse, in order to get
to the real solution as close as possible, we set all the individ-
uals as zero vectors. After several times update, individuals
in B will be diverse.

2.2.2. The Ideal Point

MO-based methods try to make the population become “bet-
ter” during the iteration process, thus there should be an ideal
point to guide the movement of the population. In BIMOBS,
an ideal point z* is defined by

2" = (21, %)

z] = min f;(B) 2)
z3 = min f>(B)

where 27 is the minimum f;(-) value of all the individuals,
and so as z5. Obviously, z* is usually a virtual point. The
target of BIMOBS is forcing all the individuals to get closer
to the ideal point. It is worth noting that because the popula-
tion keep updating during iterations, the ideal point changes
in each iteration.

2.2.3. Update

Based on the current ideal point and population, there must
be a criterion which could guide the individuals approach the
ideal point. In [5] and [6], weighted Tchebycheff decompo-
sition method was used to evaluate the superiority of current
individuals. However, in sparse band selection problem, the
range is discrete. In this case the weighted Tchebycheff de-
composition may suffer from weakly Pareto optimal (shown
in Fig. 1 and discussed in section 2.3).

In this paper, we use boundary intersection approach [7]
to improve the weakly Pareto optimal problem. The distance
between b; and z* is defined by

g(bi|)\i,z*) =dy +0dy, st. b, e 3

where
[(F(bi) —z*)X] |
(RN ’ @
dy = || F(bi) — (2" + d1A)]|.
0 > 0 is a preset penalty parameter, and €2 is the range. Min-
imizing Eq. (3) is actually the sub-problem for individual b;.

The current population get close to z* based on an evolution
strategy according to the evaluation results by Eq. (3) and Eq.

.
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Fig. 1: Illustrations about the final Pareto fronts by different methods and conditions. (a) Weighted Tchebycheff decomposition in continuous range. (b)
Weighted Tchebycheff decomposition in discrete range. (c) The proposed method in discrete range.

The evolution strategy used in BIMOBS is random flip-
ping, which is the same as [5, 6]. Here we do not put it into
details. After sufficient iterations the population will stabi-
lize in the marginal part of the range, which is called Pareto
(optimal) front.

2.3. Analysis and Discussion

In this section, we analyze and discuss why BIMOBS could
overcome the weakly Pareto optimal problem. From the defi-
nition of weighted Tchebycheff we can conclude that the con-
tour lines are concentric boxes, each of which corresponds to
a certain A;. The points under the same box have the same
distance to the ideal point, thus they are all optimal. Fig. 1(a)
is an illustration for the condition of using weighted Tcheby-
cheff in continuous range. We can see that each box has a
unique intersection with the range, i.e., for a certain \; there
is only one solution which is optimal. Collecting all the inter-
section points we can get the Pareto front.

However, the situation is different when the range is dis-
crete, as is shown in Fig. 1(b). According to Eq. (1), the
range of band selection problem should be many parallel rays.
In this case, it is almost impossible for the Tchebycheff box-
es to just exactly intersect on the edge (shown by triangles in
Fig. 1(b)) of the range. More probably, there would be a co-
incident line with the range, as is shown by red lines in Fig.
1(b). All the available points under the red lines will be se-
lected as the final solutions, i.e., Pareto front. This situation is
called weakly Pareto optimal. Theoretically, solutions in the
same red line are equivalently optimal. However, this result
cannot satisfy the uniqueness of the solution in band selection
problem.

By comparison, the weakly Pareto optimal problem can
be solved in BIMOBS, as is shown in Fig. 1(c). Geometri-
cally, Eq. (3) and Eq. (4) have actually modified the shape
of contour lines in weighted Tchebycheff methods. The pro-
posed method is able to overcome this problem by forcing
the contour lines to concentric ellipses. This improvement
has little influence when the range is continuous, however, it

will lead to a unique intersection in the specific application of
band selection.

3. EXPERIMENTS

3.1. Setups

In this section, we evaluate the performance of BIMOBS on
two public HSI data sets, Indian Pines and Pavia University'.
They are both very popular data sets [9], with 200 available
bands in Indian Pines and 103 in Pavia University. The pa-
rameters p and 6 are set as 100 and 0.5 respectively.

Because BiMOBS is improved based on MOBS [5] which
adopted weighted Tchebycheff decomposition approach, in
this paper we compare their results. Another MO-based band
selection method, RMOBS [6], focused on solutions concen-
tration and thus used different objectives. Therefore the com-
parison with RMOBS is not necessary.

Both BIMOBS and MOBS are general unsupervised band
selection methods which do not aim at specific applications.
So only the band selection results are shown. As a confer-
ence paper, we will show the most meaningful experimental
results. We will further show the classification results using
the selected bands in our extended journal paper. Comparison
with [2, 3, 6] and parameters discussion will also be supple-
mented.

3.2. Experimental Results

Results on the two data sets are shown in Fig. 2. Since f1(-)
and f5(-) are error values of Eq. (1), there are no units in
this figure. All the results are obtained after 100 iterations.
The circles in Fig. 2 denote current solutions. Because the
solutions tend stable in these cases, current solution sets could
be considered as Pareto optimal front.

However, it can be observed that in Fig. 2(a)(c) there are
apparent weak Pareto sets. Take Fig. 2(a) for example. There
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Fig. 2: Band selection results by MOBS on (a) Indian Pines, (c) Pavia University, and BIMOBS on (b) Indian Pines, (d) Pavia University. The circles denote

the solutions, and the red boxes are the so-called weakly Pareto optimal.

are 2 and 3 individuals when f;(-) = 2 and f;(-) = 3, respec-
tively. These individuals are all equivalently optimal [4]. This
is the so-called weakly Pareto optimal. Fig. 2(a)(c) are also
the experimental verification for the assumption and analysis
in Fig. 1(b). Specially, some nearly coincident points can
be observed in Fig. 2(a)(c), such as f1(-) = 8-12,15,20 in
Fig. 2(a) and fi(-) = 7-10,12,18 in Fig. 2(c). Because
one solution is a series of selected bands, although these co-
incident points look like very similar, they may correspond to
completely different results. In this case how to determine a
unique solution from this weak Pareto set is an open problem.
By comparison, BIMOBS can avoid the weakly Pareto op-
timal problem. From Fig. 2(b)(d) we can see that there are no
redundant individuals. The obtained Pareto front is smooth
which will help users find the required solutions. Results in
Fig. 2(b)(d) indicate that BIMOBS is able to overcome the
weakly Pareto optimal problem in the two test data sets.

4. CONCLUSION

In this paper, a new unsupervised HSI band selection method,
BiMOBS, is proposed based on the idea of multi-objective
optimization. BIMOBS is inspired by the fact that MO-based
methods could generate a series of solutions in a single run-
ning. However, weighted Tchebycheff decomposition based
methods may suffer from weakly Pareto optimal in band s-
election, which will lead to the non-uniqueness of the so-
lutions. BiMOBS deals with this problem by introducing a
boundary intersection approach to the decomposition process
in MOEA/D. Our improvement could force the shape of con-
tour lines around the ideal point from rectangle to ellipse, so
as to generate a smooth Pareto front in the band selection
problem whose range is discrete. Experiments on two pop-
ular HSI data sets have demonstrated the effectiveness of the
proposed method.
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