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Abstract

Ship detection in high resolution optical imagery is a challenging task due to the variable appearances of ships

and background. This paper aims at further investigating this problem and presents an approach to detect ships in a

“coarse to fine” manner. First, to increase the separability between ships and background, we concentrate on the pixels

in the vicinities of ships. We rearrange the spatially adjacent pixels into a vector, transforming the panchromatic image

into a “fake” hyperspectral form. Through this procedure, each produced vector is endowed with some contextual

information, which amplifies the separability between ships and background. Afterwards, for the “fake” hyperspectral

image, a hyperspectral algorithm is applied to extract ship candidates preliminarily and quickly by regarding ships

as anomalies. Finally, to validate real ships out of ship candidates, an extra feature is provided with Histograms of

Oriented Gradients (HOG) to generate hypothesis using AdaBoost algorithm. This extra feature focuses on the gray

values rather than the gradients of an image and includes some information generated by very near but not closely

adjacent pixels, which can reinforce HOG to some degree. Experimental results on real database indicate that the

hyperspectral algorithm is robust, even for the ships with low contrast. Besides, in terms of the shape of ships, the

extended HOG feature turns out to be better than HOG itself as well as some other features such as Local Binary

Pattern.

Index Terms
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I. INTRODUCTION

Ship detection, one of the hottest issues in the field of remote sensing, is of great significance owing to its

wide range of applications such as oceanic traffic surveillance, ship rescue, fishery management and so forth. In

the existing researches, synthetic aperture radar (SAR) images are one of the data sources which have been most

widely studied because they can be obtained day and night, regardless of the impact from meteorological conditions

[13]. Furthermore, with the successful launching of the high-resolution SAR sensors, more high-resolution SAR

data become available now, which enlarges the potential of SAR data for ship detection [40].

Another important data source for ship detection is optical imagery, which is investigated in this paper. The

foremost advantage of optical imagery is its higher resolution. The relatively high resolutions of optical images

can generate more detailed information of ships. However, high resolution image also complicates the background,

which will increase the processing time and even cause a lot of false alarms. To handle the complexity of optical

imagery, the first need could be a robust feature set discriminating the ships from non-ship objects cleanly, even

in some cluttered background such as waves, clouds, small islands and so forth. Besides, with the purpose of

accelerating the whole process and decreasing false alarms, some efficient predetection algorithms are also required

to extract ship candidates preliminarily.

A. Related Work

To solve the problems of ship detection in high resolution optical images, several approaches have been inves-

tigated. The existing methods can roughly be divided into three categories. The first ones are threshold segment

methods which focus on the differences in gray values between ships and background. The second ones are statistical

methods concentrating on the gray value distributions of ship scenes. The last ones are classification based methods

in which great attention has been paid to the different kinds of features as well as various classifiers. Most existing

methods took the “coarse to fine” strategy and combined different algorithms together to detect ships more efficiently.

For instance, Burgess [4] proposed a method including masking, filtering and shape analysis techniques to detect

ships in optical imagery. Proia and Page [35] raised a Bayesian algorithm to accomplish predetection for small

ships. In their method, a statistical test was built first, then ships were detected by choosing the most likely

result using Bayesian decision theory. Xia, Wan and Yue [41] came up with an uncertain ship target extraction

algorithm based on dynamic fusion model. They first chose and fused several geometrical features by the dynamic

fusion model and then extracted ships by the support vector machine. Corbane, Marre and Petit [5] developed a

method for operational detection of small ships. The ships were first segmented by the contrast between ships and

background, afterwards, some feature sets were extracted and the detection tasks were accomplished by genetic

algorithm and neural networks. Corbane et al. [6], [7] proposed a processing chain involving statistical methods,

mathematical morphology and some signal-processing techniques to detect ships. In their approach, the input image

was first preprocessed by methods such as cloud masking and contrast enhancement. Then the targets were detected

preliminarily by connected filtering and automatic threshold. Finally, Wavelet and Radon transforms were applied

in combination with logistic model to achieve the postprocessing. Zhu et al. [42] put forward a hierarchical method
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including shape analysis, feature extraction and a semi-supervised classification algorithm. They first extracted ship

candidates by a threshold and employed a novel hierarchical classification stage to detect ships. Bi et al. [3] raised

a visual search inspired computational model. In their approach, the salient candidates regions were first selected

by a bottom-up mechanism and then real ships were validated by local feature descriptors and the support vector

machine.

In summary, significant efforts have been taken to detect ships from high resolution optical imagery and various

approaches have been investigated in this field. However, some open issues still exist. The false alarm rate tends

to be high due to clouds, sea waves and small islands. In addition, missing detection also exists, especially when

a ship is occluded or with low contrast. Therefore, there still remains room for improvement in this field.

B. Contributions

To further investigate the problems arising from optical panchromatic images, a hierarchical framework including

a predetection stage and an accurate detection stage is utilized in this paper. In the predetection stage, we first

convert the panchromatic image into a “fake” hyperspectral form to project ship candidates. Then a hyperspectral

algorithm (a hyperspectral anomaly detector) is applied to extract ship candidates preliminarily and quickly based

on anomaly detection model. Afterwards, in the accurate detection stage, a new extension of Histograms of Oriented

Gradients (HOG) is extracted and hypotheses for ships are generated using AdaBoost algorithm to detect ships more

accurately. Fig. 1 shows the whole process of this approach.

In this paper, we have three major contributions. First, we transform the panchromatic image into a “fake”

hyperspectral form. The “fake” hyperspectral image can represent data more properly because the separability

between ships and background is augmented and the contextual information of ships is converted into a hyperspectral

form, which can be naturally processed by the subsequent hyperspectral algorithm. Second, in the anomaly detection

fields, we adopt a hyperspectral anomaly detector to the panchromatic image to extract the ship candidates. This

hyperspectral anomaly detector can project the abnormal and fluctuating spectral vectors while suppressing the

normal and flat ones. Combined with the “fake” hyperspectral image, this hyperspectral algorithm can extract ship

candidates efficiently, especially for the sea scenes which contain large areas of smooth background. Third, in terms

of the shape of ships, we provide the existing Histograms of Oriented Gradients (HOG) feature with some extra

information based on the gray values along a circle over the ship, which HOG is deficient in, leading to more

discriminative power for ships.

The rest of this paper is organized as follows. Section II describes the extraction of ship candidates, including the

process of “fake” hyperspectral data generation and the hyperspectral predetection algorithm. Section III depicts the

process of accurate detection including feature extraction and classification. Section IV presents the experimental

results from real database. Finally, Section V provides the discussion and conclusion of this paper.
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Fig. 1. The outline of our method, which can mainly be separated into two parts: Ship Candidates Extraction and Accurate Detection.

Fig. 2. A hyperspectral image taken by a hyperspectral sensor. The left part is a spectral vector of a pixel and the right part is a certain band
of the hyperspectral image.

II. PREDETECTION

In this stage, with the purpose of detecting ship candidates preliminarily and quickly, a method to extract all ship

candidates from the whole image without any omission is needed. Before elaborating our method, it is necessary

to introduce the hyperspectral data first since our method involves a hyperspectral algorithm.

Hyperspectral images are images with a set of bands or channels [28]. Specifically, a hyperspectral image is a

three-dimensional data cube including a set of bands, as shown in Fig. 2. Besides, each pixel in a hyperspectral

image does not correspond to a scalar value, but a set of values, namely, a vector. The left part of Fig. 2 plots

such a vector in an x-y plane and this vector will be denoted as “spectral vector” in the rest of this paper. Spectral

vectors can be used to identify different materials in a scene, for example, the pattern of the spectral vectors of oil

is usually different from that of sea water. Furthermore, a hyperspectral image can also be visualized as a stack of

images and Fig. 2 shows a certain band of the hyperspectral image in the right part.

After the introduction of hyperspectral imagery, the main idea of ship candidates extraction will be presented

here. In a hyperspectral image, different materials can be identified by their spectral vectors. While in an optical

panchromatic image, different objects can be distinguished by the gray values, or more exactly, by the gray values of
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Fig. 3. The process of spectral vector generation. The left part shows the input image and the right part shows the produced “fake” hyperspectral
image. The white parallelogram denotes the sliding window to guarantee the gaussianity of background.

spatially adjacent pixels. There could be some underlying relationships between the two types of data. Motivated by

this idea, we transform the spatially adjacent pixels in an optical panchromatic image into spectral vectors, making

a new hyperspectral form of data. Since the pixels of ships and some clutters are variable, their spectral vectors in

the “fake” hyperspectral image tend to fluctuate drastically. On the contrary, the pixels of smooth background are

more liable to be homogeneous, accordingly, their counterparts in the “fake” hyperspectral image trend to be flat,

or at least not as fluctuating as the spectral vectors of ships. Then the two different patterns of spectral vectors can

be identified by a hyperspectral anomaly detector and those spectral vectors which are identified as fluctuating are

the detected ship candidates to be further analyzed.

A. Spectral Vector Generation

Given the analysis above, the panchromatic image will be first transformed into a hyperspectral form. Specifically,

given an H ×W panchromatic image I, hypothetical non-overlapping k× k patches are masked on it and the total

number of patches is L = (H/k)× (W/k). For each patch, the pixels within it are sampled and rearranged into a

k2-dimensional vector x to serve as the produced spectral vector. After all patches are transformed, the produced

vectors are combined together, making a three-dimensional (H/k) × (W/k) × k2 data cube, namely, a “fake”

hyperspectral form of data. This process is presented in Fig. 3. The left part of Fig. 3 is the panchromatic image

with small patches masked on it. The middle part of Fig. 3 shows how the pixels in the panchromatic image are

transformed into spectral vectors. The right part of Fig. 3 is the produced three-dimensional data cube.

However, with such non-overlapping patches, the ships which happen to lie on the borderlines between two

patches will be cut into pieces. In fact, this problem can be avoided by replacing the non-overlapping patches with

a window to generate spectral vectors pixel by pixel. That is to say, for each pixel in the panchromatic image, its

neighbors confined by a k × k window are copied and shifted to form a spectral vector. After the window sliding

throughout the whole image, we will finally generate a data cube of the size H × W × k2, whose height and

width are the same as the original panchromatic image’s. Usually, this three-dimensional data cube is stored as a
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Fig. 4. The graph plots the adjacent pixels in the central areas of the three images on the left. These pixels are plot from left to right, from
top to bottom.

k2 × (H ·W ) matrix, in which each column represents a spectral vector.

Simple as it is, the transformation from a panchromatic image to a “fake” hyperspectral one makes sense because

the univariate gray level distribution of a panchromatic image is expanded to a multivariate one. More importantly,

through this transformation, some shape information and contextual information are imported into each spectral

vector in the produced hyperspectral form of data, which makes the ships more distinct from background.

What should be emphasized here is the size of the k×k window which determines the dimension of the produced

spectral vector. Note that the size of the k × k window will be denoted as “spectral dimension” in the rest. If the

spectral dimension is too large, some redundant and unexpected information could be included in the spectral

vectors. On the contrary, if the spectral dimension is too small, the information in a spectral vector will be too

little to distinguish between ships and background. Generally speaking, the spectral dimension should be selected

according to the size of ships in an image and the experiments on it will be presented in section IV.

Another fact should be emphasized and clarified is the potential lying in this “fake” hyperspectral image. Above

we have mentioned that the transformation increases the separability between ships and background, however, it

does not mean that the produced “fake” hyperspectral image can match with a real hyperspectral image taken by

the hyperspectral sensor. The reason is that the information in the “fake” hyperspectral image all comes from the

original panchromatic image, accordingly, it is impossible to identify different materials in the “fake” hyperspectral

image. But when it comes to distinguishing ships from background by hyperspectral anomaly detector, the “fake”

hyperspectral image will be discriminative enough, because what the hyperspectral anomaly detector needs is a

separability or difference between ships and background. Considering the fact that the pixels of ships are variable
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while those of smooth background have great similarity, the produced spectral vectors of ships will be very different

from those of smooth background. Fig. 4 shows some spectral vectors of ships and background. The right graph in

Fig. 4 plots the adjacent pixels in the central areas of the left images. As Fig. 4 shows, the spectral vector of ship

is fluctuating and turbulent while the spectral vector of smooth background is flat. The two different patterns can

be distinguished by the hyperspectral anomaly detector. However, this transformation is not very sophisticated and

only smooth background can be separated from ships. Some complicated background such as very strong waves

will also produce fluctuating spectral vectors, which will be mixed with ships. Therefore, the hyperspectral anomaly

detector in combination with the “fake” hyperspectral image can only be used as a predetection method to extract

ship candidates preliminarily. As to the false alarms in ship candidates, they will be processed in the accurate

detection stage.

B. Ship Candidates Extraction

After generating the “fake” hyperspectral image, a hyperspectral anomaly detector is used to extract ship candi-

dates preliminarily on the basis of anomaly detection model. Hyperspectral anomaly detectors aim at unsupervisedly

distinguishing unusual spectral vectors (also called “anomalies”) from typical and homogenous background. The

key of these algorithms lies in extending the separability between anomalies and background by fully exploiting

the spectral differences acquired from the hyperspectral image. For example, the random-selection-based anomaly

detector [11] performs the random selections repeatedly so as to achieve more accurate background statistics and

to increase the aforementioned separability. The kernel-based target-constrained-interference-minimized filter [39]

utilizes nonlinear kernel functions to map the hyperspectral data into a high-dimensional space in which the

anomalies are assumed to be more separable from background. Besides, transfer learning is employed in [12]

to enhance the separability between anomalies and background by unsupervisedly constructing a subspace based

detector.

The hyperspectral anomaly detector used in our approach is named as “Reed-Xiaoli” (RX) [36], an unsupervised

benchmark algorithm for hyperspectral anomaly detection [18], [29], [37], [38]. RX algorithm regards the pixels in a

hyperspectral image as two categories: background and target. The spectral vectors of background are common and

usually take a large proportion in an image. On the contrary, the spectral vectors of targets are abnormal and only

take a tiny proportion. In order to distinguish target from background, RX first gives an estimate of the background

and then calculates a kind of distance away from the estimated background for each pixel. Clearly, the spectral

vectors with longer distances will be identified as targets. In our problem, RX is suitable in that the ships and the

complicated clutters can be viewed as targets, while the smooth areas of sea can be viewed as background.

Now the principle of RX will be introduced in details. In a produced “fake” hyperspectral image, the spectral

vector of each pixel can be denoted as a P -dimensional vector of the form x. Then a hyperspectral image with

N pixels in total can be denoted as a P ×N matrix X = [x(1), x(2), ..., x(N)], in which each column denotes a

spectral vector.

Given a spectral vector x(n) (n = 1, 2, ..., N), RX will distinguish between the two hypotheses below [25]:
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H0 : x(n) = n

H1 : x(n) = αs,
(1)

where n is a vector denoting background and noise, α is a positive constant, and s denotes the target patterns. H0

models the background as a Gaussian distribution N(µb,Cb) while H1 models the target patterns as a Gaussian

distribution N(s,Cb). It can be seen that the two distributions have the same covariance matrix but different mean

values. Notice that µb, s and Cb are all assumed to be unknown but they can be estimated locally or globally from

the hyperspectral image.

In order to distinguish between the two hypotheses, RX algorithm supposes that all spectral vectors are obser-

vations from the two Gaussian distributions, with the same covariance matrix Cb but different mean values [30].

Then, for each spectral vector x(n), n = 1, 2, ..., N , a measure δ(x(n)) is computed as [25]:

δ(x(n)) = (x(n)− µ̂b)
T (Ĉb)

−1(x(n)− µ̂b), (2)

where µ̂b and Ĉb are the maximal likelihood estimates of µb and Cb respectively:

µ̂b =
1

N

N∑
n=1

x(n)

Ĉb =
1

N

N∑
n=1

(x(n)− µ̂b)(x(n)− µ̂b)
T.

(3)

Before analyzing formula (2), one thing about formula (3) should be clarified first. In (3), we want to estimate

the mean value and covariance matrix of background: µb and Cb, but all pixels x(n), n = 1, 2, ..., N including

targets and background in the image are used. That is to say, to estimate background properly, formula (3) makes

sense only when the background takes a dominant proportion of the image while the targets take a tiny one so that

the distributional differences between background and the whole image will be negligible.

Now a further insight will be given into (2). It can be seen from (2) that δ(x(n)) is, in essence, the square of the

Mahalanobis distance [27] between x(n) and the estimated distribution of background N(µ̂b, Ĉb). In other words, a

larger δ(x(n)) means a longer Mahalanobis distance to N(µ̂b, Ĉb). According to the characteristic of Mahalanobis

distance [26], the target patterns are more likely to give larger values of δ(x(n)) since they are usually abnormal

and have low probabilities of occurrence. While the common areas of background are liable to give smaller values

of δ(x(n)). Therefore, in a scene of sea and ships, the ships as well as some complex clutters will generate larger

values of δ(x(n)) while the smooth areas of sea will generate smaller values of δ(x(n)). From this perspective, the

ships and the complex clutters will be projected, while the smooth areas of sea will be suppressed. Accordingly, ship

candidates can be extracted by a threshold. In our approach, Otsu’s method [31] is applied to select the threshold

automatically. Otsu’s method is suitable in that the outputs of RX can be roughly divided into two classes (target

and background), which accords with the assumption of Otsu’s method [31].
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Otsu’s method aims at dichotomizing the pixels in an image into two classes by finding a threshold which

maximizes the separability between the two dichotomized classes. Now suppose that the pixels in an image is

divided into two classes C0 and C1 by a threshold k, where C0 includes the gray levels [1,...,k] and C1 includes

the gray levels [k + 1,...,L] (if there are L gray levels in total). Then the variances of the two classes can be

given by σ2
0 =

∑k
i=1(i − µ0)

2pi/ω0 and σ2
1 =

∑L
i=k+1(i − µ1)

2pi/ω1, where pi is the probability of gray

level i; ω0 =
∑k

i=1 pi and ω1 =
∑L

i=k+1 pi are the probabilities of class occurrence; µ0 =
∑k

i=1 ipi/ω0 and

µ1 =
∑L

i=k+1 ipi/ω1 are the class mean values. Also, we can give the the mean value of the original image

µT =
∑L

i=1 ipi. For any choice of k, we can easily verify the following equations:

ω0µ0 + ω1µ1 = µT , ω0 + ω1 = 1. (4)

Given (4), the separability σ2
B between the two classes are given by:

σ2
B = ω0(µ0 − µT )

2 + ω1(µ1 − µT )
2

= ω0ω1(µ0 − µ1)
2.

(5)

Notice that σ2
B is a function with respect to the threshold k so σ2

B can also be denoted as σ2
B(k). The target

threshold k∗ is the one which maximizes σ2
B(k):

k∗ = arg max
1≤k≤L

σ2
B(k). (6)

Since the value of k is selected from 1 to L, we can calculate all σ2
B(k), (k = 1, ..., L) and then find out k∗ which

maximizes σ2
B(k).

In order to apply RX to panchromatic imagery more properly, another two techniques are employed: the sliding

window and the regularization term.

1) RX Algorithm with Sliding Window: the first one is the sliding window, mainly to guarantee the gaussianity

of background. Specifically, RX is deduced on the condition that the background in an image follows Gaussian

distribution. However, all pixels in a large image can hardly satisfy this condition due to the complexity and variation

of the image. Therefore, if the image is very large, say 5000 × 5000, applying RX directly will be inappropriate

and a kind of sliding window will be of great necessity [37]. Obviously, the size of this sliding window should

not be too large on account of the gaussianity condition. And it should not be too small either. The reason can be

revealed by formula (3). In light of the aforementioned analysis about (3), we want to estimate the distribution of

background, but all pixels are used. Therefore, to make the estimation accurate, the background in the image should

take a very large proportion. From this perspective, the sliding window should be large enough to guarantee the

dominant amount of background. In Fig. 3, the white parallelogram on the produced “fake” hyperspectral image is

this sliding window. The experiments on the size of the sliding window will be shown in section IV.

2) RX Algorithm with Regularization Term: another technique employed in our approach is the regularization

term which is applied for fear of singular Ĉb. As is shown in (2), RX needs to compute the inverse of Ĉb, but Ĉb
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is not ensured to be nonsingular all the time. When encountering singular Ĉb, RX will have poor performance. In

fact, this problem can be improved by adding a scaled identity matrix to Ĉb before inverting, because the inverse is

strongly affected by the small eigenvalues (considering the inverse matrix in terms of its eigenvalue decomposition).

Thus, adding a scaled identity can decrease the influence of the small eigenvalues and consequently making a more

stable inverse of Ĉb. Furthermore, it has been proven that adding a scaled identity matrix to Ĉb before inverting is

equivalent to including a regularization term to the cost function when designing RX [30]. More detailed information

about the proof can be seen in [30]. Thus, the regularized RX can be given by:

δRX(x(n)) = (x(n)− µ̂b)
T(Ĉb + β · I)−1(x(n)− µ̂b), (7)

where β is a small positive constant, and I is an identity matrix.

To be honest, for the “fake” hyperspectral image, the number of pixels will greatly surpass the dimension of the

spectral vector and the covariance matrix is liable to be nonsingular. However, it still has the possibility that the

covariance matrix is singular and in such cases RX with the regularization term will produce better results than

without it. Notice that β is selected empirically. Intuitively, the value of β is related to the spectral dimension and

the size of the sliding window since β is used to amend the ill-rank covariance matrix. In our experiment, we find

that when the size of the window is smaller than or equal to the spectral dimension, β will affect the results of RX

strongly. Generally speaking, a relatively small β (for example, 10−5) will produce a lot of false alarms. When β

increases, the false alarms will decrease greatly. However, when the size of the window is much bigger than the

spectral dimension (for example, the size of the window is four times of the spectral dimension), the value of β

will not influence the results of RX so greatly. Specifically, when β is relatively small (for example, 10−5), the

results with the regularization term will be very similar to the results without this term. When β gets bigger (for

example, 10−3), the performance of RX will improve to some degree. However, when β continues to increase, (for

example, 10−2 or 10−1 ), the results of RX do not have great differences.

Besides, we also find that when the size of the window is much bigger than the spectral dimension, the elements

of the covariance matrix will have similar values (with the same order of magnitude). However, when the size of the

window is smaller than or equal to the spectral dimension, the covariance matrix will be approximate to a diagonal

matrix. This phenomenon also explains why the relatively small size of the window will produce poor performance

of RX, since the Mahalanobis distance will reduce to the Euclidean distance when the covariance matrix is an

identity matrix.

III. ACCURATE DETECTION

After the process of “Reed-Xiaoli” (RX), several spectral vectors including the ships and complex clutters are

obtained. Then all these detected spectral vectors are remapped into the panchromatic image to serve as the ship

candidates. Our current task is to give a further insight into the extracted ship candidates and to find out real ships

accurately. In our approach, local feature descriptors in combination with Adaboost classifier are used to achieve

this goal. What we need here is a robust feature set which is able to distinguish ships cleanly while maintaining
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Fig. 5. The samples of ships and waves which are similar to ships.

its invariance to certain image variations. As we know, Histograms of Oriented Gradients (HOG) [8] is a very

robust feature which can reliably grasp the shape information of local objects. HOG is based on the idea that the

appearance and shape of local object can be characterized rather well by the distribution of edge directions or

gradients [8]. Practically, for an sample image, its gradient image is first generated by computing the difference.

Then the gradient image is divided into small regions (also called “cells”) and, for each cell, a 1-D histogram

of gradient directions over the pixels in the cell is calculated. Furthermore, each 1-D histogram is normalized by

the energy over somewhat larger regions (also called “blocks”) for better invariance to illumination. Finally, the

combination of the normalized histogram entries forms the final feature vector, namely, the HOG descriptor.

Obviously, HOG is extracted only based on the gradients of an image, so we put some extra information into

HOG for further improvement. This improvement is essential due to the kind of clutters which are very similar

to ships, as shown in Fig. 5. The first and third images in Fig. 5 are two samples of ships and the second and

fourth images are the clutters similar to ships. Generally speaking, the shape of a ship is a little simple because its

most prominent characteristic is the two parallel borderlines which are very similar to some waves in the image.

Therefore only by gradient information which is closely related to the edges in an image, ships can hardly be

distinguished cleanly from such clutters.

Therefore, in our approach, an extra feature is provided with HOG in terms of the shape of ships. This extra

feature does not focus on the gradients of an image, but rather on the pattern of gray values of ships. Furthermore,

this feature is extracted based on the pixels along a circle over the ship, rather than the closely adjacent pixels on

which HOG is extracted. So this feature can produce some information for ships which HOG is deficient in. Then

the extra feature will be introduced in details.

A. CF Feature

The extra feature is named as “Circle-Frequency” (CF) feature which is generated on the basis of Circle-Frequency

(CF) filter [22] and CF filter has been applied to several applications [20], [21], [23], [33]. The principle of CF

filter is as follows.

In an image, ships will be either brighter or darker than the background in their vicinities. We first consider the

situation of brighter ships. Now suppose that there is a hypothetical circle centered in the center of the ship, and its

diameter is longer than the width while shorter than the length of the ship, as is shown on the left side of Fig. 6.
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Fig. 6. The pixel values along the circle and the output of CF-filter. The left column shows the ships. The upper one is a bright ship while
the lower one is a dark ship. The middle column shows the values along the circle over each ship. The the horizontal axis denotes the serial
number of the 40 sampled points and the vertical axis denotes their gray values. The right column shows the ships’ outputs of Circle-Frequency
filter which are shown using pseudo-colour.

Then the gray values along this circle trend to be dark-bright-dark-bright if we start from the left point. In a word,

the gray values will have two peaks and two valleys, which resembles a 2-cycle sinusoidal signal. The upper row

of Fig. 6 presents a brighter ship and the graph in the middle plots the gray values along the circle. This pattern

is special for ship and can be used to generate an efficient feature.

To utilize this pattern, the Discrete Fourier Transform (DFT) of the gray values are computed. Specifically, let

fk(k = 0, 1, ..., N − 1) denote the N pixel values along a circle of radius r, centered at (i, j), then, the DFT of

the series fk is computed as the formula below, and we denote the result of pixel (i, j) as DFT(i,j):

DFT(i,j) =
1

N

√√√√(

N−1∑
k=0

fk cos
ckπ

N
)2 + (

N−1∑
k=0

fk sin
ckπ

N
)2, (8)

where N is the number of the points along the circle, c is a coefficient determining the frequency of the sine and

cosine function in the process of DFT. Each pixel (except the pixels near the boundry) in the image will produce

an output DFT(i,j). Finally, an output image is produced. The right part of Fig. 6 shows the output image of CF

filter. Because the circles over the ships are all 2-cycle signals, then the parameter c should be set to 4 so that the

body of the ships will give stronger responses while other parts the smaller ones. If c changes, the output image

will be different. The experiment on c will be presented in section IV.

Above, we have only concerned the brighter ships. As to the darker ships whose gray values are lower than the

background in their vicinities, the situation is a little different, because the gray values along the circle will be

bright-dark-bright-dark starting from the left point. The second row in Fig. 6 shows the situation of darker ships.
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Fig. 7. The process of CF-HOG extraction, including the gradient image, the circle-frequency filtered image as well as the cells and blocks.

Obviously, the gray values along the circle is also a 2-cycle signal but its phase changes. According to DFT, the

change in phase will not affect its output. Thus the bright ships and dark ships will give similar outputs.

Then, in order to form a feature vector, the output image is quantified and its histograms are computed. Just

like what is used in Histograms of Oriented Gradients (HOG), some cells and blocks are also applied to grasp the

shape information extensively. Finally, all histograms are combined together to form the CF feature. The detailed

process of CF feature extraction will be presented in the extraction of CF-HOG.

B. CF-HOG Feature

The extracted Circle-Frequency (CF) feature is then combined with Histograms of Oriented Gradients (HOG)

[8], making a new feature named as “CF-HOG”. In this paper, the training samples are all 40 × 40 images. The

cells are 8 × 8 and the blocks are 16 × 16. For the CF filtered image, the gray values are quantified into 9 gray

bins (the experiment on the gray bin will be presented in section IV). Fig. 7 shows the extraction of CF-HOG for

a 40× 40 input image I and the details are as follows:

1) Generate the Gradient image [8] and the CF filtered image of the input image I.

2) Choose the 16 × 16 subimage in the upper left corner of the Gradient image and Circle-Frequency filtered

image as the first block, which is separated into 4 subblocks named as cells. For each cell, we get a 9-

dimensional histogram from the Gradient image and a 9-dimensional histogram from the CF filtered image.

Then, histograms from the 4 cells are combined together, and normalized by the energy density of the block,

and out come the 4× 9× 2 = 72 dimensional feature representation of this block, which can be denoted as

F0.

3) The block is set to traverse throughout the image with the step of 8 pixels, and for each step, we can obtain

a 72-dimensional feature vector Fi(i = 0, 1, ..., 15). Finally, the combination of these Fi forms the final
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Fig. 8. The detailed outline of our method, including Spectral Vector Generation, RX, CF-HOG feature and AdaBoost classifier.

16× 72 = 1152 dimensional CF-HOG feature.

C. AdaBoost Algorithm

After feature extraction, AdaBoost algorithm [14], [15], [16] is applied to generate the hypotheses for ships.

The principle of AdaBoost algorithm will be introduced briefly here. AdaBoost algorithm is aimed at boosting a

weak learner into an arbitrarily accurate “strong” learning algorithm [17] by maintaining a set of weights over the

training set. These weights are updated repeatedly so that more attention will be paid to the hard examples in the

training set. After several iterations, a weighted majority vote of the weak hypotheses is generated, making the the

final hypothesis. In many experiments, Adaboost algorithm has shown good performance and the ability to avoid

overfitting [2], [9], [10], [24].

So far the whole process of our approach is introduced completely and the detailed outline of our approach is

shown in Fig. 8.

IV. EXPERIMENTS

In this section, the experiments on the whole process of our approach are presented.

A. Dataset

Dataset1: the first dataset includes the training samples used to train the classifier. It totally contains 8400

samples, of which 5400 are positive ones and 3000 are negative ones. Notice that the positive samples contain ships

in four orientations because Circle Frequency-Histograms of Oriented Gradients (CF-HOG) feature is not invariant

to orientation and accordingly four classifiers are generated to detect ships in different orientations respectively.

Fig. 9 shows some positive and negative samples. All these samples are 40 × 40 images, with the same size as

the detecting window in classification. In fact the sizes of these samples and the detecting window are selected

according to the smallest ships in the images. Since the small ships are about 40× 10, we choose 40× 40 so that

these ships can be covered by the detecting window. As to the larger ships, we choose to downsample the original

image so that they can also be covered by 40× 40 detecting window.
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Fig. 9. The samples used to train the classifiers. The left columns show the positive samples in four orientations. The right columns show the
negative samples.

Dataset2: dataset2 is essentially the same as Dataset1 but it is divided into two parts: 4200 training samples

and 4200 testing samples. Dataset2 is mainly used to evaluate the performance of CF-HOG as well as some other

feature sets such as Histograms of Oriented Gradients (HOG), Local Binary Pattern (LBP) and so forth. The 4200

training samples are first used to generate the classifiers. Then these produced classifiers are implemented to the

4200 testing samples so that the detection rate and the false alarm rate can be computed to evaluate the classifiers

respectively.

Dataset3: dataset3 includes 50 large images from Google-Earth to evaluate our approach comprehensively. The

sizes of these images range from 3000× 3000 to 5000× 5000 and their resolutions are all 1 m. In these images,

the smallest ships are about 40 × 10 and the biggest ships are about 300 × 50. The images are under different

illuminations and contain different clutters such as clouds, waves and small islands.

B. Parameter Selection for RX

In this part, the experiments on the parameters of “Reed-Xiaoli” (RX) are presented. In fact, the original RX

does not have any parameters. Here the parameters refer to the spectral dimension when generating spectral vectors

and the size of the sliding window.

1) Spectral Dimension: spectral dimension is the dimension of the spectral vector which is produced by shifting

the pixels in a k×k window. According to the analysis in section II, too large or too small spectral dimension will

violate the conditions of RX and could cause poor performance. To select a proper spectral dimension, we test this

parameter from 1× 1 to 10× 10. The resultant images of the size 700× 700 are presented in Fig. 10.

In Fig. 10, the two images in the left column are the original images and those in the right columns are the

results of RX with different spectral dimensions: 3×3, 5×5, 9×9, from left to right. When the spectral dimension

is 3 × 3, as is shown in the second column of Fig. 10, the performance is not good because the middle areas of
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Fig. 10. The results of RX with different spectral dimensions. The two images in the left column are the original images and those in the
right columns are the results of RX with different spectral dimensions: they are 3× 3, 5× 5, 9× 9, from left to right.

bigger ships are removed and only their edges are preserved. When the spectral dimension goes up to 5 × 5, the

performance gets better. When the spectral dimension is 9 × 9, the upper image also gives good result. However

the lower image produces a lot of false alarms. In fact, the lower image is more complicated and the waves in it

are stronger. So when the spectral dimension is 9×9, much noise is imported into the spectral vectors, which leads

to the poor performance. In our approach, the spectral dimension is finally set to 5× 5.

2) Sliding Window: the sliding window is used mainly to guarantee the gaussianity of the data being processed

by RX and its size will also affect the results of RX. The size of sliding window is tested from 300 × 300 to

1200 × 1200. Fig. 11 shows the results of RX with different sliding windows. In Fig. 11, the two images on the

left are the original images and those in the right columns are the results with different sizes of sliding windows:

300× 300, 700× 700 and 1200× 1200, from left to right.

It can be seen from Fig. 11 that the results achieved are similar to those in Fig. 10. That is to say the size of

the sliding window has little impact on the first image, in which the background is relatively simple. However, as

to the second one, the size of the sliding window has great influence on it. Specifically speaking, for the second

image, when the size of the sliding window is 300 × 300, some ships are missed. But when it is 1200 × 1200,

too much false alarms are detected. This phenomenon also validates the analysis in section II that too small or too

large sliding window will lead to poor performance. Finally this parameter is set to 700× 700 in our approach.

C. RX Evaluation

In this part, the results of “Reed-Xiaoli” (RX) when applied to low contrast images and the overall performance

of RX are presented.

1) Ships with Low Contrast: in the experiments, we test our approach on ships with low contrast because such

ships are usually hard to detect. Besides, according to the appearances of ships and background, it seems that some
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Fig. 11. The results of RX with different sliding windows. The two images in the left are the original images and those in the right columns
are the results with different sliding windows. The sizes of these windows are 300× 300, 700× 700 and 1200× 1200, from left to right.

Fig. 12. The results of ships with low contrast. The upper row shows the original images; the middle row shows the results of RX and the
lower row shows the results of the variance based method.
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Fig. 13. The results of RX algorithm. The first row includes four 5000× 5000 panchromatic images and the second one includes their results
of RX.

ships can be easily distinguished from background by the variances of the pixels near ships. Therefore, we also

compute the variance of each spectral vector to make a comparison with RX algorithm and this method will be

named as “variance based method”. Fig. 12 presents the results of RX as well as the variance based method. In Fig.

12, the upper row shows the original images; the middle row shows the results of RX and the lower row shows the

results of the variance based method. It can be seen from Fig. 12 that, for RX algorithm, these ships can also be

detected despite of their low contrast. However, for the variance based method, the results are not so good and some

ships are missed. In fact, for the clear ships, variance can indeed distinguish them from background. However, when

dealing with the low-contrast ships, the variance will not be discriminative enough, especially for the low-contrast

ships near some high-contrast objects (for example, a bright ship), because such low-contrast ships will be dwarfed

or suppressed by the high-contrast objects during the normalization procedure (the procedure which normalizes

the resultant image to 0-255). The reason why RX can outperform the variance based method could be that: by

computing the statistics of background (the covariance matrix and the mean), RX essentially takes some global

information of the window into consideration, which diminishes the suppression of the low-contrast ships while

enhancing the separability between ships and background. While the variance is computed over a single spectral

vector, thus, it only contains the local information.

2) Overall Performance of RX: in this part, the overall performance of RX is presented in Fig. 13. The upper

row of Fig. 13 includes four 5000× 5000 panchromatic images and the lower row includes the results of RX.

From Fig. 13, we can see that most ships can be detected by RX in the four images. Furthermore, in the first and

the fourth image, the areas of cloud can be removed but their edges are liable to be preserved. As to the second
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and the third one, some islands can be removed but others may not. Also, some areas on shore can be eliminated

but some others can not. Generally, simple and smooth areas tend to be removed while complex areas such as the

edges of clouds and islands, the artificial objects on shore are more likely to be preserved. However, from a global

perspective, RX can detect ships efficiently while eliminating large areas of background. This can greatly accelerate

the whole process and reduce pressure for the subsequent accurate detection stage.

D. Parameter Selection for CF-HOG

In this section, the details of the Circle Frequency-Histograms of Oriented Gradients (CF-HOG) feature as well

as the impact of the parameters are presented. The parameters include the radius of the circle, the frequency bins

(the constant c in (8)) in the process of Discrete Fourier Transform (DFT) as well as the gray bins when quantifying

the filtered image.

In the experiments, the precision-recall graph [34] is used to visualize the performance of CF-HOG. Precision-

recall graph can visualize and compare the performance of the classifiers and, indirectly, visualize and compare the

performance of the feature sets. Precision and Recall (also known as sensitivity) are defined as:

Precision =
true positives

true positives + false positives

Recall =
true positives

true positives + false negatives
.

(9)

In (9), true positives refer to the positive samples which have been classified as positive correctly. False positives

refer to the negative samples which have been classified as positive erroneously. False negatives refer to the positive

samples which have been classified as negative erroneously. In brief, Precision reflects how many correctly classified

samples are there in all samples which have been classified as positive. While, Recall reflects how many correctly

classified samples are there in all positive samples. Therefore, we hope that Precision and Recall both have large

values and, accordingly, the upper-right curve in a graph is the best. More detailed information on precision-recall

graph can be found in [34]. Then the details of CF-HOG will be presented. Notice that we use the positive samples

in one orientation as well as the negative samples in Dataset2 to draw the precision-recall graphs.

1) Radius of Circle Frequency Filter: The radius of Circle Frequency filter refers to the radius of the circle in

Fig. 6. Since the ships in the training samples are about 40× 10, we test the radius from 5 to 15. The results are

presented in Fig. 14.

From Fig. 14, it can be seen that when the radius is 7 the performance is the best. This can be explained as

follows: if we assume that the width of a ship is 10, then the circle with a radius of 5 ×
√
2 ≈ 7 can be equally

divided into four parts by the two borderlines of the ship. Consequently, the series along this circle will be most

approximate to the 2-cycle sinusoidal signal. Therefore, this radius does best in grasping the shape information and

its performance is the best.

2) Frequency Bin: Frequency bin refers to the constant c in (8) in the process of DFT. The analysis in section

III reveals that this parameter should be set to 4 in theory and we test it from 2 to 8. Fig. 15 shows the results.
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Fig. 14. The results with radiuses ranging from 5 to 15.

Fig. 15. The results of different frequency bins ranging from 2 to 8.

In Fig. 15, it can be seen that when c = 4 the performance is the best, which accords with our theoretical

analysis. Frequency bin determines the outputs of CF filter greatly. When c = 4, the body areas of a ship will

give larger outputs while other areas will give the smaller ones. When c = 2, as Fig. 15 shows, the performance is

also not bad. One reason could be that when c = 2, the larger outputs come from the two borderlines of the ship,

which can also grasp the shape information to some degree. However, when c = 2, the information in CF feature

is similar to what is in HOG, so the CF-HOG contains redundant information and the performance is not the best.

Notice that c = 4 is only suitable for ships due to their special shape. If the targets to be detected are other objects

such as planes, the parameter could be changed according to the shape.

3) Quantification for Filtered Image: To extract the histogram of the filtered image, some quantification tech-

niques must be applied to divide the gray values into several gray bins since the outputs of CF filter span a wide

range. The number of the gray bins could affect the performance greatly. A larger number of the gray bins will
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Fig. 16. The results of RX with different gray bins. The gray bins are 5, 7, 9, 11, 13.

Fig. 17. The extraction of LBP. The left part is a pixel and its neighbors in an image and the right one is the binary image dichotomized by
a threshold.

make the produced histogram more sophisticated but will result in a higher dimension of the feature set, while a

smaller number of the gray bins will do the opposite. To select a proper number of the gray bins, this parameter

is tested from 5 to 13 as is shown in Fig. 16.

As Fig. 16 shows, when the number of gray bins is smaller than 9, the performance is bad. As it increases, the

performance is improved greatly. However, when the number of gray bins is larger than 9, the performance almost

remains the same. Therefore, considering the dimension of the feature set, the number of the gray bins is set to 9.

E. Feature sets comparison

In this section, some other feature sets such as Histograms of Oriented Gradients (HOG) [8], Local Binary Pattern

(LBP) [32] and their various extensions are compared with the Circle Frequency-Histograms of Oriented Gradients

(CF-HOG). Both of HOG and LBP have many applications in the field of object detection [1], [8], [19], [43]. HOG

is a combined histogram of the first order derivatives of an image. With the help of some special normalization

techniques as well as some cells and blocks, HOG is invariant to illuminations and tiny shape changes. If we

extract the first and second order derivatives of an image, then we get a new extension: R2-HOG. Furthermore, if

we replace the square cells with circular cells, then we get another extension: C-HOG.

LBP is also compared in the experiments. LBP is a kind of coding of the spatially adjacent pixels. Fig. 17 shows

the procedure of LBP extraction. First, for one pixel in the image, its neighbors are dichotomized into 0 and 1 by
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TABLE I
THE RESULTS OF DIFFERENT FEATURES

Feature
Detection

rate(%)

False alarm

rate(10-6)

CF-HOG 96.07 2.449
HOG 95.32 3.126

C-HOG 95.21 2.729

R2-HOG 95.47 2.762

LBPriu2 90.91 9.970

LBPu2 91.33 7.319

LTPriu2 93.07 7.174

LTPu2 94.04 5.937

the gray level of this pixel. Then these 0 and 1 series are coded into a binary code, for example, 00010111, as

shown in Fig. 17. Thus the decimal value of the binary code can reflect the spatial information to some degree.

In this way, for each pixel in the image, a decimal value can be calculated and the histogram of the resultant

image forms the feature vector. Furthermore, if there are two thresholds, the pixels in the neighborhood will be

cut into 0, 1 and 2 and we get Local Ternary Pattern (LTP). LBP as well as LTP have some extensions: U2-LBP

and U2RI-LBP, U2-LTP and U2RI-LTP. U2-LBP is extracted by attributing the binary codes with more than two

times’ 0/1 changes to one class and forcing their decimal values to be a same value because the binary codes which

change frequently (for example, 01010101) have tiny probabilities of occurrence. And U2RI-LBP is extracted by

shifting the binary code for 8 times and selecting the smallest decimal value so that the similar spatial patterns with

different orientations will give the same output, which makes U2RI-LBP invariant to orientation. So do U2-LTP

and U2RI-LTP. More detailed information about LBP can be found in [32].

In the experiments, we first use Dataset1 to train classifiers based on different features. The produced classifiers

are then implemented to Dataset3 to detect ships in 1−m resolution images of the sizes ranging from 3000× 3000

to 5000× 5000. Afterwards, the numbers of the detected ships, missed ships and detected false alarms are counted

to compute the detection rate and the false alarm rate (also called false positive rate). They are computed as the

formulas below:

detection rate =
number of correctly detected ships

number of all ships

false alarm rate =
number of detected false alarms

size of the image
.

(10)

Table I shows the results of different features. It can be seen from Table I that CF-HOG outperforms other

features in both detection rate and false alarm rate. The performances of C-HOG and R2-HOG are almost the same

as HOG. As to LBP and its extensions, U2-LTP achieves the best performance.

To make a further glimpse of these features, we draw the precision-recall curves of all feature sets. Because U2RI-

October 31, 2013 DRAFT



23

Fig. 18. The detailed precision-recall curves of all features.

LBP and U2RI-LTP are invariant to orientation, we use all positive samples of different orientations in Dataset2

to train the classifiers. For U2RI-LBP and U2RI-LTP, each of them generates only one classifier which can detect

ships of different orientations. However, as to other features, we train four classifiers for each of them so that

ships of different orientations can be detected respectively by the four classifiers. Fig. 18 shows the precision-recall

curves of different features.

It can be seen from Fig. 18 that the results achieved here accord with the results in Table I. CF-HOG is better than

HOG, LBP and their extensions. The results of HOG, C-HOG and R2-HOG are similar and their performances are

better than LBP and its extensions. Among LBP, LTP and other extensions, U2-LTP achieves the best performance.

The results indicate that Circle-Frequency (CF) feature can really reinforce HOG to some degree, at least in the

realm of ship detection.

As to LBP, LTP and their extensions, U2-LTP is the best. Its detection rate is a little lower than that of CF-HOG

but the false alarm rate is a little high. This higher false alarm rate is probably because of the limitation in a

parameter of LTP. The parameter is a radius which determines the coverage of the local descriptor. Theoretically,

the radius can be arbitrarily large, while in practice, the radius longer than 3 and the number of sampling points

more than 24 will produce an original LTP feature with a quite large dimension (larger than 324), which makes it a

very difficult or even impossible task for our computer to generate the U2-LTP as well as other extensions. In [42]

and [43], the radiuses used to extract LTP are all smaller or equal to 3. Therefore, due to the limitation in computer

memory, the radiuses are also smaller or equal to 3 in our experiments. This limitation in the radius makes LTP

can only grasp the information in a small neighbourhood. For 5 to 10−m resolution images tested in [42], LTP can

effectively discriminate between ships and false alarms. However, in our experiments, the images are all with 1-m

resolution and the ships in them are much bigger.
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Fig. 19. The results of ships near land. The six scenes are all near land and contain lots of artificial objects.

F. Ships Adjoining Land

Besides the work mentioned above, we also did some experiments focusing on the ships adjoining land, which

are usually difficult to detect. In this special situation, there is no doubt that the straight borderlines will have

an effect on the Circle Frequency-Histograms of Oriented Gradients (CF-HOG) descriptor, which may make our

method fail. Fig. 19 shows the results of our method. It can be seen from Fig. 19 that most of the ships near land

can also be detected successfully but the false alarm rate is extremely high. There are two reasons. The first one

is that the objects on shore are so complex that they can hardly be removed by the predetection stage. Another

one is that some artificial objects are very similar to ships and CF-HOG can not distinguish them from ships. This

phenomenon also indicates that our approach is very susceptible to the artificial objects on shore.

V. CONCLUSION

After all the analysis above, the conclusion of this paper will be summarized as follows.

We investigate the problem of ship detection in high resolution optical panchromatic imagery and employ an

approach involving a predetection stage and an accurate detection stage to detect ships in a coarse to fine manner.

In the predetection stage, the panchromatic optical image is first converted into a hyperspectral form and ship

candidates are extracted by a hyperspectral algorithm, “Reed-Xiaoli” (RX). The transformation rearranges the

adjacent pixels and turn the shape information and contextual information into a hyperspectral form, which increases

the separability between ships and background. Then, through RX algorithm, the separability is further increased

by projecting the ships while suppressing the background. The experiments show that the predetection stage can

detect most ships while removing large areas of background, even for the ships with low contrast.

Afterwards, in the accurate detection stage, Circle-Frequency (CF) feature is provided with Histograms of Oriented

Gradients (HOG) to detect ships accurately. This extra feature pays more attention to the gray values rather than
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the gradients of an image. Furthermore, this feature is generated by the pixels along a circle rather than the closely

adjacent pixels. Therefore, it contains some information different from HOG and can reinforce HOG to some degree.

The experiments indicate that the combined feature is better than some other features such as HOG, LBP and their

extensions in the field of ship detection.

Besides the good results achieved, some issues also exist to be further investigated. For example, when dealing

with ships near land, our approach will give poor performance. Our further work will focus on these problems to

strive for further improvement in this field.
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