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Abstract

Remote sensing image scene classification refers to assigning semantic labels according to the content of the

remote sensing scenes. Most machine learning-based scene classification methods assume that training and testing

data share the same distributions. However, in real application scenarios, this assumption is difficult to guarantee.

Domain adaptation(DA) is a promising approach to address this problem by aligning the feature distribution of training

and testing data. Inspired by the idea DA, in this article, we propose a correlation subspace dynamic distribution

alignment (CS-DDA) method for remote sensing image scene classification. Aiming at the characteristics of remote

sensing scenes, we introduce two strategies to balance the effects of source and target domains: subspace correlation

maximization (SCM) and dynamic statistical distribution alignment (DSDA). On the one hand, SCM tries to avoid

mapping source domain data into irrelevant subspace to preserve the representation information of the source domain.

On the other hand, DSDA is proposed to reduce the data distribution discrepancy between aligned source and target

domains. Specifically, DSDA is a dynamic adjustment process where an adaptive factor is learned to balance the

interclass and intraclass distribution between domains. Moreover, we integrate SCM and DSDA into a uniform

optimization framework, and the optimal solution can be converted to the generalized eigendecomposition problem

by derivation. The experimental results indicate that the proposed method can generate better results when compared

with other feature distribution alignment methods.
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I. INTRODUCTION

With the development of satellite sensing technology, the task of remote sensing image interpretation has drawn

significant attention, such as scene classification, hyperspectral classification, semantic segmentation [1]–[4]. As a

basic image understanding work, remote sensing image scene classification aims to infer semantic labels according

to the content of the remote sensing scenes [5], [6], which is beneficial to resource management, urban planning,

environment monitoring, and so on [7]–[9].

During the past decades, extensive efforts have been made to develop remote sensing image scene classification

methods. Early works on remote sensing scene classification are mainly based on handcrafted feature representations,

such as scale-invariant feature transform [10] and bag-of-visual-words model [11]. Nevertheless, due to the highly

complex geometrical structures and spatial patterns in remote sensing scene images, handcrafted features may fail

to capture high-level semantic information of remote sensing scene images [12], [13]. To address this problem,

convolutional neural networks (CNNs) were used for scene classification of remote sensing images. References

[14]–[17] trained new CNNs models from scratch using remote sensing images. Cheng et al. [1], Castelluccio et al.

[18], and Scott et al. [19] fine-tuned the pre-trained CNNs on the remote sensing images. Fang et al. [20], Weng

et al. [21], Han et al. [22], and Dai et al. [23] exploit the pre-trained CNNs as a feature extractor to extract the

high-level features for remote sensing images. Especially, features can be extracted from any layer of a pre-trained

network; references [24]–[29] fuse the feature of different layers.

The aforementioned methods usually assumed that the training and testing data shared the same distribution.

However, in a real application, due to the influence of sensors, geographic locations, imaging conditions, and other

factors, the distribution of training and testing data may be different. This phenomenon is referred to as the data

shift. When there is a data shift between the training set and test set, classification models have to be reconstructed

from scratch using the newly collected training data [30]. Obviously, it is expensive to collect annotation data and

rebuild the model [31]. To weaken the influence of data shift, domain adaptation (DA) algorithms were proposed.

DA is one of transfer learning approaches which tries to remove the data shift between source and target domains

[32], [33]. In DA, we define one data set with plenty of labeled samples as the source domain, and another data

set, which is collected under different imaging conditions, as the target domain.

In the remote sensing scene classification, researchers have proposed several methods to alleviate data shifts

based on DA. Othman et al. [34] presented a domain adaptation network to deal with the data shift problem in

remote sensing image scene classification. Reference [35] introduced an asymmetric adaptation neural network

method for cross-domain classification. Teng et al. [36] proposed a classifier-constrained deep adversarial domain

adaptation method for cross-domain semisupervised classification. In [37], subspace alignment (SA) is designed and

a CNN-based framework was used to solve the data shifts problem. The abovementioned methods tried to reduce

the distribution difference by aligning the global distribution of the two domains; however, they did not consider the

distribution alignment between categories. Mathematically, the global distribution is called marginal distribution,

and the class distribution is called conditional distribution.

Zhang et al. [38] proposed the joint geometrical and statistical alignment (JGSA)-based method to reduce the
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data shift. Different from the methods that only considering marginal distribution, JGSA learned two projections

that transform the source domain and target domain data into respective subspaces where the marginal distribution,

conditional distribution, and geometrical divergence are aligned simultaneously. Inspired by the idea of multi-

distribution ensemble, in this article, we develop a new domain adaptation method under the framework of JGSA.

However, JGSA is originally designed for the task of natural scene object recognition, which is quite different

from scene classification. In remote sensing image scene classification task, JGSA has at least two shortcomings

that may hinder its application:

1) Remote sensing scene images present strong interclass similarity. Besides removing the diversity between

source and target domains, it is quite necessary to enhance the discrepancy of corresponding categories.

2) The weights between marginal and conditional distributions in JGSA are fixed. Although JGSA considers both

of the distributions, it cannot evaluate the importance of them.

In this article, to overcome these limitations, we propose a correlation subspace dynamic distribution alignment

(CS-DDA) method for remote sensing image scene classification. Two strategies are developed to improve JGSA:

subspace correlation maximization (SCM) and dynamic statistical distribution alignment (DSDA). SCM attempts to

prevent mapping the source domain data into irrelevant subspace, which preserves the information structure in the

source domain. Meanwhile, we propose DSDA to balance the influence of marginal and conditional distributions.

DSDA exploits an adaptive factor to adjust class distribution alignment. In particular, this balanced factor can be

estimated according to the data distribution between the source domain and the target domain.

The main contributions of this paper can be summarized as follows:

1) A new DA method is proposed for remote sensing image scene classification, where CS-DDA is developed.

2) We propose SCM to avoid mapping the source domain data to unrelated subspaces.

3) We design DSDA that aims to eliminate the influence of distributions weights via learning an adaptive factor.

The rest of this paper is organized as follows. Section II introduces the overall framework of the proposed method

as well as our two contributions. The description of data sets, the experimental setup, experimental results, and

feature distribution analysis are presented in Section III. Section IV concludes this paper.

II. METHODOLOGY

This section describes CS-DDA for remote sensing scene classification, which contains algorithm background,

SCM, DSDA, and final objective function. The process of remote sensing scene classification is shown in Fig. 1.

A. Algorithm Background

JGSA [38] is a representative algorithm for DA, so we first introduce the work of JGSA.

The labeled source domain data are denoted by Ds = {xi, yi}ns

i=1, where xi∈Rd is the deep feature of source

domain image Ii, ns is the number of source domain samples, yi∈{1, 2, . . . , C} is corresponding category label, and

C is the number of categories. The source domain matrix Xs={xi}ns

i=1 is drawn from the distribution Ps (Xs). The

unlabeled target domain data can be defined as follows: Dt={xj}nt

j=1, and its matrix Xt={xj}nt

j=1 is drawn from the

distribution Pt (Xt). The feature spaces and label spaces between domains are the same: Xs=Xt and Ys=Yt. Due to
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Fig. 1. Overall architecture of the proposed method. First, a pre-trained CNN on source domain is applied to extract features of the source

domain and target domain. Then, to alleviate the data shift, we leverage CS-DDA to handle the original features Xs and Xt. Further, a classifier

is trained by using the new feature representation X
′
s in the source domain. Finally, the trained classifier f is utilized to classify X

′
t .

the data shifts, Ps (Xs)6=Pt (Xt). The previous method assumes a unified transformation Ps (φ (Xs))=Pt (φ (Xt)),

Ps (Ys|φ (Xs))=Pt (Yt|φ (Xt)). Nevertheless, when the divergence of the two domains is large, such a unified

transformation may not exist. Therefore, JGSA finds two projections M , N to generate a new feature representation

of the source and target domains.

To prevent mapping features of the target domain into irrelevant dimensions, the variance of the target domain

is maximized.

max
N

Tr
(
NT StN

)
(1)

where St=XtHtXt
T is the scattering matrix of the target domain , Ht=It − 1

nt
1t1T

t is the centering matrix, and

1t ∈ Rnt is the column vector with all elements one.

Especially, JGSA exploits the label information of the source domain to make the features discriminative

max
M

Tr
(
MT SbM

)
(2)

min
M

Tr
(
MT SwM

)
(3)

where Sb is the interclass scattering matrix of the source domain and Sw is the intraclass scattering matrix of the

source domain, which is defined as follows:

Sw =
C∑

c=1

Xs
(c)H(c)

s

(
Xs

(c)
)T

(4)

April 22, 2020 DRAFT



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

Sb =
C∑

c=1

n(c)
s

(
a(c)

s − as

)(
a(c)

s − as

)T
(5)

where Xs
(c) ∈ Rd×n(c)

s is the set of source samples belonging to class c, a
(c)
s = 1

n
(c)
s

n(c)
s∑

i=1

x
(c)
i , as= 1

ns

ns∑
i=1

xi,

H
(c)
s =I

(c)
s − 1

n
(c)
s

1(c)
s

(
1(c)

s

)T
is the centering matrix of data within class c, I

(c)
s ∈ Rn(c)

s ×n(c)
s is the identity matrix,

1s∈Rns is the column vector with all elements one, and n
(c)
s is the number of source samples in class c.

To reduce the difference between marginal distributions of source and target domains, JGSA adopts maximum

mean discrepancy (MMD) [39] as the distance measure to compare different distributions, which measures the

distance between the sample means of the source and target data in the subspace.

min
M,N

∥∥ 1
ns

∑

xi∈Xs

MT xi − 1
nt

∑

xj∈Xt

NT xj

∥∥2

F
. (6)

However, reducing the discrepancy in the marginal distributions cannot guarantee that the conditional distributions

are also be removed [40]. Hence, JGSA leverages the pseudo labels of the target domain to minimize the conditional

distribution differences between the source domain and the target domain

min
M,N

C∑
c=1

∥∥ 1

n
(c)
s

∑

xi∈Xs
(c)

MT xi − 1

n
(c)
t

∑

xj∈Xt
(c)

NT xj

∥∥2

F
. (7)

Moreover, JGSA removes the geometric discrepancy between domains by making the subspace of the source

domain and the target domain subspace close

min
M,N

‖M −N‖2F . (8)

B. SCM

JGSA utilizes the label information to constrain the new representation of source domain data. Nevertheless, for

the remote sensing image scene, source domain data may be mapped into unrelated subspaces. The reason is that

the category of remote sensing image scene is related to not only the category of objects but also related to the

background and spatial layout.

To avoid projecting source domain data into unrelated subspaces, we maximize the source domain variance. The

variance maximization can be calculated as follows:

max
M

Tr
(
MT SsM

)
(9)

where

Ss = XsHsXs
T (10)

is the scattering matrix of the source domain. In (10), Hs is the central matrix, which is defined as follows:

Hs = Is − 1
ns

1s1T
s (11)

where Is ∈ Rns×ns is the identity matrix, and 1s ∈ Rns is the column vector with all elements one.
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C. DSDA

Different from natural object images, remote sensing scene images often exhibit complex spatial structures with

intraclass diversity and interclass similarity. Therefore, for remote sensing scene images, it is not appropriate to

alleviate the marginal distribution and the conditional distribution discrepancy with equal weight as JGSA.

In this article, we propose a DSDA algorithm to adaptively adjust the importance of the conditional distribution

according to the feature distribution of the remote sensing scene. We add into the factor α to control the conditional

distribution. It can be represented as

min
M,N

∥∥ 1
ns

∑

xi∈Xs

MT xi − 1
nt

∑

xj∈Xt

NT xj

∥∥2

F
+

α

C∑
c=1

∥∥ 1

n
(c)
s

∑

xi∈Xs
(c)

MT xi − 1

n
(c)
t

∑

xj∈Xt
(c)

NT xj

∥∥2

F

(12)

where the first term denotes the marginal distribution distance between domains and the second term is the

conditional distribution distance. According to the relationship between the matrix norm and the matrix trace,

(12) can be rewritten as follows:

min
M,N

Tr
( [

MT NT
]

 Rs Rst

Rts Rt





 M

N


)

(13)

where

Rs = Xs

(
Qs + α

C∑
c=1

Q(c)
s

)
Xs

T , Qs =
1
n2

s

1s1T
s

(
Q(c)

s

)
ij

=





1(
n

(c)
s

)2 xi,xj ∈ Xs
(c)

0 otherwise
(14)

Rt = Xt

(
Qt + α

C∑
c=1

Q
(c)
t

)
Xt

T , Qt =
1
n2

t

1t1T
t

(
Q

(c)
t

)
ij

=





1(
n

(c)
t

)2 xi,xj ∈ Xt
(c)

0 otherwise
(15)

Rst = Xs

(
Qst + α

C∑
c=1

Q
(c)
st

)
Xt

T , Qst = − 1
nsnt

1s1T
t

(
Q

(c)
st

)
ij

=




− 1

n
(c)
s n

(c)
t

xi ∈ Xs
(c),xj ∈ Xt

(c)

0 otherwise
(16)

Rts = Xt

(
Qts + α

C∑
c=1

Q
(c)
ts

)
Xs

T , Qts = − 1
ntns

1t1T
s

(
Q

(c)
ts

)
ij

=




− 1

n
(c)
s n

(c)
t

xj ∈ Xs
(c),xi ∈ Xt

(c)

0 otherwise
(17)
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However, there is a distinct disadvantage in (12): the factor α has to be manually fixed, which cannot balance the

influence of marginal and conditional distribution in remote sensing scenes. Aiming at this problem, in CS-DDA,

we propose an adaptive factor adjustment approach based on A-distance [41], [42]. The A-distance is defined as

follows:

dA (Ds,Dt) = 2 (1− 2ε (h)) (18)

where h is the classifier and ε (h) denotes the error of classifier discriminating the source domain and the target

domain.

Thus, we estimate α based on the A-distance. In this process, we utilize the global and local information of the

domain, which can be calculated as follows:

α̂ ≈
∑C

c=1 dc

(D(c)
s ,D(c)

t

)

dm (Ds,Dt)
(19)

where dc denotes the conditional A-distance, dm denotes the marginal A-distance, D(c)
s denotes samples from class

c in Ds, and D(c)
t denotes samples from class c in Dt.

D. Final objective function

In remote sensing image scene classification, we require to generate an effective and robust feature representation.

Hence, we incorporate (1)-(3), (8), (9), (12) and (19) to determine the final objective function. The final objective

function can be formalized as follows

max
M,N

β(9) + γ(1) + δ(2)
(12) + λ(8) + δ(3)

(20)

In (20), minimizing the denominator has two meanings: one is to reduce the statistical and geometric differences

between the source domain and the target domain and the other is to minimize the intraclass variance of the source

domain. In addition, maximizing the numerator of (20) encourages large target domain variance, source domain

variance, and the inter-class variance of the source domain. Among them, β, γ, δ, λ are factors that balance the

importance of each part.

Furthermore, we follow [43] to constrain N . To optimize (20), we write
[
MT NT

]
as ZT , so the objective

function can be written as follows:

max
Z

Tr
(
ZT


 βSs + δSb 0

0 γSt


Z

)

Tr
(
ZT


 Rs + λI + δSw Rst − λI

Rts − λI Rt + (λ + δ)I


Z

)
(21)

We discover that scaling Z does not affect the objective function, so (21) can be rewritten as follows:

max
Z

Tr
(
ZT


 βSs + δSb 0

0 γSt


Z

)
(22)
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s.t Tr
(
ZT

[ Rs + λI + δSw Rst − λI

Rts − λI Rt + (λ + δ)I

]
Z

)
= 1

Actually, (22) is a constrained optimization problem, and it is convenient to apply Lagrange techniques. Hence,

the corresponding Lagrangian function for (22) is given as follows:

L = Tr
(
ZT


 βSs + δSb 0

0 γSt


Z

)
+

Tr
((

ZT


 Rs + λI + δSw Rst − λI

Rts − λI Rt + (λ + δ)I


Z − I

)
Θ

)
(23)

By setting the derivative of ∂L
∂Z = 0, we can convert it into an eigendecomposition problem


 βSs+δSb 0

0 γSt


 Z =


 Rs+λI+δSw Rst−λI

Rts−λI Rt+(λ+δ)I


 ZΘ (24)

where Θ is the eigenvalues matrix and Z is the corresponding eigenvectors matrix. Therefore, we can acquire the

map matrices M and N by Z. Finally, the source domain data and the target domain data are mapped into the new

subspaces to get the new feature representation Xs

′
= MT Xs and Xt

′
= NT Xt. The pseudocode of CS-DDA is

shown in Algorithm 1.

III. EXPERIMENT

In this section, we introduce the data set description, experimental setup, experimental results, and feature

distribution analysis.

A. Data Sets

To verify our algorithm, we select the UC Merced, AID, NWPU-RESISC45, and RSSCN7 to build the cross-

domain remote sensing image scene data sets.

1) UC Merced Data set [11] : The UC Merced data set is a widely used data set for remote sensing image scene

classification and can be downloaded from the United States Geological Survey National Map of 20 U.S. regions.

It consists of 2100 remote sensing images from 21 scene classes: agricultural, airplane, baseball diamond, beach,

buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium density residential,

mobile home park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts. Each

scene class contains 100 red-green-blue (RGB) images with a pixel resolution of 1 ft and an image size of 256 ×
256 pixels.

2) AID Data set [44]: The AID data set is a large scale aerial image data set and acquired from Google Earth.

It contains 10,000 images with a size of 600×600 pixels, which are divided into 30 classes, including airport, bare

land, baseball field, beach, bridge, center, church, commercial, dense residential, desert, farmland, forest, industrial,

meadow, medium residential, mountain, park, parking, playground, pond, port, railway station, resort, river, school,

sparse residential, square, stadium, storage tanks, and viaducts. The number of each class varies from 220 to 420

and the pixel resolution changes from 8 m to half a meter.
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Algorithm 1 CS-DDA Algorithm.
Input:

Data: Source domain matrix Xs, target domain matrix Xt, source domain label Ys

Parameter: γ = 1, δ = 1, λ = 1, β = 1, α

Output:

Projection matrix: M , N

New feature representation: Xs

′
, Xt

′

Target domain label Yt

1: Train a classifier using original Xs, and apply prediction on Xt to get the initial pseudo-label Yt′

2: Calculate

St=XtHtXt
T , Ss=XsHsXs

T

Sw=
∑C

c=1 Xs
(c)H

(c)
s

(
Xs

(c)
)T

Sb=
C∑

c=1
n

(c)
s

(
a
(c)
s − as

)(
a
(c)
s − as

)T

3: repeat

4: Estimate α by α̂ ≈
∑C

c=1 dc

(
D(c)

s ,D(c)
t

)
dm(Ds,Dt)

5: Compute

Rs = Xs

(
Qs + α

C∑
c=1

Q
(c)
s

)
Xs

T

Rt = Xt

(
Qt + α

C∑
c=1

Q
(c)
t

)
Xt

T

Rst = Xs

(
Qst + α

C∑
c=1

Q
(c)
st

)
Xt

T

Rts = Xt

(
Qts + α

C∑
c=1

Q
(c)
ts

)
Xs

T

6: Solve the generalized eigendecomposition problem in Eq. (24), and obtain projection matrices M , N by Z

7: Construct the new feature representation Xs

′
= MT Xs and Xt

′
= NT Xt

8: Train a new classifier on Xs

′
to update the pseudo-label of Yt′

9: Update α,Rs,Rt,Rst,Rts

10: until Convergence

11: return Target domain label Yt

3) NWPU-RESISC45 Data set [1]: The NWPU-RESISC45 data set consists of 31,500 remote sensing images

divided into 45 scene classes. These 45 scene classes are as follows: airplane, airport, baseball diamond, basketball

court, beach, bridge, chaparral, church, circular farmland, cloud, commercial area, dense residential, desert, forest,

freeway, golf course, ground track field, harbor, industrial area, intersection, island, lake, meadow, medium resi-

dential, mobile home park, mountain, overpass, palace, parking lot, railway, railway station, rectangular farmland,

river, roundabout, runway, sea ice, ship, snowberg, sparse residential, stadium, storage tank, tennis court, terrace,

thermal power station, and wetland. Each class includes 700 images with a size of 256×256 pixels in the red green

blue (RGB) color space. The spatial resolution varies from about 30 m to 0.2 m per pixel for most of the scene

classes.
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Fig. 2. Sample images from four public data sets used in our experiments (five classes in total).(Top row to the

bottom row) UC Merced data set, the AID data set, the NWPU-RESISC45 data set, and the RSSCN7 data set. Each

column presents the corresponding class of these four data sets. (From left to right) Dense residential, farmland,

forest, parking lot, river.

4) RSSCN7 Data set [45]: The RSSCN7 data set contains 2800 remote sensing scene images, which are from

seven typical scene categories, namely, the grassland, forest, farmland, parking lot, residential region, industrial

region, and river and lake. There are 400 images in each scene type, and each image has a size of 400 ×400 pixels.

It is worth noticing that the sample images in each class are sampled on four different scales with 100 images per

scale with different imaging angles.

From the above description of the data set, we discover that these four data sets have five public categories,

namely farmland, forests, dense residential areas, rivers, and parking lot. Hence, we choose these five categories to

do the cross-domain remote sensing image scene data sets. Some example images are shown in Fig. 2.

B. Experiment Setup

In this article, we establish three cross-domain scenarios termed as UCM→RSSCN7, AID→RSSCN7 and NWPU→RSSCN7

referring to source domain→target domain. To analyze the generalization ability of CS-DDA on the three cross-

domain remote sensing scene data sets, two classic pre-trained CNN models ( i.e., AlexNet [46] and ResNet50

[47] ) are utilized to extract the features of the source and target domains. Specifically, the features of both source

domain data and target domain data before the final fully connected (FC) layer are extracted [37]. The dimensions
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of features extracted from AlexNet and ResNet50 are 4096 and 2048 respectively. For the parameter setting of

CS-DDA, we follow JGSA.

To evaluate the proposed algorithm, we select overall accuracy (OA), class accuracy (CA), kappa coefficient and

confusion matrix as evaluation metrics.

In addition, to verify the CS-DDA, we compare it to the following.

1) 1-Nearest Neighbor (NN): A basic baseline that learns NN classifier on the source domain and applies to the

target, which could be viewed as a lower bound.

2) Transfer component analysis (TCA) [32]: TCA tries to learn some transfer components across domains to

reduce the marginal distribution difference.

3) SA [48]: SA aligns the base of the source domain with the base of the target domain by finding a transformation.

4) CORrelation ALignment (CORAL) [49]: CORAL minimizes domain shift by aligning the second-order

statistics of source and target distributions.

5) Joint distribution analysis (JDA) [50]: JDA attempts to jointly adopt both the marginal distribution and

conditional distribution.

6) Transfer Joint Matching (TJM) [51]: TJM aims to reduce the domain discrepancy by jointly matching the

features and reweighting the instances.

7) JGSA: A baseline of CS-DDA.

C. Experimental Results

In this section, we comprehensively evaluate CS-DDA and seven baseline methods on three cross-domain

scenarios. All experimental results are illustrated in Table I, where the best results are marked in bold.

1) Results on NWPU→RSSCN7: Our first experiment was conducted on NWPU→RSSCN7, including two cases.

In the first case of AlexNet as a feature extractor, CS-DDA achieves much better performance than all the other

baselines, with the OA of 84.40. Especially, the OA and Kappa of CS-DDA improve by 2.25 and 2.81, respectively,

compared with the best baseline JGSA. There is a reasonable explanation of why CS-DDA performs better than

JGSA. CS-DDA searches for relevant subspace as much as possible and adjusts the conditional distribution according

to the data distribution of the source domain and target domain. To analyze the generalization ability of CS-DDA on

the NWPU→RSSCN7, we also adopt ResNet50 as a feature extractor. Similar to the first case, CS-DDA achieves

favorable results in the case of ResNet50 as a feature extractor.

It is worth noting that almost all feature distribution alignment methods are better than the methods of NN. This

phenomenon indicates the importance of mitigating the data shift when the source domain and target domain are

drawn from different distributions. The OA and Kappa of the JDA are better than TCA. The reason is that JDA

simultaneously adapts both marginal and conditional distributions. CS-DDA and JGSA are better than JDA because

they preserve the discrimination information of the source domain. In particular, TJM is better than TCA because

TJM combines marginal distribution matching and reweighting the instances. In addition, the OA and Kappa of

SA have not shown good performance. The reason is that SA fails to minimize the distributions between domains

after aligning the subspaces.
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TABLE I: CLASSIFICATION ACCURACY OF DIFFERENT METHODS ON THREE CROSS-DOMAIN DATA SETS (%).

Data set Feature Class
Methods

NN TCA SA CORAL JDA TJM JGSA CS-DDA

NWPU→RSSCN7

AlexNet

Dense residential 74.25 82.25 80.25 77.00 81.75 82.25 89.50 83.50

Farmland 49.50 69.50 72.00 73.50 72.25 81.75 81.75 87.50

Forest 96.25 84.25 86.50 88.50 90.75 87.00 83.25 83.25

Parking lot 68.25 78.25 81.00 84.25 79.75 76.25 71.25 77.50

River 32.25 72.50 72.00 66.00 80.75 79.00 85.00 90.25

Kappa 55.13 71.69 72.94 72.31 76.44 76.56 77.69 80.50

OA 64.10 77.35 78.35 77.85 81.15 81.25 82.15 84.40

ResNet50

Dense residential 79.75 86.25 79.50 78.00 84.50 83.50 82.25 81.00

Farmland 73.00 84.25 83.75 86.50 85.25 85.25 88.75 88.25

Forest 93.25 79.75 89.50 87.75 83.25 85.50 91.00 93.00

Parking lot 92.50 89.75 95.00 94.75 89.00 86.50 95.75 95.00

River 47.75 60.75 61.75 73.75 72.25 67.50 81.25 85.75

Kappa 71.56 75.19 77.38 80.19 78.56 77.06 84.75 85.75

OA 77.25 80.15 81.9 84.15 82.85 81.65 87.80 88.60

AID→RSSCN7

AlexNet

Dense residential 89.00 88.25 85.50 87.75 79.75 84.75 90.75 82.25

Farmland 81.75 74.25 70.00 78.75 83.25 76.75 91.00 90.25

Forest 77.50 77.75 80.75 77.25 83.75 84.25 87.00 88.25

Parking lot 30.25 47.50 53.50 46.00 76.75 67.25 58.75 74.00

River 51.00 77.75 80.75 84.75 86.75 86.5 90.50 91.50

Kappa 57.38 66.38 67.63 68.63 77.56 74.88 79.50 81.56

OA 65.90 73.10 74.10 74.90 82.05 79.90 83.60 85.25

ResNet50

Dense residential 78.75 82.00 83.00 89.00 80.25 83.75 78.75 79.00

Farmland 53.50 83.25 81.50 92.00 89.00 87.50 83.50 87.00

Forest 94.75 83.00 73.50 86.00 77.25 77.50 89.50 89.50

Parking lot 68.00 67.75 71.50 64.00 77.75 74.25 93.25 93.00

River 52.00 74.50 72.75 78.25 82.25 82.75 82.75 84.00

Kappa 61.75 72.63 70.56 77.31 76.63 76.44 81.94 83.13

OA 69.40 78.10 76.45 81.85 81.30 81.15 85.55 86.50

UCM→RSSCN7

AlexNet

Dense residential 28.50 48.50 47.00 59.50 68.75 61.50 74.75 80.50

Farmland 58.50 54.50 73.75 39.75 79.00 79.25 85.50 87.75

Forest 95.50 84.75 83.75 63.75 89.50 88.00 84.50 83.00

Parking lot 27.50 49.00 47.00 34.25 65.25 66.25 52.75 53.25

River 48.75 89.25 80.50 95.50 84.50 79.00 92.75 91.50

Kappa 39.69 56.50 58.00 48.19 71.75 68.50 72.56 74.00

OA 51.75 65.20 66.40 58.55 77.40 74.80 78.05 79.20

ResNet50

Dense residential 49.75 56.25 49.75 68.50 83.25 69.25 84.75 84.75

Farmland 61.75 69.00 74.00 58.00 85.00 81.75 77.75 78.25

Forest 90.50 84.75 74.00 71.00 87.00 90.25 91.50 91.25

Parking lot 50.00 69.75 53.50 48.25 81.00 69.00 79.50 79.75

River 72.75 81.75 86.75 88.75 74.75 77.75 85.50 85.75

Kappa 56.19 65.38 59.50 58.63 77.75 72.00 79.75 79.94

OA 64.85 73.20 67.60 66.90 82.20 77.60 83.80 83.95

In the first case of AlexNet as a feature extractor, for ”Farmland” and ”River”, CS-DDA acquires a better CA

compared with JGSA. In Fig. 3, we provide the confusion matrix for both cases in NWPU→RSSCN7. From Fig.

3, we find that the performance of the ResNet50 is better than that of AlexNet. However, some categories are

April 22, 2020 DRAFT



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 13

confused, such as dense residential/parking lot, forest/ river. As shown in Fig. 4, the forest and river share similar

backgrounds. The dense residential and parking lots of scenes in Fig. 4 are composed of the same objects, such as

roads and buildings, which can affect the feature representation of the scenes.

(a) (b)

Fig. 3. Confusion matrix on the NWPU→RSSCN7. (a) AlexNet as a feature extractor. (b) ResNet50 as a feature extractor. The rows and

columns of the matrix denote the actual and predicted classes, respectively. The corresponding category labels of 1-5 are dense residential,

farmland, forest, parking lot, river. The color bar indicates the proportion of samples over the actual total class samples.

Forest River

Dense residential Parking lot

Fig. 4. Examples of major confusion in the RSSCN7 data set.

2) Results on AID→RSSCN7: Our second experiment was conduced on the AID→RSSCN7. Table I shows the

OA and Kappa gained by two different features. A similar tendency is observed: CS-DDA still outperforms over the

state-of-the-art. Furthermore, from Table I, we can discover that the OA and Kappa of almost all methods improve

compared to NN. This phenomenon illustrates that domain shift also appears in AID and RSSCN7 data sets.

In the first case of AlexNet as feature extractor, for ”Forest” and ”River”, CS-DDA achieves the best CA compared

with state-of-the-art methods. In Fig. 5, we provide the confusion matrix for both scenarios in AID→RSSCN7. The

confusion on AID→RSSCN7 is similar to the confusion on NWPU→RSSCN7.

3) Results on UC Merced→RSSCN7: Our third experiment was conducted on the UC Merced→RSSCN7,

and the results are provided in Table I. From Table I, it can be seen that CS-DDA achieves significantly better

performance than the state-of-the-art methods.

In the first scenario of AlexNet as a feature extractor, for ”Dense Residential” and ”Farmland”, CS-DDA realizes

the best CA compared with state-of-the-art methods. In Fig. 6, we provide the confusion matrix for both scenarios
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(a) (b)

Fig. 5. Confusion matrix on the AID→RSSCN7. (a) AlexNet as a feature extractor. (b) ResNet50 as a feature extractor. The rows and columns

of the matrix denote the actual and predicted classes, respectively. The corresponding category labels of 1-5 are dense residential, farmland,

forest, parking lot and river. The color bar indicates the proportion of samples over the actual total class samples.

in UC Merced →RSSCN7. Compared with the previous two groups of experiments, the result of UC Merced as

the source domain is a little worse. The reason is that UC Merced is much more simple than AID and NWPU.

(a) (b)

Fig. 6. Confusion matrix on the UC Merced→RSSCN7. (a) AlexNet as a feature extractor. (b) ResNet50 as a feature extractor. The rows

and columns of the matrix denote the actual and predicted classes, respectively. The corresponding category labels of 1-5 are dense residential,

farmland, forest, parking lot and river. The color bar indicates the proportion of samples over the actual total class samples.

Generally speaking, the experiments on three cross-domain remote sensing image scene data sets show similar

results. CS-DDA is designed to not only align the source and target domains as much as possible but also dynamically

adjust the marginal distribution and conditional distribution.

D. Feature distribution analysis

In this section, to understand more deeply about CS-DDA, we provide the feature distributions of UCM→RSSCN7

in the 2-D space. We leverage the t-distributed stochastic neighbor embedding (t-SNE) [52] as a visualization tool

to observe the data shift between the source domain and the target domain.

The feature distribution of Fig. 7 is original without domain adaptation. From Fig 7, we can observe that the

source domain and the target domain have large data shifts. The feature distribution of Fig. 8 is processed by

CS-DDA. It is clear that CS-DDA alleviates the distribution discrepancy between the two domains. In Fig. 8, we

can observe that CS-DDA is more discriminative, which implies the source classifier will predict the target data

more correctly. In addition, CS-DDA aligns the corresponding categories of the source domain and the target, which

is also beneficial to classify the target domain.
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Fig. 7. Feature visualization: data embedding by t-SNE of original features. Red: source domain.

Blue: target domain. Samples in different shapes represent they are in different categories. The

corresponding label categories in the legend are dense residential, farmland, forest, parking lot,

river.

Fig. 8. Feature visualization: data embedding by t-SNE of CS-DDA features. Red: source

domain. Blue: target domain. Samples in different shapes represent they are in different categories.

The corresponding label categories in the legend are dense residential, farmland, forest, parking

lot, river.

IV. CONCLUSION

In this article, we introduce a CS-DDA method to alleviate the data shift in remote sensing scene classification. The

algorithm of CS-DDA includes SCM and DSDA. Among them, SCM generates a beneficial feature representation,

and DSDA eliminates distribution discrepancies between domains. The major contributions of this article consist of

three folds: 1) we present a new feature distribution alignment method based on DA; 2) to prevent mapping the source

domain data to unrelated subspaces, we propose SCM; 3) since the remote sensing image has the characteristics of

intraclass diversity and interclass similarity, we leverage a balance factor to adjust the class condition distribution.

We exploit the features of two classic pre-trained CNN models to experiment on three cross-domain data sets. The
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experimental results demonstrate that the proposed method is superior to several state-of-the-art methods.

In the future, we will extend the CS-DDA method to confront different DA scenarios in remote sensing scene

classification.
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