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I. DETAILED DEDUCTION OF THE SUNSPI ALGORITHM

Now we present the SUnSPI algorithm to solve the following problem:

min
X

1

2
∥AX−Y∥2F + λS

K∑
i=1

∥xi∥1 + λP

∑
i∈S/P

∥xi∥2

subject to: X ≥ 0. (1)

Remember we use ∥X∥1 and ∥X∥2,1 to denote
∑K

i=1 ∥xi∥1 and
∑m

i=1 ∥xi∥2, respectively. H ∈ Rm×m is a diagonal

matrix related to the set P:

hii =


0, if i ∈ P

1, otherwise
(2)

where hii is the i-th diagonal element of H. Thus, we have
∑

i∈S/P ∥xi∥2 = ∥HX∥2,1. Then the SUnSPI model

in Eq. (1) can be written in the following equivalent form:

min
X

1

2
∥AX−Y∥2F + λS∥X∥1 + λP ∥HX∥2,1 + lR+(X) (3)

where lR+(X) is the indicator function: lR+(X) is zero if X ≥ 0 is satisfied and +∞ otherwise.

Wei Tang is with Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, PR China (e-mail: tang-

wei@sa.buaa.edu.cn).

Zhenwei Shi (Corresponding Author) is with Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, PR China,

with State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, PR China and also with Beijing

Key Laboratory of Digital Media, Beihang University, Beijing 100191, PR China (e-mail: shizhenwei@buaa.edu.cn).

Ying Wu is with the Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208 USA (e-mail:

yingwu@eecs.northwestern.edu).

Changshui Zhang is with the State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information

Science and Technology (TNList), Department of Automation, Tsinghua University, Beijing 100084, China (e-mail: zcs@mail.tsinghua.edu.cn).

March 25, 2014 DRAFT



2

The optimization problem in Eq. (3) has the following equivalent formulation:

min
U,V

1

2
∥V1−Y∥2F + λS∥V2∥1 + λP ∥V3∥2,1 + lR+(V4)

subject to: V1 = AU

V2 = U

V3 = HU

V4 = U (4)

where

V =


V1

V2

V3

V4

 . (5)

Suppose I is identity matrix with proper size. We can write Eq. (4) in a more compact form:

min
U,V

g(V)

subject to: GU+BV = 0 (6)

where

g(V) ≡1

2
∥V1 −Y∥2F + λS∥V2∥1 + λP ∥V3∥2,1 + lR+(V4)

G =


A

I

H

I

 ,B =


−I 0 0 0

0 −I 0 0

0 0 −I 0

0 0 0 −I

 . (7)

The ADMM algorithm [1] for solving the problem in Eq. (6) is shown in Algorithm 1, where

ℓ(U,V,D) ≡ g(V) +
µ

2
∥GU+BV −D∥2F (8)

is the augmented Lagrangian for the problem in Eq. (6). Here, µ > 0 is the augmented Lagrangian penalty parameter

[2], and µD denotes the Lagrange multipliers related to the constraint GU+BV = 0. In each iteration, the ADMM

algorithm sequentially minimizes ℓ with respect to U and V, and then updates the Lagrange multipliers.

Remember we update µ by keeping the ratio between the ADMM primal residual norm and dual residual norm

within a given positive interval, as they both converge to zero. Here we make use of the KKT conditions [2] to

derive the primal and dual residuals for ADMM. First, the primal variables must be feasible, which leads to the

condition:

GU∗ +BV∗ = 0 (9)
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Algorithm 1 Alternating direction method of multipliers

(ADMM) pseudocode for solving the problem in Eq. (6)

1: Initialization: set k = 0, choose µ > 0, U0,V0,D0

2: repeat:

3: U(k+1) ← argminU ℓ(U,V(k),D(k))

4: V(k+1) ← argminV ℓ(U(k+1),V,D(k))

5: D(k+1) ← D(k) −GU(k+1) −BV(k+1)

6: until some stopping criterion is satisfied.

where U∗ and V∗ are the optimal solution of the problem in Eq. (6). Next, the dual variables should satisfy the

Lagrange multiplier (or dual feasibility) condition [3]:

0 ∈ ∂g(V∗)−BTλ∗ (10)

0 = −GTλ∗ (11)

where ∂g(V∗) means the subdifferential of a convex function g at V∗, λ ≡ µD is the Lagrange multipliers for the

problem in Eq. (6).

From the optimality condition for Step 4 of Algorithm 1, we have

0 ∈∂g(V(k+1)) + µBT (GU(k+1) +BV(k+1) −D(k)) (12)

= ∂g(V(k+1))− µBTD(k+1) (13)

= ∂g(V(k+1))−BTλ(k+1) (14)

Thus, the dual optimality condition in Eq. (10) is satisfied by V(k+1) and λ(k+1) at the end of each iteration of

Algorithm 1.

To meet the dual optimality condition in Eq. (11), we exploit the optimality condition for Step 3 of Algorithm 1:

0 = µGT (GU(k+1) +BV(k) −D(k)) (15)

= −µGTD(k+1) − µGTB(V(k+1) −V(k)) (16)

= −GTλ(k+1) − µGTB(V(k+1) −V(k)) (17)

Thus, after each iteration of Algorithm 1, we have

µGTB(V(k+1) −V(k)) = −GTλ(k+1) (18)

Finally, the primal residual (r(k)) and dual residual (d(k)) which can measure how well the iterates of Algorithm

1 satisfy the KKT conditions can be defined as [3]:

r(k) = GU(k) +BV(k) (19)

d(k) = µGTB(V(k) −V(k−1)) (20)
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Now, we detail the SUnSPI algorithm. We first expand the augmented Lagrangian in Eq. (8):

ℓ(U,V1,V2,V3,V4,D1,D2,D3,D4)

=
1

2
∥V1 −Y∥2F + λS∥V2∥1 + λP ∥V3∥2,1 + lR+(V4)

+
µ

2
∥AU−V1 −D1∥2F +

µ

2
∥U−V2 −D2∥2F

+
µ

2
∥HU−V3 −D3∥2F +

µ

2
∥U−V4 −D4∥2F . (21)

In each iteration of the ADMM scheme, we should sequentially minimize the function ℓ in Eq. (21) with respect

to U, V1, V2, V3 and V4, and then update the Lagrange multipliers.

We first run an optimization over the variable U. By ignoring the terms in the objective function in Eq. (21) that

do not contain variable U, we can get the reduced optimization problem:

U(k+1) ← argmin
U

µ

2
∥AU−V

(k)
1 −D

(k)
1 ∥2F+

µ

2
∥U−V

(k)
2 −D

(k)
2 ∥2F +

µ

2
∥HU−V

(k)
3 −D

(k)
3 ∥2F

+
µ

2
∥U−V

(k)
4 −D

(k)
4 ∥2F (22)

which has closed form solution:

U(k+1) ← (ATA+ 2I+H)−1[AT (V
(k)
1 +D

(k)
1 )

+V
(k)
2 +D

(k)
2 +H(V

(k)
3 +D

(k)
3 ) +V

(k)
4 +D

(k)
4 ]. (23)

Here we exploit the fact that H is a diagonal matrix with diagonal elements 0 or 1, which means HT = H and

HTH = H.

Then we turn to compute the values of variables V1, V2, V3 and V4 at each iteration. To update V1, the reduced

optimization problem is

V
(k+1)
1 ← argmin

V1

1

2
∥V1 −Y∥2F +

µ

2
∥AU(k) −V1 −D

(k)
1 ∥2F (24)

whose solution is

V
(k+1)
1 ← 1

1 + µ
[Y + µ(AU(k) −D

(k)
1 )] (25)

Similarly, the reduced optimization problem for V2 is

V
(k+1)
2 ← argmin

V2

λS∥V2∥1 +
µ

2
∥U(k) −V2 −D

(k)
2 ∥2F (26)

whose solution is the soft threshold [4]:

V
(k+1)
2 ← soft(ξ2,

λS

µ
) (27)

where ξ2 = U(k) − D
(k)
2 and soft(·, τ) denotes the component-wise application of the soft-threshold function

y 7→ sign(y)max{|y| − τ, 0}.
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To update V3, the reduced optimization problem is

V
(k+1)
3 ← argmin

V3

λP ∥V3∥2,1 +
µ

2
∥HU(k) −V3 −D

(k)
3 ∥2F (28)

whose solution is the well-known vect-soft threshold [5], applied independently to each row r of the update variable

(V
(k+1)
3 )r ← vect-soft(ξr3 ,

λP

µ
) (29)

where ξ3 = HU(k) −D
(k)
3 and vect-soft(·, τ) denotes the row-wise application of the vect-soft-threshold function

y 7→ ymax{∥y∥2 − τ, 0}/(max{∥y∥2 − τ, 0}+ τ).

To compute V4, we solve the following optimization problem

V
(k+1)
4 ← argmin

V4

lR+(V4) +
µ

2
∥U(k) −V4 −D

(k)
4 ∥2F (30)

whose solution is the projection of (U(k) −D
(k)
4 ) onto the nonnegative orthant:

V
(k+1)
4 ← max{U(k) −D

(k)
4 , 0}. (31)

After updating U and V in each iteration, we should update the Lagrange multipliers. The whole process of

SUnSPI algorithm is shown in Algorithm 2.

Algorithm 2 Pseudocode of the SUnSPI algorithm

1: Initialization:

2: set k = 0, choose µ > 0, U0,V0
1,V

0
2,V

0
3,V

0
4,

D0
1,D

0
2,D

0
3,D

0
4

3: repeat:

4: Compute U(k+1) via Eq. (23)

5: Compute V
(k+1)
1 via Eq. (25)

6: Compute V
(k+1)
2 via Eq. (27)

7: Compute V
(k+1)
3 via Eq. (29)

8: Compute V
(k+1)
4 via Eq. (31)

9: D
(k+1)
1 ← D

(k)
1 −AU(k+1) +V

(k+1)
1

10: D
(k+1)
2 ← D

(k)
2 −U(k+1) +V

(k+1)
2

11: D
(k+1)
3 ← D

(k)
3 −HU(k+1) +V

(k+1)
3

12: D
(k+1)
4 ← D

(k)
4 −U(k+1) +V

(k+1)
4

13: Update iteration: k ← k + 1

14: until some stopping criterion is satisfied.

II. MORE EXPERIMENTAL RESULTS

To further prove the effectiveness of the proposed algorithm, we also conduct experiments on another frequently-

used synthetic data set.

The fourth synthetic data (SD4) are created as follows [6–9]:

March 25, 2014 DRAFT



6

TABLE I

RMSES OBTAINED BY DIFFERENT ALGORITHMS USING A1 ON SD4 CORRUPTED BY WHITE NOISE

SNR (dB) SUnSAL CLSUnSAL NCLS-SPI(1) NCLS-SPI(2) SUnSPI(0) SUnSPI(1) SUnSPI(2)

SD4 20 0.0713 0.0390 0.0214 0.0202 0.0390 0.0214 0.0200

(k1 = 3) 30 0.0242 0.0174 0.0092 0.0089 0.0161 0.0092 0.0085

40 0.0075 0.0076 0.0046 0.0043 0.0068 0.0046 0.0040

SD4 20 0.0682 0.0593 0.0569 0.0356 0.0534 0.0473 0.0346

(k2 = 6) 30 0.0226 0.0217 0.0201 0.0126 0.0193 0.0175 0.0122

40 0.0075 0.0072 0.0072 0.0053 0.0068 0.0063 0.0050

SD4 20 0.0643 0.0638 0.0549 0.0520 0.0581 0.0510 0.0494

(k3 = 9) 30 0.0372 0.0366 0.0323 0.0172 0.0350 0.0314 0.0168

40 0.0266 0.0272 0.0249 0.0084 0.0258 0.0249 0.0084

1) Divide the scene, whose size is z2 × z2 (z = 8), into z × z regions. P endmembers (P = 3, 6, 9) are selected

randomly from A1 to constitute the endmember class. Initialize each region with the same type of ground cover,

randomly selected from the endmember class. The size of spectral signatures matrix W is L× P (L = 224).

2) Generate mixed pixels through a simple (z + 1)× (z + 1) spatial low-pass filter.

3) Replace all the pixels in which the abundance of a single endmember is larger than 70% with a mixture made

up of this endmember and its next endmember (the abundances of the two endmembers both equal 50%) so as

to further remove pure pixels and represent the sparseness of abundances at the same time; After these three

steps, we obtain the distribution of P endmembers in the scene and the abundance values are stored in H with

a size of P ×K (K = z2 × z2).

4) Use linear spectral mixing model Y = W × H to generate hyperspectral data, add Gaussian white noise or

correlated noise with specific SNR at the same time. The size of hyperspectral data Y is L×K.

Tabs. I and II show the results obtained by the considered sparse unmixing algorithms on SD4 in situations

of different SNRs, different endmember numbers and different noise types. We can see that the performances

of different algorithms on SD4 are similar to those on SD1. We can observe that in all the cases SUnSPI(2)

and SUnSPI(1) behave better than SUnSPI(0), SUnSAL and CLSUnSAL; SUnSPI(2) outperforms SUnSPI(1);

NCLS-SPI(1) and NCLS-SPI(2) outperform CLSUnSAL; NCLS-SPI(2) behaves better than NCLS-SPI(1). All these

observations indicate that the spectral a priori information is beneficial to sparse unmixing and more such information

results in better estimation of the abundances. We can also find that when the noise is weak or endmember number

is small, the difference between the performances of NCLS-SPI and SUnSPI is slight. Thus, in these cases, setting

λS = 0 for SUnSPI can achieve satisfactory results.

Fig. 1 shows the true abundance maps and abundance maps obtained by different algorithms using A1 on SD4

with 20 dB white noise when the endmember number is 6. In this case, SUnSPI(1) and NCLS-SPI(1) know that

the third and fourth actual endmembers exist in the data; SUnSPI(2) and NCLS-SPI(2) know that the first, third,

fourth and fifth actual endmembers are present in the hyperspectral scene. By visual comparison, it is obvious
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TABLE II

RMSES OBTAINED BY DIFFERENT ALGORITHMS USING A1 ON SD4 CORRUPTED BY CORRELATED NOISE

SNR (dB) SUnSAL CLSUnSAL NCLS-SPI(1) NCLS-SPI(2) SUnSPI(0) SUnSPI(1) SUnSPI(2)

SD4 20 0.0727 0.0770 0.0244 0.0242 0.0547 0.0243 0.0240

(k1 = 3) 30 0.0213 0.0238 0.0092 0.0092 0.0212 0.0092 0.0092

40 0.0076 0.0085 0.0041 0.0035 0.0071 0.0039 0.0032

SD4 20 0.0728 0.0847 0.0794 0.0435 0.0644 0.0537 0.0417

(k2 = 6) 30 0.0229 0.0289 0.0281 0.0152 0.0213 0.0187 0.0148

40 0.0079 0.0089 0.0087 0.0051 0.0077 0.0071 0.0051

SD4 20 0.0694 0.0819 0.0668 0.0638 0.0655 0.0603 0.0588

(k3 = 9) 30 0.0380 0.0418 0.0362 0.0213 0.0374 0.0346 0.0213

40 0.0270 0.0309 0.0263 0.0087 0.0267 0.0257 0.0087

that the more spectral a priori information is provided, the more the estimated abundances approximate the truth.

The improvement is especially obvious for the abundance maps corresponding to the first and fourth endmembers

which are very related to the other spectral signatures in the spectral library. Besides, we can also find that the

improvement of abundance estimation for the prior endmembers is much more significant than that corresponding

to the unknown endmembers.
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