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Abstract

Super-resolution is an image processing technology that recovers a high-resolution image from a single or sequen-

tial low-resolution images. Recently deep Convolutional Neural networks (CNNs) have made a huge breakthrough

in many tasks including super-resolution. In this letter, we propose a new single-image super-resolution algorithm

named local-global-combined networks (LGCNet) for remote sensing images based on the deep CNNs. Our LGCNet

is elaborately designed with its “Multi-Fork” structure to learn multi-level representations of remote sensing images

including both local details and global environmental priors. Experimental results on a public remote sensing dataset

(UC Merced) demonstrate an overall improvement of both accuracy and visual performance over several state-of-the-

art algorithms.

Index Terms

Super-Resolution, Remote Sensing Images, Convolutional Neural Networks (CNNs), Local-Global-Combined

Network (LGCNet)

I. INTRODUCTION

High-resolution images with rich details are essential for many remote sensing applications such as target detection

and recognition. Instead of devoting to physical imaging technology, many researchers aim to recover high-resolution

images from low-resolution ones using an image processing technology called super-resolution [1].

There have been many earlier researches on image super-resolution, most of which are designed for multiple

images, where a series of low-resolution images (different acquisition time of the same scene) are used to recover

the high-resolution image [2]. Some recent researches aim at recovering the high-resolution image from a single

low-resolution one by learning mapping functions from low-resolution to high-resolution images, with image priors

exploited from a large number of training data [3].

The work was supported by the National Natural Science Foundation of China under the Grants 61671037, the Beijing Natural Science

Foundation under the Grant 4152031, the funding project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang

University under the Grant BUAA-VR-16ZZ-03, and the Fundamental Research Funds for the Central Universities under Grant YWF-16-

BJ-J-30. (Corresponding author: Zhenwei Shi).

Sen Lei, Zhenwei Shi (Corresponding author) and Zhengxia Zou are with Image Processing Center, School of Astronautics, Beihang University,

Beijing 100191, China, and with Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China, and also with State

Key Laboratory of Virtual Reality Technology and Systems, School of Astronautics, Beihang University, Beijing 100191, China, (e-mail:

senlei@buaa.edu.cn; shizhenwei@buaa.edu.cn; zhengxiazou@buaa.edu.cn).

May 26, 2017 DRAFT



2

In the field of remote sensing image processing, both of the single-image and multi-image super-resolution

methods have been proposed in recent years. Li et al. [4] proposed a multi-images super-resolution method named

Hidden Markov Tree with maximum a posterior. For single remote image super-resolution, the Sparsity Prior of

natural image statistics is commonly used. Pan et al. [5] recovered the high-resolution remote sensing image from

a single low-resolution image based on compressive sensing and structural self-similarity. Ponomaryov et al. [6]

combined discrete wavelet transform and sparse representation to generate the high-resolution image from a single

low-resolution image. Li et al. [7] explored sparse properties in both spectral and spatial domains for hyperspectral

images super-resolution. Although the above approaches have played a catalytic role in the remote sensing image

super-resolution filed, their defects are obvious.

First, they are all designed based on low-level features such as dictionary of image edges and contours [8][9], or

even raw-pixels [5]. The success of machine learning algorithms generally depends on a right way of how image

features are represented [10]. Currently, deep convolutional neural networks (CNNs) has become a popular way

to learn high-level feature representation automatically from data and have shown great potential in tasks such as

image classification [11] and object detection [12]. The highly complex spatial distribution of remote sensing images

indicates higher level abstraction and better data representation are essential for applications such as remote sensing

target detection and image super-resolution [13]. In related fields such as natural image super-resolution, some

researchers have proposed CNN-based single image super-resolution methods [14][15][22] to learn an end-to-end

mapping between the low/high-resolution images and have achieved the state-of-the-art performance.

Second, the ground objects of remote sensing images usually share a wider range of their scales, saying that

the object itself (e.g. airplane) and its surrounding environments (e.g. airport) are mutually coupling in the joint

distribution of their image patterns, which is highly different from those of natural images. Most of the above

methods construct dictionary or learn data priors only in a single object scale while environmental information is

neglected.

In this letter, we propose a novel image super-resolution method named Local-Global-Combined Networks

(LGCNet) by leveraging the multi-level data representation ability of deep learning for remote sensing images.

In a typical CNN model, the neurons of lower convolutional layers share small size of receptive fields and focus

more on local details, while those in higher layers, bigger receptive fields are accumulated which covers a larger

area of data. Our LGCNet is elaborately designed with its “multi-fork” structure to learn multi-scale representations

of remote sensing data including both local details (e.g. edge and contours of an object) and global priors (e.g.

environmental type).

The rest parts of this letter are organized as follows. Section II gives the implementation details of the proposed

method. Experimental results are described in Section III. Some conclusions are drawn in Section IV.

II. METHODOLOGY

Given a single low-resolution remote sensing image X, all we need to do is learning a mapping from X to its

original high-resolution image Y. 1

1we first upscale X to the desired size by a fixed factor (e.g. 2, 3 and 4), using bicubic interpolation.
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Fig. 1. Flowchart of the proposed super-resolution method for remote sensing images.

A. Convolutional Neural Networks for Super-Resolution

Convolution, nonlinear mapping and pooling are three main components of CNNs. Through these operations,

CNNs can adaptively transform the input image space into an effective feature space for a specific task via supervised

training. Considering that in an image super-resolution task, a low-resolution image would further lose detailed

information after pooling causing a worse reconstructed result, in our model, only convolution and nonlinear mapping

operations are used.

Let us represent the size of inputs X as H ×W ×C, where C denotes the channel numbers of remote sensing

images. For a network consisting of L convolutional layers, outputs after convolution and nonlinear mapping can

be computed as

f1(X;W1, b1) = σ(W1 ∗X+ b1) (1)

fl(X;Wl, bl) = σ(Wl ∗ fl−1(X) + bl) (2)

where Wl, bl, l ∈ (1, ..., L) are network weights and bias respectively to be learned. Wl is a tensor with size of

kl×kl×nl−1×nl, in which kl denotes the kernel size at layer l, and nl denotes the number of feature maps at the

same layer (n0 = C). bl is a vector whose size equals nl. The nonlinear function σ is an element-wise operation

and rectified linear function (max(0, x)) is mostly adopted nowadays, which makes CNNs converge much faster

than traditional saturating nonlinearities [11].

B. Local-Global-Combined Network

The flowchart of the proposed method is illustrated in Fig. 1, in which the part enclosed by a bold dashed box

illustrates our proposed LGCNet. When a network goes deep, learning residuals can make the network converge

faster and obtain a better minimum and performance [15][16][17]. Therefore, we design LGCNet to reconstruct

high-frequency information (residuals)

Res(Y) = Y −X = f(X;W, b) (3)
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Multi-level information could show great potential for image super-resolution tasks, especially for that of remote

sensing images. Deep CNNs with numerous convolution layers are hierarchical models and naturally give multi-

level representations of input images, where in low layers the representations focus on local details (e.g. edge and

contours of an object) and in higher layers the representations involve more global prior (e.g. environmental type).

LGCNet makes full use of the local and global representations and consists of three main parts which are carefully

described as follows.

Representation. The first part utilizes L convolutional layers, where each layer is followed by the nonlinear

mapping, to adaptively transform inputs into effective feature space and obtain different level representations. Since

large convolutional filter size would make the network redundant and slow, we set the filter size kl and the number

of feature maps nl in each layer relatively small: kl = 3 and nl = 32.

Local-Global-Combination. This part is the core of the multi-scale learning. Local-global-combination is mainly

implemented through a “multi-fork” structure by concatenating convolutional results of different layers. One con-

volutional layer is further applied to merge these combined representation for final reconstruction. To obtain richer

representation of the merged layer, we set the filter size and the number of feature maps relatively large, where

k = 5 and n = 64. In this way, the concatenated representation fc is defined as

fc = [fi, fj , fk, ...] (4)

wherefi, fj , fk are different level representations. Then the overall local-global-combined representation flgc can

be computed as follows:

flgc = σ(Wlgc ∗ fc + blgc) (5)

Reconstruction. We directly utilize one convolutional layer in this final part of LGCNet to recover residuals

(high-frequency components) from the aforementioned local-global-combined representation

R = Wf ∗ flgc + bf (6)

and the final high-resolution image Ŷ can be further obtained by adding its low-resolution component

Ŷ = X+R (7)

For LGCNet, we set L = 5 to make a fast investigation and verification for the proposed idea. For each

convolutional layer, in order to assure the output feature maps has the same size as the inputs, the padding is

utilized with size of 1 for k = 3 and 2 for k = 3. Table I presents the detailed configurations, in which the local-

global-combination part is determined by experiments in the subsection of Local-Global-Combination Analysis.

We use mean square error as loss function to train the proposed network

1

2N

N∑
i=1

||Yi − Ŷi||2 (8)

where N is the total number of training samples.
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TABLE I

THE DETAILED CONFIGURATIONS OF LGCNET

Three Main Parts Configurations

Representation

conv1: 32× 3× 3, stride=1, pad=1

conv2: 32× 3× 3, stride=1, pad=1

conv3: 32× 3× 3, stride=1, pad=1

conv4: 32× 3× 3, stride=1, pad=1

conv5: 32× 3× 3, stride=1, pad=1

Local-Global-Combination
concat: conv3+conv4+conv5

conv6: 64× 5× 5, stride=1, pad=2

Reconstruction conv7: 3× 3× 3, stride=1, pad=1

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset and Similarity Metrics

Since there are no open data sets for super-resolution of remote sensing images, we choose UC Merced data set

[18], which is a classical scene classification dataset with relatively high spatial resolution (0.3m/pixel), to evaluate

our method. UC Merced dataset contains 21 classes of ground features in total with 100 images per class. We split

half images (50 images per class) for training and the others for test. Further we randomly select 20% of the training

samples as validation set for model selection and the other 80% for training. All the images are firstly to be down-

sampled as low-resolution images with the original images acting as high-resolution reference images. In this letter,

two classical evaluation criteria, PSNR [dB] (Peak Singal-to-Noise Ratio) and SSIM (Structural Similarity Index

Measure) [19] are chosen to measure the performance of several different super-resolution methods. As images in

this data set are RGB images, PSNR and SSIM are computed by averaging similarities among these three channels.

Furthermore, real data is used to test the robustness of our proposed method. The three visible bands of

the GaoFen-2(GF-2) multispectral image (3.2 m/pixel) are extracted and stacked into a pseudo RGB image for

experiments. Since there are no corresponding high-resolution images for reference, the results are displayed and

compared with other methods qualitatively.

B. Implementation Details

In the training phase, we extract 41×41 sub-images from low-resolution images X and its corresponding reference

image Y to form the training-sample pairs. The total number of these pairs is around 140k and training uses mini-

batch size of 128. Learn rate is initially set to 0.1 to obtain a fast convergence. The training for LGCNet is iterated

for 80 epoches in total and the learning rate decreases by a factor of 10 after the 40th epoch. Meanwhile, in order

to prevent gradient explosion, we clip gradients by its L2 norm which is often used in training recurrent networks

[20]. Specifically, the gradient g is replaced by g×t
||g||2 before parameter update when ||g||2 is above the threshold t.

Momentum and weight decay is set to 0.9 and 0.0001 as most deep learning tasks do. All these experiments are

carried on an Inter i7 CPU 4.0 GHz with 32G RAM and Nvida Titan Z, and the Caffe package [21] is utilized to

implement our proposed method.
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Fig. 2. The experiment results (mean PSNR) of validation set with different training epochs. All models are trained with upscale factor of 3

with the same training configuration.

C. Local-Global-Combination Analysis

The most important property of LGCNet is that it combines different level representations of deep CNNs model

which involve relatively local details and global environmental prior to obtain a better super-resolution consequence.

To verify if it really be helpful for this task, we design a set of experiments. Firstly, we use a network consisting

of 7 convolutional layers (CNN-7) to be a benchmark, which only utilizes global and high level representation to

learn residuals. Then we combine the fifth convolutional layer and different lower ones to import into the following

concatenated layer, where one or two layers are selected. For fairness, all these models are designed to recover the

remote sensing images for the upscaling factor of 3 with the same training configuration.

Fig. 2 shows the experiment results measured by the mean PSNR of validation set with training epochs proceeding.

The models, designed with different strategies, are denoted with the corresponding names. Take LGCNet-345 for

example, it denotes that this model combines the representations of the third, fourth and fifth layer. As we expected,

layer combination gives better super-resolution results for remote sensing images with more layers combined, where

more local and global representations are incorporated. The performance of LGCNet-345 is slightly better than other

two three-layer-combination models, hence we take this model as the final LGCNet architecture and Table I presents

its detailed configurations.

D. Results Comparison and Analyses

Here, we further evaluate the performance of LGCNet on the test set with different upscaling factors, comparing

with some other methods including the classic bicubic interpolation, Sparse Coding (SC)[8], CNN-based SRCNN

[14] and FSRCNN [22] (state-of-the-arts) and our baseline model CNN-7. Since test images have three channels and

it makes no sense, in the context of remote sensing, to turn original channels into YCbCr as it does in SC, SRCNN

and FSRCNN, we slightly adjust these three methods to take three-channel images as inputs for fair and convincing

comparison. SRCNN and FSRCNN is retrained under our experimental dataset to obtain their best performance for

a fair comparison.
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TABLE II

MEAN PSNR (dB) AND SSIM OVER ALL THE TEST DATA SET

scale
Bicubic

PSNR / SSIM

SC[8]

PSNR / SSIM

SRCNN[14]

PSNR / SSIM

FSRCNN[22]

PSNR / SSIM

CNN-7(ours)

PSNR / SSIM

LGCNet(ours)

PSNR / SSIM

2 30.76 / 0.8789 32.77 / 0.9166 32.84 / 0.9152 33.18 / 0.9196 33.15 / 0.9191 33.48 / 0.9235

3 27.46 / 0.7631 28.26 / 0.7971 28.66 / 0.8038 29.09 / 0.8167 29.02 / 0.8155 29.28 / 0.8238

4 25.65 / 0.6725 26.51 / 0.7152 26.78 / 0.7219 26.93 / 0.7267 26.86 / 0.7264 27.02 / 0.7333

Fig. 3. The super-resolution results: (a)“airplane” image (upscaling factor = 3); (b) “runway” image (upscaling factor = 4).

Table II presents the ultimate mean PSNR and SSIM over all the test images of these six methods for three

upscaling factors (2, 3, and 4). Among these methods, LGCNet has the best performance with the highest PSNR

and SSIM. Fig. 3 illustrates some super-resolution results of these methods. The high-resolution remote sensing

images recovered by the LGCNet have clearer edges and more distinct contours.

Table III gives the detailed reconstruction results (upscaling factor = 3) for each class of ground feature, which

indicates that our model has achieved an overall improvement for all of the 21 classes 2 over other methods including

the state-of-the-arts. Among these classes, “harbor” images (class11) have the lowest PSNR of 23.63 dB (still better

than other methods). It should be noticed that some classes such as baseball-diamond (class3), beach (class4) and

2All these 21 classes: 1-agricultural,2-airplane, 3-baseballdiamond, 4-beach, 5-buildings, 6-chaparral,7-denseresidential, 8-forest, 9-freeway,

10-golfcourse, 11-harbor, 12-intersection, 13-mediumresidential, 14-mobilehomepark, 15-overpass, 16-parkinglot, 17-river, 18-runway, 19-

sparseresidential, 20-storagetanks, 21-tenniscourt

May 26, 2017 DRAFT



8

Fig. 4. The super-resolution results of real data: (a)upscaling factor = 3; (b) upscaling factor = 4.

golf-course (class10) may share relatively high PSNR, this is because images of these classes are much smoother

than those of other classes thus essentially may be not suitable for evaluating super-resolution tasks and can be

excluded. Nevertheless, we still take this complete dataset as a fair judgment. Since local details and environmental

priors are essential in all the ground features, our LGCNet with local-global-combinations outperforms other methods

in each class.

Fig. 4 illustrates some super-resolution results of the GF-2 satellite data. Even though the resolution of these

images (3.2 m/pixel) is different from the training sets, which are 0.9 m/pixel (0.3× 3) and 1.2 m/pixel (0.3× 4)

for upscaling factor 3 and 4 respectively, the LGCNet still obtains better results with fewer jaggies and ringing

artifacts. These results indicate our model is more robust than other methods.

E. Evaluations of Depth

In order to explore the influence of architecture depth, We extent our model with five more layers (totally10

layer in the representation part), which combines the 4th, 7th and 10th layer and called LGCNet+. Moreover, we

implement VDSR [15] (state-of-the-art) as a comparison, which is an end-to-end deep model with 20 layers. Table IV

shows the results on UC Merced test data and the inference time is tested with the Nvida Titan Z (in GPU mode). It

can be found that LGCNet+ acquires better super-resolution results than LGCNet, because of deeper representations.

Although VDSR is deeper and owns more parameters, LGCNet+ still obtains a little better quality than VDSR with

a large speed improvement, which proves the effectiveness of the local-global-combination. LGCNet is a lighter

model with the faster speed for super-resolution.
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TABLE III

MEAN PSNR (dB) OF EACH CLASS FOR UPSCALING FACTOR 3

class Bicubic
SC

[8]

SRCNN

[14]

FSRCNN

[22]

CNN-7

(ours)

LGCNet

(ours)

1 26.86 27.23 27.47 27.61 27.59 27.66

2 26.71 27.67 28.24 28.98 28.81 29.12

3 33.33 34.06 34.33 34.64 34.59 34.72

4 36.14 36.87 37.00 37.21 37.22 37.37

5 25.09 26.11 26.84 27.50 27.39 27.81

6 25.21 25.82 26.11 26.21 26.22 26.39

7 25.76 26.75 27.41 28.02 27.89 28.25

8 27.53 28.09 28.24 28.35 28.35 28.44

9 27.36 28.28 28.69 29.27 29.16 29.52

10 35.21 35.92 36.15 36.43 36.39 36.51

11 21.25 22.11 22.82 23.29 23.32 23.63

12 26.48 27.20 27.67 28.06 27.99 28.29

13 25.68 26.54 27.06 27.58 27.48 27.76

14 22.25 23.25 23.89 24.34 24.30 24.59

15 24.59 25.30 25.65 26.53 26.19 26.58

16 21.75 22.59 23.11 23.34 23.37 23.69

17 28.12 28.71 28.89 29.07 29.03 29.12

18 29.30 30.25 30.61 31.01 30.93 31.15

19 28.34 29.33 29.40 30.23 29.94 30.53

20 29.97 30.86 31.33 31.92 31.87 32.17

21 29.75 30.62 30.98 31.34 31.32 31.58

TABLE IV

MEAN PSNR (dB), SSIM AND TIME (S) OVER ALL THE TEST DATA SET

scale
VDSR[15]

PSNR/SSIM/time

LGCNet(ours)

PSNR/SSIM/time

LGCNet+(ours)

PSNR/SSIM/time

2 33.47/0.9234/0.119 33.48/0.9235/0.063 33.53/0.9242/0.070

3 29.34/0.8263/0.118 29.28/0.8238/0.061 29.35/0.8251/0.069

4 27.11/0.7360/0.120 27.02/0.7333/0.061 27.13/0.7375/0.073

IV. CONCLUSION

We designed a novel network named local-global-combined network (LGCNet) to make full use of the representa-

tions of deep convolutional neural networks (CNNs) for the super-resolution of remote sensing images. The LGCNet

focuses on the reconstruction of residuals between low-resolution and corresponding high-resolution image pairs by

learning multi-level representation of ground objects and environmental priors. Experimental results show that the

fusion of different layers gives more accurate reconstruction results. Our method obtains an overall improvements

on overall improvement (for all the 21 classes) of both accuracy and visual performance over several state-of-the-art

algorithms. Moreover, experiments on real data verify the robustness of our LGCNet and more layers adopted in
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representation part contribute to quality improvements with a lower speed.
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