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Abstract—Cloud detection, as an important pre-processing
operation for remote sensing images analysis, has received
increasing attention in recent years. Most of the previous cloud
detection methods consider the detection as a pixel-wise image
classification problem (cloud vs background), which inevitably
leads to a category-ambiguity when dealing with the detection
of thin clouds. In this paper, starting from the remote sensing
imaging mechanism on cloud images, we re-examine the cloud
detection under a totally different point of view, i.e. to formulate
cloud detection as a mixed energy separation between foreground
and background images. This process can be further equiva-
lently implemented under a deep learning based image matting
framework with a clear physical significance. More importantly,
the proposed method is capable to deal with three different but
related tasks, i.e. “cloud detection”, “cloud removal”, and “cloud
cover assessment”, under a unified framework. Experimental
results on three satellite image datasets demonstrate the effec-
tiveness of our method, especially for those hard but common
examples in remote sensing images, such as the thin and wispy
cloud.

Index Terms—Remote sensing image, Cloud detection, Image
matting, Deep learning, Convolutional Neural Networks

I. INTRODUCTION

THE rapid development of remote sensing technology in
recent years has opened a door for people to better

understand the earth. Optical remote sensing, as a large family
of remote sensing imaging technologies, has been extensively
applied in many areas in recent years, such as land monitoring,
disaster relief, military reconnaissance, etc. Despite its wide
applications, the fact that the ground objects in an optical
remote sensing image usually being covered by clouds has
greatly limited the usage of optical images and increased the
difficulty of image analysis. As reported by C. Stubenrauch
et al [1], on average, more than 50% of the earth’s surface is
covered by clouds every day. The research on cloud detection
is of great importance and has received increasing attention in
recent years.
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Most of the previous cloud detection methods frame the
cloud detection as a semantic segmentation process, i.e. to
generate a binary mask for the foreground (cloud) and back-
ground image regions under a pixel-wise classification (cloud
vs background) paradigm. Some commonly used methods
include the band grouping/thresholding methods [2–7], the
traditional image segmentation methods [8–10], and the recent
popular deep learning based segmentation methods [11–17].
As these methods are mostly borrowed from the computer
vision community without considering the mechanism behind
the remote sensing imaging, the pixel-wise classification will
inevitably lead to a category-ambiguity in terms of detecting
thin clouds. Therefore, a common defect of these methods lies
that they are not able to deal with thin clouds properly.

The cloud in an image usually presents in a mixed form of
visual appearance with the cloud itself and the ground objects
underneath. Cloud may have various thicknesses and present
in various transparency. As the energy received by an imaging
sensor can be approximated by a linear combination of the
reflectance of the clouds and the ground objects, a remote
sensing image can be considered as a superimposition of a
“clouds layer” and a “background layer”. Therefore, cloud
detection is naturally a mixed image separation problem.

In the image processing field, image matting [18–20] refers
to a group of methods that aim to extract foreground objects
from an image, which have very similar idea compared to the
above descriptions. Matting is an important task in image and
video editing. Some related works can be traced back to the
1990s [18]. Traditional image matting methods can be divided
into two large groups of families: 1) sampling-based methods
[21–23] and 2) propagation-based methods [19, 24, 25], where
the former one produces the matte by a predefined metric given
a set of the foreground and background sampling regions, and
the latter one reformulates the prediction as the propagation
of the foreground and background regions. The matting task
usually produces a “matte” that can be used to separate the
foreground from the background in a given image, which
naturally corresponds to the cloud detection process. To this
end, starting from the “mixed energy imaging model (to
be introduced)” of cloud images, we propose a brand new
cloud detection paradigm called “Deep Cloud Matting”, which
reformulates the cloud detection as a mixed energy separation
between foreground and background images and can be equiv-
alently implemented under an image matting framework. As
the recent advances in deep learning technology have greatly
promoted the progress of image matting [20, 26], we take ad-
vantage of the deep Convolutional Neural Network (CNN) and
the multi-task learning framework so that the matting-based
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cloud detection can be implemented by learning to predict
multiple outputs, including the “cloud reflectance map” and
the “cloud opacity map”, under a unified deep convolutional
architecture. The proposed framework is scalable, flexible, has
clear physical significance, and can be jointly trained in an
end-to-end fashion. In particular, we consider the traditional
cloud detection model as a special case of our method.

To improve the prediction of some hard examples such as
thin and wispy clouds, the attention mechanism is further
integrated into our method. Attention was originally intro-
duced in machine translation to improve the performance
of an Encoder-Decoder RNN model by taking into account
the input from several time steps to make one prediction
[27]. In a CNN-based model, the introduction of mechanism
attention helps investigate the spatial correlations of different
feature locations, and now has been widely used in many
computer vision tasks such as object detection [28], optical
character recognition [29], image captioning [30, 31], etc. In
the proposed method, by introducing the cloud foreground map
(indicating where there is cloud) as the pixel-wise attention
weights to the loss functions of the other two tasks, the
learning of the cloud reflectance and opacity can be well
instructed. The above design has two advantages. The first
one is it makes the training process focus more on those
hard examples. The second one is, it is helpful to reduce the
correlation between the predictions of cloud reflectance and
opacity. Our method predicts not only the detailed cloud region
but also the accurate cloud reflectance and opacity which can
be further used for cloud removal and cloud cover assessment.
Experimental results on three satellite image datasets have
demonstrated the effectiveness of our method.

The contributions of this paper are summarized as follows:

1) In most previous cloud detection literature, the detection
is framed as a pixel-wise classification process without
considering the nature of the remote sensing imaging.
This pixel-wise classification paradigm results in an in-
herent defect when dealing with the detection of thin and
wispy clouds. This paper proposes a brand new cloud
detection framework, which reformulates cloud detection
as a foreground-background energy separation process.
This idea can be further implemented under a classical
image matting framework which is derived from a mixed
energy imaging model of cloud images.

2) To improve the detection of some “hard examples” such
as the thin and wispy cloud, the attention mechanism
is introduced in our method to reduce coupling between
tasks and make the learning process focus more on those
hard examples.

3) In previous remote sensing literatures, cloud detection [2–
17], cloud cover assessment [32–34] and cloud removal
[35–42] are investigated separately despite the high cor-
relation between them. This inhibits joint optimization
and makes the implementation of the methods highly
complicated. Instead of designing individual algorithms,
the proposed method deals with the three tasks under the
same framework and is trained in an end-to-end fashion.

The rest of this paper is organized as follows. In section II

we introduce the mixed energy imaging model of cloud images
and how cloud detection is formulated under an image matting
framework. In section III, we give a detailed introduction to
our proposed method, including network configuration, multi-
task loss function, and implementation details. In section
IV, we introduce the dataset used in our experiments. Some
experimental results are given in section V. In section VI, we
discuss the drawbacks and limitations of our method and the
conclusions are drawn in section VII.

II. MIXED ENERGY IMAGING MODEL OF CLOUD IMAGE

When a satellite or an aircraft flies over a cloud-covered
area, the onboard imaging sensors receive the reflectance
energy of ground objects and the cloud at the same time. The
amount of energy received by the sensors per unit of time can
be approximately considered as a linear combination of the
three terms [43, 44], 1) the reflectance energy of the clouds, 2)
reflectance energy of ground objects without the interference
of the clouds, and 3) the radiation of ground objects, as shown
in Fig. 1. This process can be described as follows:

E = ECR + (1− α)(EBR + EBE)

≈ ECR + (1− α)EBR,
(1)

where E represents the total energy received by the sensor,
ECR represents the energy reflected by the clouds, EBR

represents the reflectance energy of the ground objects without
the occlusion of clouds, and EBE represents the radiation of
ground objects, which can be usually neglected for visible
bands. α is an attenuation factor of the ground reflectance due
to the occlusion of clouds (0 ≤ α ≤ 1). The larger the α is,
the thicker the cloud will be: α = 0 means there is no cloud
while α = 1 means the ground object is completely occluded
by the cloud. We refer to the above model as the “Mixed
Energy Imaging Model” of cloud images.

To this end, a remote sensing image I(x) can be generally
expressed as a linear combination of a cloud reflectance map
Rc(x) and a background reflectance map Rb(x):

I(x) = Rc(x) + [1− α(x)]Rb(x) (2)

where x represents the pixel locations in an image.
According to the above model, we deal with three different

problems, i.e. cloud detection, cloud cover assessment, and
cloud removal, under a unified framework.
• Task 1: Cloud Detection.
As the cloud reflectance map Rc(x) defines how much

energy is reflected by clouds per unit time, the cloud detection
task can be thus considered as the learning of a mapping
from the input cloud image to the cloud reflectance map:
I(x) 7→ Rc(x). When α(x) = 1 and Rc(x) is set to binary
values (i.e, 0 and 1), the prediction will degenerate to a
traditional cloud detection method, which simply ignores the
reflectance.
• Task 2: Cloud Cover assessment
As α(x) corresponds to how much of the reflectance energy

of ground objects have been suppressed due to the occlusion of
clouds, we define it as the “thickness” of the cloud. Therefore,
the cloud cover assessment tasks can be considered as the
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Fig. 1. An illustration of the “Mixed Energy Imaging Model” of cloud images [43, 44]. The energy received by a sensor per unit time can be approximately
considered as a linear combination of the reflectance energy of the cloud ECR and the ground objects EBR.

learning of a mapping from the input to the cloud opacity
map: I(x) 7→ α(x).
• Task 3: Cloud Removal
Cloud removal is essentially a background image recovery

problem. According to (2), it is easy to obtain the background
reflectance image as follows:

Rb(x) =
I(x)−Rc(x)

1− α(x)
, α(x) 6= 1. (3)

This means once we have obtained Rc(x) and α(x), the cloud
can be easily removed and background images can be thus
recovered. It should be noticed that when α(x) = 1, the ground
is completely covered by clouds thus can not be recovered.

III. DEEP CLOUD MATTING

In recent years, deep Convolutional Neural Network (CNN)
has played a central role in many computer vision tasks
such as image classification [45, 46], object detection [47–
49], etc. CNN has also been extensively applied in a variety
of remote sensing tasks such as object detection [50], scene
labeling [51], remote sensing image captioning [52], and cloud
detection [12], etc. A CNN model learns high-level image
representations with better discrimination and robustness by
constructing multiple layers of neural networks as opposed
to those in traditional methods, where image features are
designed manually. In this paper, we build our network based
on a CNN architecture.

A. Networks Architecture

We formulate the learning and prediction of the cloud
reflectance map Rc(x) and the cloud opacity map α(x) under
a multitask learning framework. The networks consist of an
encoder and multiple decoders, where the encoder aims to
learn high-level feature representations of the input image,
and the decoders aim to predict multiple desired outputs
throughout multiple heads, as shown in Fig. 2.

To improve the prediction of hard examples, e.g. thin cloud,
we further integrate the attention mechanism to our model by
introducing an additional attention branch to the decoders. The
decoder, therefore, consists of three output branches: the first
one aims to predict cloud reflectance map Rc(x), the second
one aims to predict the cloud opacity map α(x), and the last
one, i.e. the attention branch, aims to generate binary cloud
mask for cloud pixels, meanwhile, to instruct the learning of
the previous two branches and help them concentrate more on
difficult regions. Specifically, the attention branch takes in the
foreground mask A(x) (where 1 is the cloud-covered pixels
and 0 is the no cloud pixels) as its ground truth reference.
The predicted attention scores are employed as the pixel-wise
weights of the loss functions of the other two tasks (to be
introduced in the next subsection).

As a CNN model consists of a series of convolutional and
pooling layers, features in deeper layers will have stronger
invariance but less equivariance. Although this could be ben-
eficial to category recognition, it usually suffers the loss of
details such as the object’s edge and boundary. To improve
the learning of features with both high-level semantics and
local details, the feature fusion is employed in our method by
introducing the skip-connection across different layers from
the encoder to the three decoders, as shown in Fig. 2. The
above networks can be end-to-end trained with the help of a
multi-task loss function.

B. Multi-task Loss Function
Our loss function L consists of three parts, 1) the loss of

attention branch L(A(x)), 2) the loss of cloud reflectance pre-
diction L(Rc(x)), and 3) the loss of cloud opacity prediction
L(α(x)):

L =
∑
x

(γ1L(A(x)) + γ2L(Rc(x)) + γ3L(α(x))), (4)

where γ1, γ2, and γ3 are three positive coefficients for bal-
ancing the learning weights between three tasks. x is the pixel
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Fig. 2. An overview of the architecture of the proposed networks. The networks consist of an encoder for learning feature representation and three decoders
for predicting multiple outputs including cloud reflectance, cloud opacity, and the cloud mask (attention map).

locations. The details of the three loss functions are described
as follows.

• Attention Branch
The prediction of the attention map is essentially a pixel-

wise binary classification process. We use the binary cross-
entropy loss as its loss function:

L(A(x)) = −Â(x)log(A(x))
− (1− Â(x))log(1−A(x)),

(5)

where A(x) and Â(x) are the predictions (probabilities) and
binary labels of the attention branch.

• Cloud Reflectance Branch
As the reflectance of a cloud pixel is a continuous value, we

formulate the prediction of cloud reflectance as a regression
problem. To obtain more robust prediction, especially for the
the outliers, e.g, some thin clouds with low reflectance, we use
the L1 (absolute value) function as the loss of this branch:

L(Rc(x)) = A(x)|Rc(x)− R̂c(x)|, (6)

where Rc(x) and R̂c(x) represent the predicted and true
cloud reflectance value respectively. A(x) is used as pixel-
wise weights of the loss function to make the learning focus
on cloud regions.

• Cloud Opacity Branch
Cloud opacity can be also learned through a regression

process. The loss function is defined as follows:

L(α(x)) = A(x)|α(x)− α̂(x)| (7)

where α(x) and α̂(x) represent the predicted and true cloud
opacity values. A(x) is used as pixel-wise weights of the loss
function to make the learning focus on cloud regions.

TABLE I
A DETAILED CONFIGURATION OF OUR NETWORKS.

Layer Input Ker Stride #Ker σ(·)

E
nc

od
er

conv pool1 image 3x3 2 64 ReLu
conv pool2 conv pool1 3x3 2 128 ReLu
conv pool3 conv pool2 3x3 2 256 ReLu
conv pool4 conv pool3 3x3 2 256 ReLu
conv pool5 conv pool4 3x3 2 512 ReLu
conv pool6 conv pool5 3x3 2 512 ReLu

conv7 pool6 3x3 1 512 None

D
ec

od
er

:
1∼

3

deconv1 conv7 3x3 2 512 ReLu
deconv2 deconv1 + conv6 3x3 2 512 ReLu
deconv3 deconv2 + conv5 3x3 2 256 ReLu
deconv4 deconv3 + conv4 3x3 2 128 ReLu
deconv5 deconv4 + conv3 3x3 2 128 ReLu
deconv6 deconv5 + conv2 3x3 2 64 ReLu

conv output deconv6 + conv1 3x3 1 1 None

C. Implementation details

Default Setting. We build a seven-layer convolutional net-
work as our encoder and another seven-layer convolutional
network as our decoder. The detailed configuration of our net-
works is shown in Table I. The columns “Ker” means the size
of the convolutional kernel, “Stride” means the convolutional
or pooling stride, “#Ker” means the number of filters, “σ(·)”
means the kind of the nonlinear activation layers. The rows
“conv” means convolution operation, “deconv” means decon-
volution operation [53] (a.k.a. the transposed convolution),
which is used for up-sampling the feature map. Apart from
the output layer, Batch Normalization [54] is embedded in all
convolution and deconvolution layers to speed up training. The
decoders of the three tasks have the same architecture. Since
the output map of our attention branch does not require a high
accuracy, a rough guide is enough for the training. Therefore,
we set γ1 = 1, γ2 = γ3 = 10. We used the Adam optimizer
[55] with the learning rate of 10−4 for training. We train at
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Fig. 3. An illustration of the synthetic training data generation process.

batch size 3 for 16 epochs.
Data Augmentation. In order to increase the diversity of

training data and reduce the gap between real data and syn-
thetic data, extensive data augmentation methods are adopted.
For an image of a size 512 × 512, we first rotate it with the
angle randomly selected from [0°, 90°, 180°, 270°]. Then a
patch with a size of 410× 410 is randomly cropped from the
rotated image and resize to 512× 512. Finally, we randomly
flip the augmented image.

IV. EXPERIMENTAL DATASET

Our experimental dataset consists of 328 remote sensing
images that are captured by the Gaofen-1 satellite. The original
images have two resolutions: 8m/pixel from the panchromatic
and multi-spectral (PMS) sensor with the image size of about
4500×4500 pixels, and 16m/pixel from the wide field-of-view
(WFV) sensors with the image size of about 12000×13000
pixels. The statistics of our dataset are given in Table II.
There are 72 images in our training set and 256 images in
our testing set. Each image has been down-sampled to a fixed
size, 512 × 512 pixels, for training. Since the raw pixel of
the original GF-1 data has four bands (blue, green, red, and
infrared) and is 16-bit depth, all images are converted to 8-bit
RGB images before they are fed into the networks. Apart from
that, we do not perform any other pre-processing operations.
The dataset covers the most type of ground features, such as
city, ocean, plains, plateaus, glacier, desert, gobi, etc. Each
image in our dataset has been manually labeled with a pixel-
wise binary cloud mask as the ground truth of the attention
branch. During the labeling process, if the background details
can be clearly observed through the clouds, we consider the

TABLE II
A SUMMARY OF OUR GF-1 EXPERIMENTAL DATASET.

Image Info.

# total imgs 328
img size (pxl) 4,500×4,500, 12,000×13,400
resolution 8m/pxl, 16m/pxl
source GaoFen-1 PMS and WFV

training set

# imgs 72
# thin cloud imgs 0
# thick cloud imgs 38
# no cloud imgs 34

testing set

# imgs 256
# thin cloud imgs 99
# thick cloud imgs 134
# no cloud imgs 23

clouds as “thin clouds”, otherwise we consider them as “thick
clouds”. Besides, if more than half of the clouds pixels in an
image are thin clouds, this image is considered as a thin cloud
image, otherwise, it is considered as a thick cloud image.

Note that it is impracticable to manually annotate their accu-
rate ground truth values. This is because the cloud reflectance
and opacity are both in continuous values. In image matting,
a current solution to this problem is to use synthetic data
[20, 26]. We have followed this idea to generate a set of
synthetic images with their “ground truth” labels for cloud
reflectance maps, opacity maps, and attention maps. The thick
clouds images (where α(x) ≈ 1) and background images (with
no clouds, where α(x) ≈ 0) in our training set are used to
generate the synthetic images and their ground truth maps. The
synthetic data generation process is shown in Fig. 3. We use
the image regions that completely covered by thick clouds as
the ground truth cloud reflectance of synthetic images. We use
the images without any clouds as the ground truth background
reflectance of the synthetic images. Then, the synthetic image
can be generated by performing a linear combination of the
clouds and backgrounds based on the Eq. (2), where a random
opacity value is generated as the combination weights. To
increase the diversity of the synthetic images, the background
images and cloud reflectance maps are randomly rotated,
flipped and cropped. We select 38 background images and
34 thick clouds images from the training set to synthesize
10405 images for training the cloud matting networks. We
select 23 background images and 43 thick clouds from the
testing set to synthesize 5934 images for evaluating cloud
detection and cloud removal accuracy. Since we train our
networks with synthetic images but test on real ones. To obtain
more convincing results, we need more real images for the test
phase. Therefore, we leave more images in the testing set.

In addition to our GF-1 dataset, we also test on two public
cloud detection datasets, the GF1 WHU dataset [5], and the
Landsat-8 dataset [56]. The GF1 WHU dataset [5] consists
of 108 images and the Landsat-8 dataset [56] consists of 96
images. Since we do not use images of the two datasets to
train our model. We treat all images in these two datasets
as the test ones. And all images in the above two datasets
are converted to 8-bit images and down-sampled to 512 ×
512 pixels. Besides, because the networks in our method are
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Fig. 4. (Better viewed in color) Some examples of cloud detection results of comparison methods. The first column shows the input cloud images. The second
to sixth columns are the results of the comparison methods. The last column is the predicted cloud reflectance of our method (Cloud Matting + Proposed
Networks).
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Fig. 5. (Better viewed in color) The precision-recall curves of different cloud detection methods. (a) Results on thick-cloud images. (b) Results on thin-cloud
images.

trained on RGB images, when testing on these two datasets,
we have also selected these three bands accordingly.

V. EXPERIMENTAL RESULTS AND ANALYSIS

For the cloud detection task, the Precision-Recall (PR)
curve and the “Average Precision (AP)” score are used as
our evaluation metrics. The PR curve shows the relationship
between the detection precision and recall rate by changing
different thresholds on a detection output:

Precision =
Nc

Nc +Nf
, Recall =

Nc

Nt
, (8)

where Nt is the total number of cloud pixels in groundtruth,
Nc is the number of correct detection of cloud pixels, and Nf

is the number of false alarm pixels.
For cloud reflectance and opacity prediction tasks, three

different metrics are used including the Mean Absolute Error
(MAE), Mean Squared Error (MSE), and Mean Absolute
Percentage Error (MAPE), which are defined as follows:

MAE =
∑
i

|yi − ŷi|/N,

MSE =
∑
i

(yi − ŷi)2/N,

MAPE =
∑
i

|yi − ŷi
ŷi
|/N,

(9)
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Fig. 6. (Better viewed in color) Some examples of the thin cloud removal result of our method. (a) Input image. (b) Cloud removal result. (c) Predicted
opacity (cloud cover assessment result). (d) Predicted cloud reflectance. The last row shows a failure case of our method, there is no cloud in this image but
our model has wrongly predicted the snow as the cloud. This may be because our training set does not contain any snow images.

where y and ŷ are the predicted output and the groundtruth
reference, respectively. i is the pixel id and N is the total
number of pixels in an image.

A. Detection Results

We compare our method with some recent cloud detection
methods, including the Progressive Refinement [6], Scene
Learning [8], Fully Convolutional Networks + pixel-wise
Classification (FCN+CLS) [14], CloudFCN [15] and RS-Net
[16], on our test set. We also replace the encoder of the
cloud matting network with VGG16 [57] and Resnet50 [46]
to evaluate the performance of our framework. Fig. 4 shows
some cloud detection examples. The first column shows the
input cloud images. The second to sixth columns are the results
of the comparison methods. The last column is the predicted
cloud reflectance of our method.

Since there are great differences between thin clouds and
thick clouds in visual appearance and detection difficulty, we
evaluate our method based on the results of thin clouds and
thick clouds separately. It can be seen from Table. III and
Fig. 5 that our method has a higher cloud detection accuracy
especially for those thin cloud images, regardless of encoder’s
structure. For thick cloud images, our method has comparable

detection results on high recall areas with FCN+CLS [14], and
their curves are crossed with each other. As the Progressive
Refinement [6] only produces binary output masks, we can not
compute its AP in Table III and can only mark their precision
and recall as a single point in Fig. 5 for comparison. The
advantage of our method is not only suggested by the metrics
we currently use, but also in terms of the physical mechanism
of the cloud images. Although our method is trained solely
with synthetic data, the experimental result demonstrates that
it still achieves comparable accuracy with other popular cloud
detection methods on real data.

Table. IV and Fig. 7 show the cloud detection results on
the GF1 WHU dataset [5] and Landsat-8 dataset [56]. It can
be seen that our method can not only obtain comparable AP
scores with other cloud detection methods on the above two
datasets but also extract the cloud reflectance accurately from
the image. This suggests that our method can be applied to a
variety of satellite platforms.

B. Cloud Removal Evaluation

According to Equation 3, once we have obtained the re-
flectance image and opacity of the cloud, the background
can be easily recovered. In this way, we can evaluate the
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Fig. 7. (Better viewed in color) Some examples of the cloud detection results of comparison methods on the GF1 WHU dataset [5] (the first two rows) and
Landsat-8 dataset [56] (the last two rows). The first column shows the input cloud images. The second to sixth columns are the results of the comparison
methods. The last column is the predicted cloud reflectance of our method (Cloud Matting + Proposed Networks). The parts marked in gray correspond to
the ”black areas” in the input image, and the parts marked in black and white correspond background and cloud separately.

TABLE III
A COMPARISON OF CLOUD DETECTION RESULTS OF DIFFERENT

METHODS. A HIGHER SCORE SUGGESTS A BETTER RESULT.

Method APthick APthin

Scene Learning [8] 0.8200 0.8944
FCN+Cls [14] 0.9253 0.9332
Progressive Refinement [6] – –
CloudFCN [15] 0.9031 0.9261
RS-Net [16] 0.7518 0.8976

Ours (Cloud Matting+VGG16) 0.9110 0.9356
Ours (Cloud Matting+Resnet50) 0.9109 0.9370
Ours (Cloud Matting+Proposed Networks) 0.9139 0.9382

TABLE IV
COMPARISON RESULTS OF DIFFERENT METHODS ON THE GF1 WHU

DATASET [5] AND THE LANDSAT-8 DATASET [56]. THE “AVERAGE
PRECISION (AP)” IS USED AS AN EVALUATION METRIC. A HIGHER SCORE

SUGGESTS A BETTER RESULT.

Method GF1 WHU [5] Landsat-8 [56]

Scene Learning [8] 0.4237 0.5282
FCN+Cls [14] 0.7594 0.7712
Progressive Refinement [6] – –
CloudFCN [15] 0.8105 0.6821
RS-Net [16] 0.5690 0.5724

Ours (Cloud Matting+VGG16) 0.7891 0.6896
Ours (Cloud Matting+Resnet50) 0.8035 0.6981
Ours (Cloud Matting+Proposed Networks) 0.7549 0.7074

TABLE V
A COMPARISON OF DIFFERENT METHODS ON THE CLOUD REMOVAL TASK.

LOWER SCORES INDICATE BETTER. THE BEST RESULTS IN EACH ENTRY
ARE MARKED AS BOLD.

Method MAE MSE MAPE

Homomorphic Filter [38] 0.3400 0.1444 0.4312
Deformed-Haze [39] 0.0997 0.0169 0.2100
Adaptive Removal [40] 0.0655 0.0089 0.1449
SM-DCP [41] 0.1763 0.0485 0.3652

Ours (Cloud Matting+VGG16) 0.0599 0.0080 0.1180
Ours (Cloud Matting+Resnet50) 0.0648 0.0087 0.1306
Ours (Cloud Matting+Proposed Networks) 0.0570 0.0068 0.1140

performance of cloud removal by calculating the MAE, MSE,
and MAPE of the recovered images and their “ground truth”.
We compare our method with four classical cloud removal
methods: Homomorphic Filter [38], Deformed-Haze [39] ,
Adaptive Removal [40] and sphere model improved DCP (SM-
DCP) [41]. We use our synthetic data sets to quantitatively
assess the effects of cloud removal. From Table V we can see
our method achieves the best cloud removal result.

Fig. 6 shows some examples of cloud removal results for
real images, where the column (a) shows the input image,
column (b) shows the cloud removal result, column (c) shows
the predicted opacity, and column (d) shows the predicted
cloud reflectance. It can be seen that the thin cloud has been
removed and the ground object has been nicely recovered. In
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TABLE VI
ABLATION STUDIES OF CLOUD REFLECTANCE AND OPACITY PREDICTION. ABLATIONS ARE PERFORMED ON 1) ATTENTION MECHANISM, 2) FEATURE

FUSION, AND 3) BATCH NORMALIZATION.

Ablations Cloud Reflectance Prediction Cloud Opacity Prediction
Attention Feature Fusion Batch-Norm εMAE εMSE εMAPE εMAE εMSE εMAPE

× × × 7.44% 2.70% 86.3% 9.86% 4.47% 79.4%
× × X 7.33% 2.28% 85.0% 9.84% 3.83% 78.23%
× X X 4.90% 0.717% 72.5% 9.55% 2.25% 68.3%
X X X 3.04% 0.302% 71.6% 6.56% 2.10% 73.7%
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Fig. 8. (Better viewed in color) Ablation studies of cloud detection accuracy
on testing data. Ablations are performed on 1) attention mechanism (Att), 2)
feature fusion (FF), and 3) batch normalization (BN).

the 4th row of this figure, as the cloud opacity is close to 1,
the background under the thick cloud region is hard to recover
and thus leading to slight color distortion. The last row of
this figure shows a failure case of our method, where there
is actually no cloud in this image but our model has wrongly
identified the snow as the cloud. This is mainly because of our
training set does not contain any snow images, and this can
be easily improved by adding more snow images for training.
Since this is not the focus of this paper, we do not make any
further evaluations on distinguishing cloud and snow pixels.

C. Ablation Analyses

In this experiment, the ablation analyses are made to analyze
the importance of each technical component of our method,
including 1) attention mechanism, 2) feature fusion and 3)
Batch Normalization (BN). The baseline methods are first
evaluated, then we gradually integrate these techniques. Table
VI shows their comparison results of the reflectance and
opacity on the sub-testing set. Fig. 8 shows their comparison
of the cloud detection results on the whole testing set. The
integration of the first two techniques yields a noticeable
improvement of the prediction accuracy of cloud reflectance
and opacity, while the BN is trivial for the improvement
of accuracy. Nevertheless, the model trained with BN still

benefits from a faster convergence speed. The reason behind
the improvement is twofold: on one hand, as there is a strong
correlation between the cloud reflectance and opacity, the
attention map helps to eliminate the coupling between these
two tasks, on the other hand, feature fusion is beneficial for
predicting a more detailed output for some areas such as some
small pieces of clouds and the clouds with sharp edges. Fig.
9 shows the effectiveness of the attention mechanism. We
can see that, in the area covered by clouds, the values of
its attention map are larger, no matter where it is covered
by thin clouds or thick clouds. Therefore, the attention map
can be used to guide the training of the network, and make the
networks concentrate on the area covered by clouds and obtain
better cloud detection results. Meanwhile, predicted values
without attention are smaller than those with attention.

D. Cloud Image Montage

The proposed framework can be also used for another
important application: cloud image montage, i.e. to transplant
the cloud in one image to another background image. This can
be simply implemented by the following transformation:

I ′(x) = RB
c (x) + [1− αB(x)]IA(x), (10)

where IA(x) is an image from a background image set A,
RB

c (x) and αB(x) are the predicted cloud reflectance and
opacity of an image from a cloud image set B, I ′(x) is the
generated cloud montage output. Fig. 10 shows some examples
of our cloud montage generation results. In this figure, some
very high-resolution aerial images from Google Earth are used
as the background images, and the clouds from GaoFen-1
images from our test set are used as the foreground cloud
styles.

The above process can be considered as a new way of data
augmentation, which helps us to generate some hard examples.
It may have great potential for improving the performance
of some remote sensing applications, such as occluded target
detection, scene recognition, and image segmentation.

E. Computational Complexity, Parameters, and Speed

We use three different metrics to compare the computational
complexity, parameters, and speed of our method with other
CNN-based cloud detection methods. In Table VII, we record
the number of model parameters (Params), the number of
floating-point operations (FLOPs), and the inference time of
different models. We use images of 512 × 512 pixels to
compute FLOPs and inference time, and test on an Nvidia
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Fig. 9. (Better viewed in color) The effectiveness of the proposed attention mechanism. The first column shows the input images. The second and the third
columns show the predicted reflectance maps w/o and w/ the help of attention loss. The last column shows the attention maps.

TABLE VII
A COMPARISON ON MODEL PARAMETERS, FLOPS, AND INFERENCE TIME.

Method Params FLOPs Inference time

FCN+Cls [14] 18.5M 12.4G 0.103s
CloudFCN [15] 23.3M 155M 0.054s
RS-Net [16] 7.9M 39M 0.288s

Ours (Cloud Matting+VGG16) 74.0M 25.8G 0.224s
Ours (Cloud Matting+Resnet50) 139M 17.3G 0.410s
Ours (Cloud Matting+Proposed Networks) 79.5M 22.1G 0.210s

GeForce RTX 2080 Ti graphics card. Compared with other
methods, our method has more parameters but has comparable
inference time with RS-Net [16]. This is because our method
uses different branches to predict the reflectance, the opacity
and the attention map, which requires more parameters and
memories.

VI. DISCUSSION

Although the experimental results on three satellite image
datasets demonstrate the effectiveness of our method, it still
has some limitations:

1) We do not take the shadow detection into consideration.
Since shadows often appear with clouds, it’s also impor-
tant to consider the shadow detection in our framework.
In fact, the proposed model formulated in equation 2
can be simplified to I(x) = [1 − α(x)]Rb(x) by set-
ting Rc(x) = 0. Then our framework can be naturally
extended to shadow detection tasks.

2) As illustrated in the last row of Fig. 6, our method may
produce a wrong detection result when there is snow in
the image. The reason behind this could be the limited
snow samples in our training set. To improve the detection
performance on snow covered regions, we may simply
add more snow images to our training set.

3) We use a simple data synthesis method to support the
training of our model. Despite our primary verification
and the promising results obtained, there is still much
room for improvement in our method, especially for data
synthesis. In our future research, we may design a more
sophisticated data synthesis process (e.g. nonuniform
opacity by using adversarial training, where we have
already obtained some promising results [58]) to generate
more realistic cloud images.
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Fig. 10. Some examples of the cloud image montage results. The first row shows the input images from image set A. The second row shows the input images
from image set B. The third row shows the generation outputs by combining the cloud style of the image set A and backgrounds of the image set B.

VII. CONCLUSION

We propose a brand new method for cloud detection in
remote sensing images which inherently incorporates the cloud
imaging mechanism and jointly deals with three different but
related problems, cloud detection, cloud cover assessment, and
cloud removal, under the same framework. Different from
previous methods that consider cloud detection as a pixel-wise
binary classification problem, we re-formulate cloud detection
as a mixed energy separation problem. Experimental results
on three satellite image datasets demonstrate the effectiveness
of our method. Besides, the proposed framework can also be
used to synthesize cloud images of specific style, which can
be considered as a new way of data augmentation and may
have great potential for improving the performance of many
remote sensing applications such as occluded object detection
and recognition.
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