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Abstract

Sparse unmixing assumes that each observed signature of a hyperspectral image is a linear combination of

only a few spectra (endmembers) in an available spectral library. It then estimates the fractional abundances of

these endmembers in the scene. Sparse unmixing problem still remains a great difficulty due to the usually high

correlation of the spectral library. Under such circumstances, this paper presents a novel algorithm termed regularized

simultaneous forward-backward greedy algorithm (RSFoBa) for sparse unmixing of hyperspectral data. RSFoBa has

low computational complexity of getting an approximate solution for the l0 problem directly and can exploit the

joint sparsity among all the pixels in the hyperspectral data. Besides, the combination of forward greedy step and

backward greedy step makes RSFoBa more stable and less likely to be trapped into the local optimum than the

conventional greedy algorithms. Furthermore, when updating the solution in each iteration, a regularizer that enforces

the spatial-contextual coherence within the hyperspectral image is considered to make the algorithm more effective.

We also show that the sub-library obtained by RSFoBa can serve as input for any other sparse unmixing algorithms

to make them more accurate and time-efficient. Experimental results on both synthetic data and real data demonstrate

the effectiveness of the proposed algorithm.
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I. INTRODUCTION

Hyperspectral unmixing which aims at identifying the constituent spectra (endmembers) and estimating their

corresponding fractions (abundances) remains a great challenging task underlying many hyperspectral imagery

applications [1–3]. As the linear unmixing model can be implemented easily and flexibly in different applications, it

has been widely used for spectral unmixing [4, 5]. This model assumes that each mixed pixel is a linear combination

of endmembers weighted by their corresponding abundance fractions. Early unmixing approaches based on geometry

[6–9], statistics [10] and nonnegative matrix factorization (NMF) [11–14] extract endmembers merely from the

hyperspectral data. However, some of these methods [9–14] could extract virtual endmembers [15] with no physical

meaning and others [6–8] assume the presence in the data of at least one pure pixel per endmember, which is

usually difficult to guarantee.

A recently developed approach to tackle the problem concerned with the generation of virtual endmembers and

the unavailability of pure spectral signatures is to use only a few spectra in a spectral library, known a priori, to

model each mixed pixel in the hyperspectral imagery [16–18]. As the number of spectral signatures in the spectral

library is usually much larger than the number of endmembers present in the hyperspectral imagery, this approach

often leads to a sparse solution. The newly formulated semi-supervised model (called sparse unmixing) needs us

to solve a problem containing the non-smooth l0 regularization which is combinatorial. Fortunately, sparse linear

regression techniques can be used [19, 20] to solve it.

Three kinds of methods are usually adopted to tackle the sparse unmixing problem, namely greedy algorithms

[16], convex relaxation methods [21–23] and sparse Bayesian methods [24]. The main idea of greedy algorithms1

is to solve heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum

[25]. Specifically, greedy algorithms iteratively refine a sparse solution by successively identifying one or more

potential endmembers from the spectral library that make the greatest improvement in reconstructing the mixed

pixel [20, 26]. A major flaw of a greedy strategy is that it can never correct mistake made in the earlier steps, which

means it could not produce an optimal solution for some problems. Nonetheless, it is able to yield locally optimal

solutions that approximate a global optimal solution in reasonable time without smoothing the l0 norm. Orthogonal

matching pursuit (OMP) [27, 28], a typical greedy algorithm, has been utilized to solve the sparse unmixing problem

in [16], but the high correlation of the spectral library blocks it from getting the optimal sparse solution. Convex

relaxation methods replace the non-smooth l0 norm with the l1 norm, thus yielding convex optimization problems

that admit tractable algorithm [20]. As the l1 norm is the closet convex function to the l0 norm, the replacement

is quite natural. It is worth mentioning that there is also some work relaxing the l0 norm to the lp norm where

0 < p < 1 [29]. Though the lp norm is closer to the l0 norm than the l1 norm, it leads to a non-convex problem.

As a result, the problem is computationally complex to solve and we can only obtain a suboptimal solution for it.

Convex relaxation methods are more sophisticated than the greedy algorithms as they obtain the global solution

of a well-defined optimization problem [19]. However, convex relaxation methods cannot control the sparsity of

1The greedy algorithms here denote forward greedy algorithms.
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the solution directly (unlike the greedy algorithms) and are more complicated than the greedy algorithms. Several

efficient convex relaxation methods [16, 21] have been proposed to solve the sparse unmixing problem based on

the alternating direction method of multipliers (ADMM) which can decompose a difficult problem into a sequence

of simpler ones [30, 31]. The sparse Bayesian methods [32, 33] have been applied to the sparse unmixing problem

recently. In [24], sparse unmixing is formulated as a hierarchical Bayesian inference problem and priors for the

model parameters and hyperparameters are selected to ensure the nonnegativity and sparsity of the abundances’

vector. Then an iterative scheme termed Bayesian inference iterative conditional expectations (BI-ICE) is proposed

to identify the maximum a posteriori estimation of the parameters. The BI-ICE algorithm can provide the sparse

solution without necessarily tuning any parameters. However, it is much more computationally expensive than the

greedy algorithms and convex relaxation methods. Besides, since the noise in the hyperspectral images is usually

correlated [16], the assumption in the BI-ICE model that the additive noise is a zero-mean Gaussian distributed

random vector, with independent and identically distributed (i.i.d.) elements, could be violated. Most recently, efforts

have been paid to exploit the spatial-contextual information [22, 34] within the hyperspectral image and joint sparsity

among all the pixels [23] and combine them into the convex relaxation methods to obtain a much better result.

In this paper, we propose a novel algorithm, regularized simultaneous forward-backward greedy algorithm

(RSFoBa), for sparse unmixing of hyperspectral data. The proposed algorithm is inspired by the simultaneous

orthogonal matching pursuit algorithm (SOMP) [35] and the adaptive forward-backward greedy algorithm (FoBa)

[36]. Different with the existing greedy algorithms which solve a plain least squares problem when updating

the solution in each iteration, the proposed algorithm solves a regularized least squares problem which enforces

spatial-contextual coherence constraint on the solution. Thus the solution can be estimated more accurately in each

iteration. To solve the regularized least squares problem, we need to solve a Lyapunov equation. There are mainly

two contributions of this paper:

• In this paper, we formulate the RSFoBa algorithm based on the forward-backward algorithm proposed in [36]

which has the advantages of both the forward and backward greedy algorithms. Specifically, as backward

steps are carried out in each iteration to remove any errors caused by the earlier forward steps and avoid

maintaining a large number of potential endmembers, RSFoBa can alleviate the drawback of classical greedy

algorithms such as OMP that they cannot correct mistakes made in the earlier steps and thus are prone to

be trapped into local optimum. Moreover, inspired by the SOMP algorithm [35], RSFoBa also deals with the

whole hyperspectral data simultaneously rather than processes each pixel individually. Thus, it can exploit the

joint sparsity among all the pixels in the hyperspectral data to alleviate the difficulty brought by the usually

high correlation of the spectral library.

• As mentioned above, a regularizer that enforces spatial-contextual coherence within the hyperspectral image is

considered when updating the solution in the proposed algorithm. Thus, RSFoBa can further use the spatial-

contextual information in the hyperspectral image to select the actual endmembers more accurately. Theoretical

results are presented to analyze the convergence and computational complexity of the proposed algorithm. We

October 31, 2013 DRAFT



4

also show that the sub-library obtained by RSFoBa can serve as input for any other sparse unmixing algorithms

to make them more efficient, which means RSFoBa not only can be an effective sparse unmixing algorithm

but also can be a preprocessing step to boost other sparse unmixing algorithms.

The rest of the paper is structured as follows. Section II introduces some related work concerned with the sparse

unmixing model and the greedy algorithms. In Section III we present the regularized simultaneous forward-backward

greedy algorithm. Experimental results are shown in Section IV. Finally, we conclude in Section V.

II. RELATED WORK

In this section, we begin with the introduction of the linear sparse unmixing model. Then the forward, backward

and forward-backward greedy algorithms will be discussed, which lays a foundation for the proposed algorithm.

A. Sparse Unmixing Model

The linear sparse unmixing model assumes that the observed pixel is a linear combination of only a few spectral

signatures in an available library. Let A ∈ RL×m denote the spectral library, where L is the number of bands and

m is the number of spectral signatures in the library. Then, the sparse unmixing model is [16]:

y = Ax+ n (1)

where y ∈ RL is the spectrum vector of a mixed pixel in a hyperspectral image with L bands, x ∈ Rm is the

abundance vector with regard to the library A and n ∈ RL is the vector of error term. Owing to physical constraints,

the model has the following two constraints (xi is the i-th element of x):

x ≥ 0 (2)
m∑
i=1

xi = 1 (3)

which are called abundance nonnegativity constraint and sum-to-one constraint, respectively [37]. But due to

the strong signature variability in the real image, the sum-to-one constraint should be replaced with a so-called

generalized sum-to-one constraint which is automatically imposed because of the nonnegativity of the sources

[16, 38]. Thus we do not explicitly add the sum-to-one constraint to the sparse unmixing model in this paper.

Then the optimization problem of sparse unmixing can be written as follows:

min
x

q(x) =
1

2
∥y −Ax∥22 subject to ∥x∥0 ≤ k,x ≥ 0 (4)

where ∥x∥0 (called l0 norm) denotes the number of nonzero components in x, k ≥ 1 is a given sparsity level.

The simultaneous sparse unmixing model (also called collaborative sparse regression model [23]) assumes that

all the pixels in the hyperspectral image can be modeled using the same subset of endmembers selected from the

spectral library. Considering the whole hyperspectral data, the sparse unmixing model in Eq. (1) becomes

Y = AX+N (5)
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where Y ∈ RL×K is the hyperspectral data matrix with L bands and K mixed pixels, A ∈ RL×m is the spectral

library, X ∈ Rm×K is the abundance matrix each column of which corresponds with the abundance fractions of a

mixed pixel and N ∈ RL×K is the matrix of error term.

Under this model, the unmixing problem is:

min
X

Q(X) =
1

2
∥Y −AX∥2F

subject to ∥X∥row-0 ≤ k,X ≥ 0 (6)

where ∥X∥F means the Frobenius norm of matrix X, ∥X∥row-0 (called row-l0 quasi-norm [35]) is the number of

nonzero rows in matrix X, k ≥ 1 is a given row-sparsity level. In [23], the problem in Eq. (6) is relaxed to a

smooth convex problem and a collaborative sparse unmixing method is developed to solve it.

It is worth mentioning that the model in Eq. (6) is reasonable for sparse unmixing because there should be only

a few nonzero rows in the abundance matrix X because there are always a small number of endmembers in a

hyperspectral image, especially compared with the very large spectral library [23]. This model also has several

advantages over the model in Eq. (4): i) as researched in the literature of multiple-measurement vectors (MMV)

[39], the model in Eq. (6) is more probable to have a unique solution than the model in Eq. (4); ii) the constraint

that all the pixels in a hyperspectral image are constituted by the same set of endmembers can alleviate the sparse

regression limitations caused by the usually high correlation of the spectral library [23]; iii) most of the time,

simultaneous sparse regression is superior to the non-simultaneous one [40]. Nevertheless, there are also some

cases in which the nonzero rows of X are not sparse but each pixel adopts a sparse representation in X, especially

when the hyperspectral image is very complex. In this paper, we only focus on the situations in which the number

of endmembers present in the hyperspectral image is much smaller than the number of spectral signatures in the

spectral library.

B. Forward, Backward and Forward-backward Greedy Algorithms

In the literature of sparse signal reconstruction or sparse representation [19], there are mainly two kinds of greedy

algorithms to solve the l0 problem in Eq. (4) approximately, namely forward greedy algorithm and backward greedy

algorithm.

The forward greedy algorithm begins with an all-zero solution and successively adds one or more nonzero

elements to the solution that yield the greatest improvement in minimizing the objective function until the desired

number of nonzero elements are obtained or the reconstruction error of the input signal is below the tolerance.

Two typical forward greedy algorithms are the matching pursuit (MP) [26] and orthogonal matching pursuit (OMP)

[27, 28]. A major flaw of the forward greedy algorithm is that it can never correct mistakes made in the earlier

steps [36]. For example, consider the situation in Fig. 1. In this figure, suppose y is the spectral vector of a mixed

pixel and it is constituted by two endmembers a1 and a2, but another spectral signature in the spectral library a3

is closer to y than the two actual endmembers. Thus, when the forward greedy algorithm such as OMP is used to

unmix the mixed pixel, it will find a3 first and then a1 and a2. The problem is that we are not able to remove a3
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selected in the first step, which will have a negative impact on the subsequent endmember selection and abundance

estimation. This line of reasoning indicates that the forward greedy algorithm is inadequate for sparse unmixing.

Indeed, the method only works well and stably when the spectral library is not correlated, which is not the case of

sparse unmixing.

Fig. 1. Illustration of the flaw of the forward greedy algorithm.

Contrary to the forward greedy algorithm, the backward greedy algorithm begins with a dense solution estimated

using the whole spectral library and one element that increases the reconstruction error least is set to zero at each

step [41, 42]. Though it seems that the backward greedy algorithm has a broader perspective than the forward greedy

algorithm and thus will not be trapped into the local optimum, the algorithm is computationally very expensive

because it begins with the whole spectral library. Besides, when the spectral library matrix is overcomplete (especially

when m≫ L), removing any spectral signature is helpless: the remaining sub-matrix of the spectral library is still

overcomplete no matter which member is removed from the spectral library. In [16], a backward greedy algorithm,

iterative spectral mixture analysis algorithm (ISMA) [43], is used for sparse unmixing. The experimental results

[16] indicate that ISMA behaves worse than the convex relaxation algorithms and forward greedy algorithms and

it is the most time-consuming algorithm.

In sum, the main strength of the forward greedy algorithm is its computational efficiency because it always deals

with a sparse solution explicitly [36]. But its major flaw is that it cannot correct any error made in the earlier steps.

However, the backward greedy step can potentially correct such an error but needs to start with a small subset of the

spectral library that is non-overcomplete. The comparison of the two kinds of greedy algorithms leads us to consider

seeking a combination of them to overcome the flaws of both methods. In the past few years, there have been some

work concerned with such a combination (called forward-backward greedy algorithm) [36, 44]. But to the best of

our knowledge, such algorithms have never been used in the field of hyperspectral image processing. In this paper,

we consider using the adaptive forward-backward greedy algorithm (FoBa) proposed in [36] for sparse unmixing.

FoBa has been proved to be effective in learning sparse representations both experimentally and theoretically [36].

As a preprocessing step, we successively apply the zero-mean normalization and l2 unit-length normalization

to both the input pixel vector and the columns of spectral library matrix. For convenience, we use z instead of

x to update the solution in each iteration. z could be considered as the elements of x that have the indices of
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the support of selected indices S, which means z is not necessarily sparse. The whole process of using FoBa

for sparse unmixing of hyperspectral data is summarized in Algorithm 1. The algorithm includes two main parts:

endmember selection and abundance estimation. In the first part, the normalized hyperspectral signature vector and

the normalized spectral library will be used while the original ones are used for estimating the abundances. In the

endmember selection part, steps 7-12 are the forward step and steps 13-21 are the backward step. Step 10 computes

the decrease of q(z;S) = 1
2∥ASz− y∥22 after selecting an additional member from the spectral library. If the

decrease of q is smaller than the preset tolerance, the endmember selection part will stop. Otherwise, the backward

step will be implemented. In step 14, the member that increases the function q least will be taken as a candidate to

be removed. If the increase of q (d−) after removing the candidate member is no more than half of the decrease of

q in the earlier corresponding forward step (d+), the candidate member will be removed. In this way, we can expect

the FoBa algorithm to have the following two properties [36]: i) it can take reasonably aggressive backward steps

to remove any errors made in the earlier forward steps and to avoid maintaining too many potential endmembers;

ii) it can take backward steps adaptively and guarantee that any backward greedy step does not erase the gain made

in the forward steps, which means we are always making progress. Finally, the abundances are estimated using the

selected potential endmembers under the constraint of nonnegativity.

However, when the spectral library is very correlated, any algorithm (including the FoBa algorithm) that mimics l0

regularization is unstable [36]. Thus, additional prior knowledge and regularization that can exploit the characteristics

of the hyperspectral data are needed to make the forward-backward greedy algorithm more effective.

III. SIMULTANEOUS FORWARD-BACKWARD GREEDY ALGORITHM WITH SPATIAL-CONTEXTUAL COHERENCE

REGULARIZATION

Here, we will present the proposed algorithm by incorporating the joint sparsity among all the pixels and spatial-

contextual information of the hyperspectral image into the forward-backward greedy algorithm. Then, we give a

convergence theorem for the proposed algorithm.

A. Simultaneous Forward-backward Greedy Algorithm

Some prior knowledge concerned with the hyperspectral data is considered in the proposed algorithm. The first

prior knowledge we consider is the joint sparsity among all the pixels in the hyperspectral data. Hyperspectral

remote sensing has been evolved to be capable of acquiring simultaneously in 100 to 200 contiguous spectral

bands [45]. However, researchers have shown that the hyperspectral data cannot fill up the whole high-dimensional

Euclidean space [14]. Instead, they are more likely to lie in a low-dimensional submanifold of a high-dimensional

ambient space [14, 46]. For the problem of sparse unmixing, the high-dimensional hyperspectral data live in a lower

dimensional subspace of the spectral library. Thus only a small set of the spectral library is active in constructing all

the pixels in the hyperspectral data [47], which is called the joint sparsity among all the pixels in the hyperspectral

data [23]. Thus, we can utilize this characteristic of the hyperspectral data for sparse unmixing. Then we need to

solve the problem in Eq. (6). A natural way to solve this problem is to use the simultaneous greedy algorithm
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Algorithm 1 Forward-backward greedy algorithm for sparse unmixing

of hyperspectral data

Preprocessing:

1: Apply zero-mean normalization and l2 unit-length normalization

successively to the vector of spectral signature y and spectral

library matrix A

Initialization:

2: Iteration: t = 0

3: Initial residual: r0 = y

4: Initial support of selected indices: S = ϕ

5: Initialize z0 as an empty vector

Endmember selection:

6: while t is smaller than the maximum iteration number

//forward step

7: j = argmaxi/∈S aT
i rt; {ai is the i-th column of A}

8: Set S = S
∪

j

9: Update solution: zt+1 ← (AS
TAS)

−1AS
Ty; {AS means

the matrix containing the columns of A having the indices

from S}
10: Set δt+1 = q(zt;S/j)− q(zt+1;S);

{q(z;S) = 1
2
∥ASz− y∥22}

11: if δt+1 ≤ ϵ, set S = S/j and break; {ϵ is the predefined error

tolerance}
12: Set t = t+ 1

//backward step

13: while (true)

14: j = argmini∈S q(z̃i;S/i);

{z̃i = argminz̃∈R|S/i| q(z̃;S/i)}
15: d− = q(z̃j ;S/j)− q(zt;S)

16: d+ = δt

17: if d− > 1
2
d+, break

18: Set t = t− 1

19: Set S = S/j

20: Update solution: zt ← (AS
TAS)

−1AS
Ty

21: end while

22: end while

Inversion (abundance estimation):

23: Compute the abundance fractions for the scene using the original

hyperspectral data and spectral library:

z← argminZ ∥ASz− y∥2, subject to z ≥ 0.
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Algorithm 2 Simultaneous forward-backward greedy algorithm for

sparse unmixing of hyperspectral data

Preprocessing:

1: Apply zero-mean normalization and l2 unit-length normalization

successively to the columns of hyperspectral data matrix Y and

spectral library matrix A

Initialization:

2: Iteration: t = 0

3: Initial residual: R0 = Y

4: Initial support of selected indices: S = ϕ

5: Initialize Z0 as an empty matrix

Endmember selection:

6: while t is smaller than the maximum iteration number

//forward step

7: j = argmaxi/∈S ∥(Rt)T ai∥p; {p could be 2 or ∞}
8: Set S = S

∪
j

9: Update solution: Zt+1 ← (AS
TAS)

−1AS
TY

10: Set δt+1 = Q(Zt;S/j)−Q(Zt+1;S);

{Q(Z;S) = 1
2
∥ASZ−Y∥2F }

11: if δt+1 ≤ ϵ, set S = S/j and break; {ϵ is the predefined

error tolerance}
12: Set t = t+ 1

//backward step

13: while (true)

14: j = argmini∈S Q(Z̃i;S/i);

{Z̃i = argmin
Z̃∈R|S/i|×K Q(Z̃;S/i)}

15: d− = Q(Z̃j ;S/j)−Q(Zt;S)

16: d+ = δt

17: if d− > 1
2
d+, break

18: Set t = t− 1

19: Set S = S/j

20: Update solution: Zt ← (AS
TAS)

−1AS
TY

21: end while

22: end while

Inversion (abundance estimation):

23: Compute the abundance fractions for the scene using the original

hyperspectral data and spectral library:

Z← argminZ ∥ASZ−Y∥F , subject to Z ≥ 0.

[35] or relax it to a convex optimization problem [23]. Here, we extend FoBa displayed in Algorithm 1 to the

simultaneous forward-backward greedy algorithm (SFoBa), which is shown in Algorithm 2. Similarly, we use Z

instead of X to update the solution. Z could be considered as the rows of X that have the indices of S. The

difference is that X is row-sparse but Z is not.

The difference between FoBa and SFoBa is that FoBa processes each pixel in the hyperspectral data separately but
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SFoBa deals with the whole hyperspectral data simultaneously. Step 7 is the greedy selection step by maximizing

the absolute correlations (p = 2 or ∞) between the hyperspectral data and the selected member. Small value of p

promotes the selection of potential endmember that has a strong overall contribution to the hyperspectral data. In

contrast, larger value of p will favor the member most correlated to one mixed pixel. In our implementations, we

consider both cases. Note when estimating the abundances, though the matrix Z is not row-sparse, each column

of Z can still be sparse as the number of endmembers present in a mixed pixel is much less than the number of

endmembers present in the whole image. Thus, we can add the l1 norm regularizer to the object function in step

23 and obtain a sparser solution.

A drawback of the simultaneous greedy algorithms such as SOMP and SFoBa is that when the number of

endmembers present in the hyperspectral data is very large, they become unstable and tend to be trapped into

the local minima. Here we use a block-processing strategy to sidestep this obstacle. Specifically, we divide the

whole hyperspectral image into several blocks. Then in each block the greedy algorithm will pick several potential

endmembers from the spectral library. Finally, the abundances are computed using the whole hyperspectral data

and potential endmembers picked associated with all the blocks.

The intuition behind this strategy is threefold: i) the number of endmembers present in one block is likely to be

smaller than that in the whole image and the simultaneous greedy algorithm is more effective when the number of

members that construct the input signals is not large [35]; ii) the greedy algorithm can further utilize the spatial-

contextual information within the block; iii) one endmember present in one mixed pixel is probably also present

in the others (either neighborly or non-neighborly) of the whole image, thus we can use the potential endmembers

picked from all the blocks to reconstruct the hyperspectral image.

B. Regularized Simultaneous Forward-backward Greedy Algorithm

The second prior knowledge we consider is the spatial-contextual information. Till now, the hyperspectral data are

not treated as an image, but as unordered listings of sampled spectral measurements collected in a matrix (namely the

hyperspectral data matrix Y). Indeed, there exists spatial correlation between image features [22]. A total variation

(TV) spatial regularizer is added into the sparse unmixing model in [22] and optimistic improvement has been

obtained in the abundance estimation. In this paper, we consider incorporating the spatial-contextual information

into the simultaneous forward-backward greedy algorithm, but in a different way. In the t-th iteration of the SOMP

algorithm [35] and SFoBa, after an additional member is selected from the spectral library, we need to solve a least

squares problem to update the solution:

Zt ← arg min
Z∈R|S|×K

Q(Z;S) =
1

2
∥ASZ−Y∥2F (7)

where S is a set of indices of selected members in the spectral library, AS means the matrix containing the columns

of A having the indices from S. Such an updating procedure has two advantages when used in the field of sparse

signal reconstruction: on one hand the input signals (Y) will be reconstructed as well as possible using the selected

members from the library; on the other hand, the residual Rt = Y−ASZ
t will be orthogonal to the column space
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of AS and thus a member from the library will be selected at most once. However, when used in sparse unmixing,

this kind of updating does not consider the spatial-contextual coherence of the abundance matrix and the structure

of the residual matrix could be destroyed. Specifically, consider the situation in Fig. 2. Suppose y is the spectral

vector of a mixed pixel and it is constituted by two endmembers a1 and a2. a3 is a member of the spectral library

that is absent in the mixed pixel. In the first iteration, as a1 is closest to y, it will be selected. Then the residual

vector r, as illustrated in Fig. 2, will be computed: r = y − p where the vector p is the orthogonal projection

of y on a1. However, in the next iteration, a3 rather than a2 will be selected. In this case, the orthogonality is

not beneficial to the sparse unmixing. Indeed, we would like the estimated residual r to be as close to the actual

residual a2 as possible. Thus we need to update the solution more accurately in each iteration.

Fig. 2. Illustration of why orthogonality is not always good.

To tackle this problem, we consider the spatial-contextual coherence in the hyperspectral data which will depend

on the spectral similarities between a pixel and its neighbouring pixels. This can be implemented by defining a

quadratic function G with respect to the abundances:

G(X) =
1

2

K∑
i=1

∑
j∈η

∥xi − xj∥22Wij (8)

where η denotes the neighborhood of the i-th pixel, xi is the i-th column of X, Wij is the weight matrix measuring

the similarity between the i-th pixel and the j-th pixel. Specifically, if the j-th pixel is in the neighborhood of the

i-th pixel, then the weight is assigned as

Wij = e−
∥yi−yj∥

2
2

σ (9)

where σ is the density parameter controlling the width of the Guassian. It is obvious that if yi and yj (in a

neighbourhood) are similar, Wij will be relatively big. In this paper, the neighborhood η in Eq. (8) is set to be a

(2r + 1) × (2r + 1) square region (r = 2) and the σ in Eq. (9) is set to 2/3. Indeed, we have tested these two

parameters on synthetic data set (the same one used in the synthetic experiment in Section IV) in situations of

different endmembers and different noise levels using different values of r (i.e. 1, 2, 3, 4) and σ (i.e. 1/3, 2/3, 1,

3, 5) and find that the proposed algorithm attains constantly good performance when r ≥ 2 and gets the overall
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best performance when r = 2 and σ = 2/3. For convenience of deduction, we transform the G(X) in Eq. (8) as

G(X) =
1

2

K∑
i,j=1

∥xi − xj∥22Wij

=
K∑
i=1

xT
i xiDii −

K∑
i,j=1

xT
i xjWij

= Tr(XDXT )− Tr(XWXT )

= Tr(XLXT ) (10)

where Tr(·) means the trace of a matrix, D is a diagonal matrix and Dii =
∑

j Wij , L = D−W is a positive

semidefinite matrix. The first equality holds because Wij = 0 if j /∈ η. Thus, when updating the solution in each

iteration, instead of solving the plain least squares problem in Eq. (7), we solve the following quadratic problem:

Zt ← arg min
Z∈R|S|×K

Qr(Z;S) = Q(Z;S) +
λ

2
G(Z)

=
1

2
∥ASZ−Y∥2F +

λ

2
Tr(ZLZT ) (11)

where λ ≥ 0 is the regularization parameter.

Note Qr(Z;S) is a convex quadratic function, thus any local minimum will be its global minimum. Then, to get

the global optimum of the problem in Eq. (11) we need to take the gradient of Qr(Z;S) with respect to Z and set

it to 0:

∇Qr(Z;S) = AS
TASZ−AS

TY + λZL = 0. (12)

Eq. (12) is actually a Lyapunov equation [48] which has the following form:

C1Z+ ZC2 = C3 (13)

where C1 = AS
TAS, C2 = λL and C3 = AS

TY. Considering the computational complexity and space

complexity, we choose the method proposed in [48] to solve the Lyapunov equation. The eigenvalue decompositions

of symmetric matrices C1 and C2 can be obtained as:

U−1C1U =


α1

. . .

αk′

 ,

V−1C2V =


β1

. . .

βK


where k′ ≤ k is the cardinality of set S, αi (i = 1, . . . , k′) are the eigenvalues of C1, βi (i = 1, . . . ,K) are the

eigenvalues of C2, both U and V are orthogonal matrices. Then the solution [48] of Eq. (13) is

Z = UZ̃V−1 (14)
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where Z̃ij =
C̃ij

αi+βj
(i = 1, . . . , k′; j = 1, . . . ,K) and C̃ = U−1C3V. As U and V are orthogonal matrices,

computation of their inversions can be replaced by computing their transposes when programming. When the λ in

Eq. (12) is set to 0, the Lyapunov equation degrades to the normal equation and a plain least squares solution is

obtained.

Finally we can get our regularized simultaneous forward-backward greedy algorithm (RSFoBa) which is sum-

marized in Algorithm 3. Indeed, the relationship among the Algorithms 1-3 is that SFoBa is a special case of

RSFoBa and FoBa is a special case of SFoBa. The proposed algorithm is inspired by SOMP [35] and FoBa [36],

nevertheless they are quite different. Firstly, SOMP is a forward greedy algorithm but RSFoBa has backward step.

Secondly, SOMP only considers the case of p = 2 in the member selection step but we also consider p = ∞.

Thirdly, FoBa processes each pixel individually but RSFoBa deals with the whole image simultaneously. Fourthly

and most importantly, RSFoBa exploits the spatial-contextual information in the hyperspectral image but SOMP

and FoBa do not. Thus, RSFoBa will be more suitable for sparse unmixing because it not only has the advantages

of SOMP and FoBa, but also exploits the characteristics of the hyperspectral image for sparse unmixing.

C. Theoretical Analysis

Here, we give a convergence theorem for the RSFoBa algorithm.

Lemma 3.1: In Algorithm 3, d+ ≥ 0 and d− ≥ 0 hold.

Proof: For ∀j ∈ S, the following inequality holds:

min
Z∈R|S|×K

Qr(Z;S) ≤ min
Z∈R|S|×K ,Zj,:=0

Qr(Z;S)

= min
Z∈R|S/j|×K

Qr(Z;S/j)

where Zj,: denotes the j-th row of matrix Z. Thus, according to the definitions of d+ and d−, they will be no less

than 0. �
Theorem 3.1: The total number of main iterations for the RSFoBa algorithm to terminate is no more than

1 + 2Qr(0)/ϵ.

Proof: Suppose RSFoBa will take q′ backward steps after taking q (q′ ≤ q) forward steps. After q forward steps,

the decrease of Qr is

D+ =

q∑
i=1

d+i (15)

where d+i = δi, i = 1, . . . , q. Suppose in the backward step corresponding to the i-th forward step, the increase of

Qr is d−i , i = q, q − 1, . . . , q − q′ + 1. After q′ backward steps, the increase of Qr is

D− =

q∑
i=q−q′+1

d−i (16)
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Algorithm 3 Regularized simultaneous forward-backward greedy

algorithm for sparse unmixing of hyperspectral data

Preprocessing:

1: Apply zero-mean normalization and l2 unit-length normalization

successively to the columns of hyperspectral data matrix Y and

spectral library matrix A

Initialization:

2: Iteration: t = 0

3: Initial residual: R0 = Y

4: Initial support of selected indices: S = ϕ

5: Initialize Z0 as an empty matrix

Endmember selection:

6: while t is smaller than the maximum iteration number

//forward step

7: j = argmaxi/∈S ∥(Rt)T ai∥p; {p could be 2 or ∞}
8: Set S = S

∪
j

9: Compute Zt+1 via solving Eq. (12)

10: Set δt+1 = Qr(Z
t;S/j)−Qr(Z

t+1;S)

11: if δt+1 ≤ ϵ, set S = S/j and break; {ϵ is the predefined

error tolerance}
12: Set t = t+ 1

//backward step

13: while (true)

14: j = argmini∈S Qr(Z̃i;S/i);

{Z̃i = argmin
Z̃∈R|S/i|×K Qr(Z̃;S/i)}

15: d− = Qr(Z̃j ;S/j)−Qr(Zt;S)

16: d+ = δt

17: if d− > 1
2
d+, break

18: Set t = t− 1

19: Set S = S/j

20: Compute Zt via solving Eq. (12)

21: end while

22: end while

Inversion (abundance estimation):

23: Compute the abundance fractions for the scene using the original

hyperspectral data and spectral library:

Z← argminZ ∥ASZ−Y∥F , subject to Z ≥ 0.

Then the actual decrease of Qr after q forward steps and q′ backward steps is

D = D+ −D−

=

q∑
i=1

d+i −
q∑

i=q−q′+1

d−i

≥
q∑

i=1

1

2
d+i

>
qϵ

2
. (17)
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The first inequality holds because d−i ≤ 1
2d

+
i ; the second inequality holds because d+i = δi > ϵ. Thus, if we take

q forward steps, then no matter how many backward steps are performed, Qr will decrease by at least an amount

of qϵ/2. It follows that the algorithm terminates after no more than 2Qr(0)/ϵ iterations. �
It is worth mentioning that the number of iterations present in Theorem 3.1 is not tight. However, we can see

that the RSFoBa can make progress in every main iteration.

IV. EXPERIMENT

In this section, we use both synthetic data and real-world data to test the performance of the proposed algorithm.

The RSFoBa algorithm is compared with three greedy algorithms (i.e. OMP [27], SOMP [35] and SSP [49, 50]) and

two convex relaxation methods (i.e. SUnSAL [16] and SUnSAL-TV [22]). We also explore whether the backward

step, joint sparsity and spatial-contextual coherence regularizer are beneficial to the proposed algorithm in the

synthetic experiment by comparing RSFoBa with its special cases. As mentioned earlier, when the spectral library

is over-complete, the backward greedy algorithm behaves worse and implements much slower than the forward

greedy algorithm and convex relaxation method, thus we do not include it in our experiment. In step 7 of the

RSFoBa algorithm, both the l2 norm and the l∞ norm are considered in our experiments. To distinguish the two

cases, we denote them by RSFoBa (p = 2) and RSFoBa (p = ∞), respectively. We also consider combining the

RSFoBa with the SUnSAL, which means that the SUnSAL rather than the nonnegative least squares technique is

used to estimate the abundances in the final step of RSFoBa. We denote this combination as RSFoBa-SUnSAL.

The maximum iteration number and the error tolerance ϵ of the RSFoBa algorithm will determine when the main

iteration of the RSFoBa algorithm terminates. In all the experiments, the maximum iteration number is set to 20,

which is enough for the RSFoBa algorithm to terminate by satisfying the error tolerance. As the value of Qr for

a block is proportional to the number of pixels in this block, the error tolerance ϵ should be set to ϵ′ ×Kb, where

ϵ′ is the scaled error tolerance unrelated to the block size, Kb is the number of pixels in a block and Kb = K

if the block-processing strategy is not adopted. It is obvious that smaller ϵ′ tends to make RSFoBa retain more

spectral signatures from the spectral library. However, if the ϵ′ is set too small, the RSFoBa algorithm will retain

too many non-existing spectral signatures, which will have a negative effect on the abundance estimation; if the ϵ′

is set too large, the RSFoBa algorithm could miss some actual endmembers. Thus, an appropriate ϵ′ is necessary.

We have tested this parameter on synthetic data set (the same one used in synthetic experiment) in situations of

different endmembers and different noise levels using different values of ϵ′: 0.05, 0.01, 0.005 and 0.001. We find

that when ϵ′ = 0.05, RSFoBa will usually miss the actual endmembers, which indicates this value of ϵ′ is too large;

when ϵ′ = 0.001, RSFoBa will select too many non-existing spectral signatures; ϵ′ = 0.01 leads to a slightly better

performance of RSFoBa than ϵ′ = 0.005 in most cases. Thus, in all the experiments, the error tolerance ϵ in step 11

of the RSFoBa algorithm is set to 0.01×Kb. Then, the parameters for the RSFoBa algorithm to be tuned are the

block size and the regularization parameter λ in Eq. (12), both of which will be discussed in Section IV-D. All the

considered algorithms have taken into account the abundance nonnegativity constraint. The preprocessing procure

adopted by RSFoBa is also applied to OMP, SOMP and SSP to improve their performances. The block-processing
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strategy is applied to the SOMP and SSP to avoid missing the actual endmembers when the number of endmembers

in the hyperspectral data is large. The nonnegative least squares problem in the abundance estimation step of the

four greedy algorithms can be solved using the active set method. Specifically, we use the lsqnonneg function in

MATLAB to solve it. The TV regularizer used in SUnSAL-TV is the non-isotropic one. All the parameters of the

considered algorithms are tuned to their best performances. Complexity analysis comes at the end of this section.

A. Evaluation with Synthetic Data

In the synthetic data experiment, we evaluate the performances of the sparse unmixing algorithms in situations

of different noise types, different signal-to-noise ratios (SNR ≡ 10 log10
∥Ax∥2

2

∥n∥2
2

) of noise and different endmember

numbers. The root mean square error (RMSE) is used to evaluate the abundance estimations. For the i-th endmember,

RMSE is defined as

RMSEi =

√√√√ 1

K

K∑
j=1

(Xij − X̂ij)2. (18)

Here, X denotes the true abundances and X̂ represents the estimated ones. The mean value of all the endmembers’

RMSEs will be computed. Generally speaking, the smaller the RMSE is, the more the estimation approximates

the truth. The synthetic hyperspectral image we used is homogeneous with rich spatial-contextual information. The

Chapter 1 of the United States Geological Survey (USGS) [51] digital spectral library (splib06a) is used in this

experiment. The reflectance values of 498 materials are measured for 224 spectral bands distributed uniformly in

the interval 0.4− 2.5 µm (A ∈ R224×498). Fifteen spectral signatures are chosen from the library to generate our

synthetic data. Fig. 3 shows five example endmember signatures used for all the following experiments. The other

ten endmembers that are not displayed in the figure include Neodymium Oxide GDS34, Monazite HS255.3B, Samar-

ium Oxide GDS36, Pigeonite HS199.3B, Meionite WS700.HLsep, Spodumene HS210.3B, Labradorite HS17.3B,

Grossular WS484, Zoisite HS347.3B and Wollastonite HS348.3B, which are used to evaluate the performances of

the sparse unmixing algorithms in situations of different endmember numbers.

The synthetic data are created as follows:

1) Divide the scene, whose size is z2 × z2 (z = 8), into z × z regions. Initialize each region with the same type

of ground cover, randomly selected from the endmember class. The endmember number is P . The size of

spectral signatures matrix W is L× P (L = 224).

2) Generate mixed pixels through a simple (z + 1)× (z + 1) spatial low-pass filter.

3) Replace all the pixels in which the abundance of a single endmember is larger than 70% with a mixture made

up of this endmember and its next endmember (the abundances of these two endmembers both equal 50%)

so as to further remove pure pixels and represent the sparseness of abundances at the same time; After these

three steps, we obtain the distribution of P endmembers in the scene and abundance values are stored in H

with a size of P ×K (K = z2 × z2).

4) Use linear spectral mixing model Y = W × H to generate hyperspectral data, add Gaussian white noise or
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Fig. 3. Five example spectral signatures from the USGS used in our synthetic data experiments. The title of each subimage denotes the mineral

corresponding to the signature.

correlated noise2 with specific SNR at the same time. The size of hyperspectral data Y is L×K.

Note that no pure pixel exists in this synthetic data set. Because this data set is homogeneous with rich spatial-

contextual information, it can simulate the real scenario.

We first analyse without considering the RSFoBa-SUnSAL. Fig. 4 shows results obtained on the synthetic data

with white noise as function of SNR when the endmember number is 5. The RMSEs of all the algorithms decrease

as the SNR increases. We can find that RSFoBa, SOMP, SSP and SUnSAL-TV behave better than SUnSAL and

OMP, which indicates that the use of spatial information can improve the performances of the sparse unmixing

algorithms. Besides, it can be seen that RSFoBa outperforms the other algorithms. Fig. 5 shows the results obtained

on this data set with 30 dB white noise as function of endmember number. As shown, the performances of all

the algorithms tend to degrade as the endmember number increases. This indicates that the sparsity of the solution

can alleviate the sparse regression limitations linked to the usually high correlation of the spectral library. In most

cases, RSFoBa behaves best among all the algorithms. It is worth mentioning that in both Fig. 4 and Fig. 5, the

performances of RSFoBa (p = 2) and RSFoBa (p = ∞) are different: RSFoBa (p = ∞) behaves better than

RSFoBa (p = 2) in most cases. Thus, when using RSFoBa for sparse unmixing, the l∞ norm could be a better

choice than the l2 norm.

2The Gaussian white noise is generated using the awgn function in MATLAB. The correlated noise is generated using the

correlatedGaussianNoise function that is available online: http://www.mathworks.com/matlabcentral/fileexchange/21156-correlated-gaussian-

noise/content/correlatedGaussianNoise.m. The correlation matrix is set as default.
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Fig. 4. Results on the synthetic data with white noise when the endmember number is 5: RMSE as function of SNR.

4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

endmember number

R
M

S
E

 

 

 RSFoBa (p=2)
 RSFoBa (p=∞)
 SUnSAL
 OMP
 SOMP
 SSP
 SUnSAL−TV
 RSFoBa−SUnSAL (p=2)
 RSFoBa−SUnSAL (p=∞)

Fig. 5. Results on the synthetic data with 30 dB white noise: RMSE as function of endmember number.

Fig. 6 and Fig. 7 show the results obtained on the synthetic data affected by correlated noise as functions of

SNR and endmember number, respectively. Since the noise in the real hyperspectral images is usually correlated,

this case is closer to the practical ones. As shown in Fig. 6, the performances of RSFoBa (p = ∞), SOMP and

SSP are similar to those in the white noise cases. But RSFoBa (p = 2), SUnSAL, OMP and SUnSAL-TV behave

worse when the data are corrupted by the correlated noise. The results in Fig. 7 are similar with those in Fig. 5.

We can find that the RSFoBa has an overall better performance than the other considered algorithms. Besides, we

can also observe that RSFoBa (p =∞) behaves better than RSFoBa (p = 2) in most cases, which is in accordance

with the results when the noise is white.

In order to validate whether the proposed algorithm significantly outperforms the others, we also conduct

significant tests on the results obtained above. Specifically, there are totally 28 RMSEs for each sparse unmixing

algorithm obtained in situations of different endmember numbers, different noise types and different noise levels. As

the samples (RMSEs) for an algorithm are obtained in correlated situations rather than randomly and independently,
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Fig. 6. Results on the synthetic data with correlated noise when the endmember number is 5: RMSE as function of SNR.
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Fig. 7. Results on the synthetic data with 30 dB correlated noise: RMSE as function of endmember number.

it is inappropriate to use the independent Student t test. Now consider two arbitrary sparse unmixing algorithms,

their RMSEs can be divided into 28 pairs corresponding to the 28 different situations. Then the two RMSEs in a

pair are obtained in the same situation by the two algorithms. This line of reasoning leads us to consider using the

paired-samples t test (or matched-samples t test) [52]. Indeed, researchers typically use the paired-samples t test

to analyze paired data, which essentially is a one-sample Student t test performed on difference scores [53]. The

paired-samples t test can reduce the effects of confounders which in our case are the endmember number, noise

type and noise level. Take the comparison between RSFoBa (p = 2) and OMP as an example, hypotheses for a

one-sided paired-samples t test take the following form:

• H0: there is no significant difference between the performances of RSFoBa (p = 2) and OMP.

• H1: the performance of RSFoBa (p = 2) is significantly better than that of OMP.

Suppose µ is the mean of the differences between the paired RMSEs (subtract the RMSE obtained by RSFoBa

(p = 2) from the RMSE obtained by OMP), the hypotheses above are equivalent to the following hypotheses:
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TABLE I

RESULTS (AT α = 0.01 SIGNIFICANCE LEVEL) AND p-VALUES OBTAINED BY CONDUCTING PAIRED-SAMPLES t TESTS BETWEEN RSFOBA

(p = 2) AND THE OTHER ALGORITHMS

Algorithm OMP SOMP SSP SUnSAL SUnSAL-TV

Result reject H0 reject H0 reject H0 reject H0 reject H0

p-value 1.61E-10 3.80E-05 1.42E-06 3.61E-08 8.40E-05

TABLE II

RESULTS (AT α = 0.01 SIGNIFICANCE LEVEL) AND p-VALUES OBTAINED BY CONDUCTING PAIRED-SAMPLES t TESTS BETWEEN RSFOBA

(p =∞) AND THE OTHER ALGORITHMS

Algorithm OMP SOMP SSP SUnSAL SUnSAL-TV

Result reject H0 reject H0 reject H0 reject H0 reject H0

p-value 4.19E-09 1.51E-06 1.43E-05 4.93E-07 5.89E-05

• H0: µ = 0

• H1: µ > 0

Similarly, we can formulate the hypotheses for the comparison of RSFoBa and other algorithms. Using the ttest

function in MATLAB, we can get the results of the paired-samples t test easily, which are displayed in Tabs. I

and II. It can be found that at the α = 0.01 significance level, the results give evidence that the performances of

RSFoBa (p = 2) and RSFoBa (p =∞) are better than the other sparse unmixing algorithms.

Fig. 8 shows the number of potential endmembers retained from the original library by RSFoBa, SOMP and

SSP. In all the cases, all the considered algorithms succeed to find all the actual endmembers. We can observe that

RSFoBa can select the actual endmembers more accurately than SOMP and SSP, which can explain why RSFoBa

behaves better than SOMP and SSP. Besides, RSFoBa (p = ∞) has an overall better performance than RSFoBa

(p = 2).

Now we tend to the RSFoBa-SUnSAL. Note in the final step of the RSFoBa, a constrained least squares technique

is applied to obtain the abundances of the selected potential endmembers. By doing so, we do not get the optimal

sparse solution because i) the number of endmembers present in each mixed pixel is smaller than the number of

endmembers in the whole hyperspectral image; ii) observed from Fig. 8, the numbers of endmembers extracted by

the greedy algorithms are still larger than the actual number. The abundances obtained by RSFoBa is sparse because

of the nonnegative constraint and the small subset of the library. Indeed, we can use the sub-library obtained by

RSFoBa as input for the other sparse unmixing algorithms. In this way, we can expect that this kind of combination

will be better than both methods. From Figs. 4-7, we can find that the combination of RSFoBa and SUnSAL

outperforms both of them, which is expected.

In order to explore whether the incorporation of the backward step, spatial-contextual information and joint

sparsity among all the pixels is beneficial to the proposed algorithm, we compare the RSFoBa algorithm with its
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Fig. 8. Results obtained by RSFoBa, SOMP and SSP on the synthetic data with 30 dB white noise or correlated noise: the number of retained

endmembers as function of endmember number.

special cases. Specifically, SFoBa is the special case of RSFoBa when the λ in Eq. (11) is set to 0; RSOMP

is the special case of RSFoBa that removes the backward step and it can be also considered as incorporating

the spatial-contextual coherence regularizer into the SOMP algorithm; the SOMP [35] and FoBa [36], which can

be respectively considered as the special cases of RSOMP and SFoBa, are also considered. In order to make

the differences among the RSFoBa algorithm and its special cases clearer, we display the comparison of them

concerned with several properties in Tab. III. Fig. 9 and Fig. 10 show the results obtained by RSFoBa, SFoBa,

RSOMP, FoBa and SOMP on the synthetic data with 30 dB white noise and correlated noise, respectively. We

can see that in most cases, RSFoBa behaves better than SFoBa and RSOMP behaves better than SOMP, which

indicates the spatial-contextual coherence regularizer can make the greedy algorithms more effective. The advantage

of RSFoBa over SFoBa becomes more obvious as the endmember number gets larger, in which case the hyperspectral

image becomes more difficult to unmix for all the algorithms. Besides, we can also find that SFoBa outperforms

FoBa much, which suggests the importance of incorporating the joint sparsity among all the pixels into the greedy

algorithm. Furthermore, in most cases, SFoBa behaves better than SOMP and RSFoBa behaves better than RSOMP,

which indicates the necessity of combining the forward greedy algorithm and backward greedy algorithm in sparse

unmixing.

B. Evaluation with Real Data 1

Now, we test the validity of the proposed algorithm on the real data. As the true abundance maps of the real-world

data are not available, we resort to the classification maps of the real hyperspectral image to make a qualitative

analysis. For visual comparison, we display the abundances estimated by SOMP, SSP, RSFoBa and SUnSAL-TV.

Besides, we also report the sparsity of solution and the reconstruction error of the hyperspectral image obtained

by each algorithm. Specifically, the sparsity is obtained by calculating the average number of nonzero entries

in the abundance vectors estimated by each algorithm. The same as [23], we declare the fractional abundances
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TABLE III

THE COMPARISON OF RSFOBA AND ITS SPECIAL CASES CONCERNED WITH WHETHER THE BACKWARD STEP, JOINT SPARSITY AND

CONTEXTUAL INFORMATION ARE CONSIDERED

property backward step joint sparsity contextual information

RSFoBa X X X
SFoBa X X

RSOMP X X
FoBa X

SOMP X
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Fig. 9. Results obtained by RSFoBa, SFoBa, FoBa, SOMP and RSOMP on the synthetic data with 30 dB white noise: RMSE as function of

endmember number.

4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

endmember number

R
M

S
E

 

 

 RSFoBa (p=2)
 RSFoBa (p=∞)
 SFoBa (p=2)
 SFoBa (p=∞)
 FoBa
 SOMP
 RSOMP

Fig. 10. Results obtained by RSFoBa, SFoBa, FoBa, SOMP and RSOMP on the synthetic data with 30 dB correlated noise: RMSE as function

of endmember number.
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larger than 0.001 as nonzero abundances to avoid counting negligible values. The reconstruction error is calculated

using the original hyperspectral image and the one reconstructed by the actual endmembers and their corresponding

abundances. The actual endmembers in the hyperspectral image can be known from the literatures. The reconstruction

error calculated in this way can roughly evaluate the abundance estimation for the actual endmembers when no

ground-truth is available [54]. It can be quantified by the RMSE between the original hyperspectral image and the

reconstructed one [54], which is denoted by Ŷ. For the i-th band image, RMSE is defined as

RMSEi =

√√√√ 1

K

K∑
j=1

(Yij − Ŷij)2. (19)

The mean value of the RMSEs corresponding to all the bands will be computed. All the algorithms have been tuned

to their best performances. If a sparse unmixing algorithm can get a sparse solution as well as low reconstruction

error, it means that this algorithm can use the actual endmembers to explain the data effectively.

The first data set we used is the well-known AVIRIS Cuprite data set3. In our experiment, we use a 350×350 pixels

subset with 188 spectral bands (low-SNR bands are removed). The spectral library used here is still the Chapter 1

of the USGS spectral library (contains 498 minerals) with the corresponding bands removed. The minerals map4

which was produced by a Tricorder 3.3 software product is shown in Fig. 11. Note that the Tricorder map was

produced in 1995, but the publicly available AVIRIS Cuprite data were collected in 1997. Thus, we only adopt

the minerals map as a reference to make a qualitative analysis of the performances of different sparse unmixing

methods.

All the greedy algorithms have adopted the block-processing strategy to get better performances. The block sizes

of SOMP and SSP are both set empirically to 8. The block size set for RSFoBa is 15. The λ’s in the RSFoBa

algorithm are set to 0.1 (p = 2) and 0.05 (p = ∞), respectively. Fig. 12 shows a qualitative comparison among

the fractional abundance maps of 3 highly materials (i.e. Alunite, Buddingtonite and Chalcedony) in the considered

scene estimated by RSFoBa, SUnSAL-TV, SOMP and SSP. The classification maps of these materials produced by

Tricorder software are also displayed. The abundance maps estimated by SUnSAL-TV shown in Fig. 12 are from

[22]. Note that the Tricorder maps and the abundance maps estimated by the sparse unmixing algorithms are not

exactly the same. This distinction results from the difference between the classification maps and the abundance

maps: as classification maps, Tricorder maps consider each pixel in the hyperspectral image pure and classify it as

member of a specific class correlated to the representative mineral in the pixel; unmixing is indeed a subpixel level

classification and the abundances for a mixed pixel depend on the degree of presence of the mineral in the pixel.

But, as shown in Fig. 12, the highest abundances estimated by the sparse unmixing algorithms generally correspond

with those pixels classified as members of the respective class of materials. We can also find that the abundances

estimated by RSFoBa are comparable or higher in the regions assigned to the respective minerals in comparison

to the other considered algorithms. The sparsity of the abundance vectors and the reconstruction error obtained by

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
4http://speclab.cr.usgs.gov/PAPERS/tetracorder/
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Fig. 11. USGS map showing the distribution of different minerals in the Cuprite mining district in Nevada.

TABLE IV

EXPERIMENTAL RESULTS OBTAINED ON THE FIRST REAL DATA SET: SPARSITY OF THE ABUNDANCE VECTORS AND THE RECONSTRUCTION

ERRORS

Algorithms RSFoBa (p = 2) RSFoBa (p =∞) SOMP SSP SUnSAL-TV

Sparsity 13.65 13.11 14.98 14.85 17.13

RMSE 0.2305 0.2312 0.2394 0.2485 0.2359

each algorithm are displayed in Tab. IV. As the Cuprite site has been well understood mineralogically, the actual

endmembers in the scene are determined by referring to the Tricorder map and the related literatures [55]. From

Tab. IV, we can observe that RSFoBa can obtain the sparsest solutions and achieve the lowest reconstruction errors,

which demonstrates the effectiveness of the proposed algorithm.

C. Evaluation with Real Data 2

The second data set we used is a subscene from the Washington, DC, mall data set5 (shown in Fig. 13), which

contains 150 × 150 pixels. After low-SNR bands are removed, only 191 bands remain. There are five targets of

interest: water/shadows, grass, roof, tree and road. The spectral library used here contains two parts. The first part

is the Chapter 6 of the USGS spectral library (splib06a) which contains 200 different spectral signatures of plants,

vegetation communities, mixtures with vegetation, and microorganisms with the corresponding bands removed.

5https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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Fig. 12. The fractional abundance maps estimated by RSFoBa, SUnSAL-TV, SOMP, SSP and the distribution maps produced by Tricorder

software for the 350 × 350 pixels subset of the AVIRIS Cuprite scene. From top row to bottom row are the maps produced or estimated by

Tricorder software, RSFoBa (p =∞), RSFoBa (p = 2), SUnSAL-TV, SOMP and SSP respectively. From left column to right column are the

maps corresponding to Alunite, Buddingtonite and Chalcedony, respectively.
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Fig. 13. Subscene extracted from Washington, DC, mall data set, band 80.

However, the spectral signatures in the USGS spectral library and the pixel signatures in the Washigton data were

collected in the different regions, different time and different weather which will significantly affect the spectral

signatures of the plant and vegetation. Besides, the USGS spectral library does not contain the signatures for the

water, roof and road. Thus, we manually select several pixels in the hyperspectral scene for each single target of

interest and compute the average signature of these signatures to represent the pure spectral signature of the target.

Then, the second part of the spectral library we used is the 5 spectral signatures of the targets. The final spectral

library contains 205 spectral signatures.

The block sizes of SOMP and SSP are both set empirically to 20. The block size set for RSFoBa is 30. The λ’s

in the RSFoBa algorithm are set to 3 (p = 2) and 0.3 (p =∞), respectively. The λ and λTV in the SUnSAL-TV

algorithm are set to 0.01 and 0.001, respectively. The abundance fractions for the five targets estimated by the

different algorithms are displayed in Fig. 14. To make a qualitative evaluation of the performances of the sparse

unmixing algorithms, we resort to the classification map [56] shown in Fig. 15. It can be found that the estimated

abundance maps are very close to the distribution of the five materials in the classification map. All the algorithms

can return the highest abundances for those pixels classified as members of the respective class of materials. It is

worth noting that the fractional abundances estimated by RSFoBa are generally comparable or higher in the regions

assigned to the respective target of interest in comparison to the SOMP, SSP and SUnSAL-TV. This observation

is especially obvious for the abundances corresponding to the roof. Tab. V shows the sparsity of the abundance

vectors and the reconstruction error obtained by each algorithm. Similarly, we can find that RSFoBa can obtain the

sparsest solutions and lowest reconstruction errors among all the considered algorithms. Note that the reconstruction

errors in this data set are much smaller than those in the first real data experiment. This is because the first real

hyperspectral image is much more complex than the second one and the spectral library used in the first real data

experiment is much larger and more correlated than that used in the second real data experiment, which means the

first real data set is much more difficult to unmix for the sparse unmixing algorithms than the second real data set.

Nevertheless, we can find that the RSFoBa is more effective for sparse unmixing than the other algorithms in both
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Fig. 14. Abundance maps estimated by RSFoBa, SUnSAL-TV, SOMP and SSP for the five targets in the Washington, DC, mall data set. From

left column to right column are abundance maps of grass, tree, water/shadows, roof and road, respectively. From top row to bottom row are the

abundance maps estimated by RSFoBa (p =∞), RSFoBa (p = 2), SUnSAL-TV, SOMP and SSP respectively.

real experiments.

D. Discussion of Parameters Setting

As mentioned before, there remain two parameters to be set for the RSFoBa algorithm, i.e. the λ and the block

size. The λ controls how much the spatial-contextual coherence regularization will affect the update of the solution

in the RSFoBa algorithm. When λ = 0, the problem in Eq. (11) degrades to a plain least squares problem and we

call the degraded algorithm SFoBa. As shown in Fig. 9 and Fig. 10, RSFoBa behaves better than SFoBa, especially

when the endmember number becomes large. In the synthetic data experiment, the RSFoBa is tested using different

values of λ when the block size is set properly: 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10.

We display the optimal λ’s in situations of different endmember numbers in Tab. VI. Note that the optimal λ may
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Fig. 15. Classification map of the subscene of Washington, DC, mall data set.

TABLE V

EXPERIMENTAL RESULTS OBTAINED ON THE SECOND REAL DATA SET: SPARSITY OF THE ABUNDANCE VECTORS AND THE

RECONSTRUCTION ERRORS

Algorithms RSFoBa (p = 2) RSFoBa (p =∞) SOMP SSP SUnSAL-TV

Sparsity 2.46 3.12 3.99 5.78 6.45

RMSE 0.0128 0.0139 0.0156 0.0190 0.0185

not be unique. Generally, we can find that the larger the endmember number, the smaller the optimal λ. This is

because in the synthetic data we used, the larger endmember number means more complex hyperspectral scene and

thus less spatial-contextual information, which leads to smaller optimal λ. As we observed in the synthetic data

experiment, when the endmember number is fixed and the block size is set properly, the optimal λ is relatively stable

and varies slightly with the SNR of the noise. For the real hyperspectral image, we divide it into several 64× 64

blocks and compute the average endmember number in each block to roughly estimate the spatial complexity of

the hyperspectral image. Then we refer to Tab. VI to choose the suitable λ. Note that the spatial distribution in

synthetic data is ideal but that in real data is more complex. However, we find in the real experiments that by

choosing λ according to Tab. VI after dividing the image, RSFoBa can always get good results and the optimal λ

is very close to the one estimated by using Tab. VI, which also indicates the proposed algorithm behaves stably

with this parameter. There are several algorithms that can estimate the number of endmembers in the hyperspectral

image efficiently [57, 58]. In the real data experiment, we use the virtual dimensionality [57] to estimate the number

of endmembers in each block. In the first real data we used, the endmember number in the scene is known to be

about 14 [8] and the average number of endmembers in each 64× 64 block is estimated to be about 11. Besides,

the noise in the real hyperspectral data is usually correlated. Thus, referring to Tab. VI, we set the λ’s in RSFoBa

(p=2) and RSFoBa (p =∞) in the first real data experiment to be 0.1 and 0.05 respectively, which can lead to their

optimal performances. As there are mainly 5 targets of interest in the second real data experiment and the average

number of endmembers in each block is less than 5, the λ’s for RSFoBa (p=2) and RSFoBa (p =∞) in the second
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TABLE VI

THE OPTIMAL λ’S OF THE RSFOBA ALGORITHM OBTAINED ON THE SYNTHETIC DATA CORRUPTED BY 30 DB WHITE OR CORRELATED

NOISE IN SITUATIONS OF DIFFERENT ENDMEMBER NUMBERS

endmember number 3 5 7 9 11 13 15

RSFoBa (p = 2) (Correlated) 1 1 0.3 0.1 0.1 0.1 0.05

RSFoBa (p =∞) (Correlated) 1 0.3 0.1 0.01 0.05 0.05 0.01

RSFoBa (p = 2) (White) 1 1 0.1 0.05 0.1 0.01 0.01

RSFoBa (p =∞) (White) 1 0.3 0.3 0.05 0.01 0.01 0.01

real data experiment should be set to 1 and 0.3 respectively by referring to Tab. VI. However, as λ = 3 will lead

to a slightly better performance of RSFoBa (p = 2) than λ = 1, the λ is finally set to 3 for RSFoBa (p = 2) to

achieve its optimal performance. Nevertheless, we can still find that the optimal λ (i.e. 3) is very close to the one

(i.e. 1) estimated by using Tab. VI.

The block size is also an important parameter for the RSFoBa algorithm. As mentioned earlier, when the number

of endmembers present in the hyperspectral image is large, the simultaneous greedy algorithm becomes unstable

and could miss the actual endmembers. In this paper, we adopt a block-processing strategy with proper block size to

sidestep this obstacle. Here, we discuss for the RSFoBa algorithm when the block-processing strategy is necessary

and how to properly set the block size. In the synthetic data experiment, we have tested the block size from 4

to the image size with the step size of 4. We find that when the number of endmembers present in the block or

hyperspectral image is no more than 4, the RSFoBa algorithm can find the actual endmembers efficiently. Thus,

the strategy is necessary when the endmember is larger than 4. Then a natural answer to the second question is

that the block size should be chosen to make the number of endmembers in each block no more than 4. But rather

than find the actual endmembers present in each block exactly, we only need to select all the actual endmembers

from all the blocks. Thus, the choosing of block size can be relaxed to make the average number of endmembers

in each block no more than 4. Besides, given a hyperspectral image, smaller block size leads to larger block

number, which also helps preventing RSFoBa from missing the actual endmembers. Furthermore, we can also use

the overlapping blocks to increase the number of blocks when the block size is fixed. In this way, we can avoid

missing the actual endmembers further, but the number of endmembers selected by RSFoBa that is not present in

the hyperspectral image will increase. In the real data experiment, we use the virtual dimensionality [57] to estimate

the number of endmembers in each block. The average number of endmembers in each block will decrease as the

block size decreases. For the first real data used in our experiment, when the block size is 20, the average number

of endmembers in all the blocks is 4.5. Finally, the block size we set for RSFoBa in this real experiment is a little

smaller than 20, i.e. 15. Similarly, following the above procedure and considering the smaller block size will make

the RSFoBa faster (which will be seen in the next subsection), we set the block size in the second real experiment

to 30. Note that the block sizes set for SOMP and SSP are different with those for RSFoBa in the experiments.

This is because compared with RSFoBa, SOMP and SSP are more sensitive to this parameter. We also test different
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TABLE VII

PROCESSING TIMES MEASURED AFTER APPLYING THE ALGORITHMS TO THE SYNTHETIC DATA WITH 30 DB WHITE NOISE CONSTRUCTED

BY 5 ENDMEMBERS

Algorithms RSFoBa (p = 2) RSFoBa-SUnSAL (p = 2) SUnSAL OMP SOMP

Time (s) 17.50 14.50 34.79 8.82 4.10

Algorithms RSFoBa (p =∞) RSFoBa-SUnSAL (p =∞) SUnSAL-TV SSP

Time (s) 10.13 8.25 346.92 5.93

block sizes for SOMP and SSP on the synthetic data and find that when the number of endmembers present in the

block or hyperspectral image is no more than 3, the SOMP and SSP are less likely to miss the actual endmembers.

Thus, the block sizes set for SOMP and SSP are always smaller than those for RSFoBa to achieve optimal results.

E. Complexity Analysis

In the following analysis, suppose L and K are the band number and pixel number in the hyperspectral image,

respectively; m is the number of spectral signatures in the spectral library. Suppose the row-sparsity level k is

far smaller than m, L and K. We first analyze the computational complexity of the proposed RSFoBa algorithm.

The complexity of step 7 in Algorithm 3 is O(mLK). In step 9, step 14 and step 20 we need to solve the

Lyapunov equation in Eq. (13). As C2 = λL is a sparse matrix, its eigenvalue decomposition is much more

computationally efficient than a K × K arbitrary matrix’s worst case (i.e. O(K3)). Indeed, if C2 is sufficiently

sparse, its eigenvalue decomposition is linear complexity and thus it will never be the most time-consuming. Then,

the complexity of solving the Lyapunov equation is dominated by implementing the matrix multiplication in Eq.

(14) whose complexity is O(K2). But when the block-processing strategy is adopted, this complexity decreases to

O(K2/n), where n is the block number in the hyperspectral image. Finally, the complexity of RSFoBa is given by

O(max{mLK,K2/n}). Then we give out the computational complexities of the other considered algorithms. For

the whole hyperspectral data, SOMP, SSP and OMP have complexity O(mLK); SUnSAL and SUnSAL-TV have

complexity O(L2K). When the hyperspectral image is very large, RSFoBa will be more time-consuming than the

other considered sparse unmixing algorithms. But, the block-processing strategy can mitigate this difficulty.

Tab. VII reports the processing time (the average time after running each algorithm 10 times) measured after

applying the algorithms to the synthetic data with 30 dB white noise constructed by 5 endmembers. A desktop PC

equipped with an Intel Core 2 Duo CPU (2.66 GHz) and 4 GB of RAM memory was used to implement all the

algorithms on MATLAB R2012b. The results of RSFoBa-SUnSAL are also included. We can find that using the

sub-library obtained by RSFoBa as input, the speed of SUnSAL increases much.

V. CONCLUSION AND DISCUSSION

In this paper, we propose a novel algorithm termed regularized simultaneous forward-backward greedy algorithm

(RSFoBa) for sparse unmixing of hyperspectral data. The main idea of the proposed algorithm is the combination
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of forward greedy algorithm and backward greedy algorithm as well as considering several characteristics of the

hyperspectral data. Experiments on both synthetic data and real data demonstrate the effectiveness of the RSFoBa

algorithm. Besides, we also demonstrate that the sub-library obtained by RSFoBa can serve as input for any other

sparse unmixing algorithms, making them more accurate and time-efficient.

The first topic we want to discuss is why RSFoBa is effective for sparse unmixing. Indeed, the main difference

among RSFoBa, SOMP and SSP is the endmember selection procedure. The final abundances for each endmember

are estimated using the constrained least squares technique. Two factors lead to the sparsity of the abundance vectors

estimated by these three algorithms: on one hand the numbers of the potential endmembers selected by them are

much smaller than the number of spectral signatures in the library; on the other hand, based on the relatively

small library, the constrained least squares technique makes the abundance vectors sparse further. It is obvious that

the more accurately the actual endmembers are selected, the better the abundances will be estimated. As RSFoBa

can select the actual endmembers more accurately than SOMP and SSP, it is more effective for sparse unmixing.

However, from Fig. 8, we can observe that the number of endmembers selected by the proposed algorithm is still

larger than the actual number due to the high correlation of the spectral library. Thus, abundances could be generated

for the non-existing endmembers in the successive step, which will have a negative effect on the estimation of the

abundances corresponding to the actual endmembers. In this paper, we also use the sub-library obtained by RSFoBa

as input for the other sparse unmixing algorithms to get the optimal sparse solution. Experimental results indicate

that this combination can improve the unmixing results of RSFoBa. But we need to tune more regularization

parameters to achieve the optimal results. In conclusion, RSFoBa not only can be an effective sparse unmixing

algorithm but also can be a preprocessing step to boost other sparse unmixing algorithms.

Another topic we want to discuss is the obstacles that will be faced by sparse unmixing algorithms in the

real situation. The first obstacle is that the spectral signatures from the spectral library could differ to image

signatures because they were acquired from different region and background, which would significantly degrade

abundance estimated accuracy. This obstacle has been considered in [16]. Specifically, advanced atmospheric

correction algorithms which convert the input hyperspectral data from at-sensor radiance to reflectance units have

been proposed to solve this problem. For more details, we would like to refer to [16]. The second obstacle is that the

image signatures and spectral signatures from the library may have different spectral channels. As the hyperspectral

signatures are usually very smooth, this obstacle can be overcome by using the interpolation techniques [59].

The third obstacle is that how and what target spectra to be selected manually in practice if we do not have a

priori knowledge. In this case, the sparse unmixing algorithms can still be applied by resorting to an artificially

generated spectral library constructed using image-derived endmembers [16]. These endmembers can be generated

using the endmember extraction algorithms [6, 8] or dictionary learning methods [19] which have been applied to

hyperspectral data in [60].
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