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High-Resolution Remote Sensing Image Captioning
Based on Structured Attention
Rui Zhao , Zhenwei Shi , Member, IEEE, and Zhengxia Zou

Abstract� Automatically generating language descriptions of
remote sensing images has become an emerging research hot
spot in the remote sensing �eld. Attention-based captioning,
as a representative group of recent deep learning-based cap-
tioning methods, shares the advantage of generating the words
while highlighting corresponding object locations in the image.
Standard attention-based methods generate captions based on
coarse-grained and unstructured attention units, which fails to
exploit structured spatial relations of semantic contents in remote
sensing images. Although the structure characteristic makes
remote sensing images widely divergent to natural images and
poses a greater challenge for the remote sensing image captioning
task, the key of most remote sensing captioning methods is
usually borrowed from the computer vision community without
considering the domain knowledge behind. To overcome this
problem, a �ne-grained, structured attention-based method is
proposed to utilize the structural characteristics of semantic
contents in high-resolution remote sensing images. Our method
learns better descriptions and can generate pixelwise segmen-
tation masks of semantic contents. The segmentation can be
jointly trained with the captioning in a uni�ed framework
without requiring any pixelwise annotations. Evaluations are
conducted on three remote sensing image captioning benchmark
data sets with detailed ablation studies and parameter analysis.
Compared with the state-of-the-art methods, our method achieves
higher captioning accuracy and can generate high-resolution and
meaningful segmentation masks of semantic contents at the same
time.

Index Terms� Image captioning, image segmentation, remote
sensing image, structured attention.

I. INTRODUCTION

IMAGE captioning is an important computer vision task that
emerged in recent years and aims to automatically generate

language descriptions of an input image [1], [2]. In the remote
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sensing field, image captioning also has attracted increas-
ing attention recently due to its broad application prospects
both in civil and military usages, such as remote sensing
image retrieval and military intelligence generation [3]. Dif-
ferent from other tasks in remote sensing field, such as
object detection [4]–[8] classification [9]–[11], and segmenta-
tion [12]–[15], remote sensing image captioning focuses more
on generating comprehensive sentence descriptions rather than
predicting individual category tags or words. To generate
accurate and detailed descriptions, the captioning model needs
to not only determine the semantic contents that exist in the
image but also have a good understanding of the relationship
between them and what activities that they are engaged in [2].

In the most recent deep learning-based image captioning
methods, the models are built based on the “encoder–decoder”
network architecture [1], [2], [16]–[18]. In the encoding stage,
deep convolutional neural networks (CNNs) are used to extract
high-level internal representations of the input image. In the
decoding stage, a recurrent neural network (RNN) is typically
trained to decode the representations to sentence descriptions.
More recently, the visual attention mechanism, a technique
derived from automatic machine translation [19], [20], has
greatly promoted the research progress in image caption-
ing [21]–[26]. The attention mechanism was originally intro-
duced to improve the performance of an RNN model by
taking into account the input from several time steps to make
one prediction [19]. In image captioning, visual attention can
help the model better exploit spatial correlations of semantic
contents in the image and highlight those contents while
generating corresponding words [21].

For the remote sensing image captioning task, Qu et al. [27]
first proposed a deep multimodal neural network model for
high-resolution remote sensing image caption generation. Shi
and Zou [3] proposed a fully convolutional networks (FCNs)
captioning model, which mainly focuses on the multilevel
semantics and semantic ambiguity problems. Lu et al. [28]
explored several encoder–decoder-based methods and their
attention-based variants and published a remote sensing image
caption data set named RSICD. Wang et al. [29] introduced
the multisentence captioning task and proposed a framework
using semantic embedding to measure the image represen-
tation and the sentence representation to improve captioning
results. Lu et al. [30] proposed a sound active attention (SAA)
framework for more specific caption generation according to
the interest of the observer. Wang et al. [31] proposed the
retrieval topic recurrent memory network that first retrieves
the topic words of input remote sensing images from the
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topic repository and then generates the captions by using
a recurrent memory network [32] based on both the topic
words and the image features. Ma et al. [33] proposed two
multiscale captioning methods to grab multiscale information
for generating better captions. Cui et al. [34] proposed an
attention-based remote sensing image semantic segmentation
and spatial relationship recognition method. However, the cap-
tioning module in their method just follows the classical
model [21] without modification based on the characteristic of
remote sensing images. The captioning module is independent
of other modules, and the accuracy of caption generation is
not improved by other modules. Sumbul et al. [35] proposed
a summarization-driven image captioning method, which inte-
grated the summarized ground-truth captions to generate more
detailed captions for remote sensing images. Li et al. [36]
proposed a truncation cross entropy to deal with the over-
fitting problem. Wang et al. [37] proposed a word–sentence
framework to extract the valuable words first and then organize
them into a well formed caption. Huang et al. [38] proposed
a denoising-based multiscale feature fusion mechanism to
enhance the image feature extraction. Li et al. [39] proposed
a multilevel attention model to enhance the effect of attention
through a hierarchical structure. Wu et al. [40] proposed
a scene attention mechanism that tried to catch the scene
information to improve the captions.

These remote sensing image captioning methods are all
based on encoder–decoder architecture, which can be roughly
divided into two groups: 1) methods without visual atten-
tion mechanisms that constructed between caption and image
space [3], [27]–[29], [31], [35]–[38] and 2) methods with
visual attention mechanisms [28], [30], [33], [34], [39], [40].
The visual attention mechanisms in these methods are
designed based on coarse-grained, unstructured attention units,
which fails to exploit structured spatial relations of semantic
contents in remote sensing images. For example, in the popular
natural image captioning method “Show, attend and tell” [21],
the authors uniformly divide the image feature map into
14 × 14 spatial units. However, in remote sensing images,
the semantic contents are usually highly structured where
narrow and irregularly shaped objects, such as roads, rivers,
and structures, usually occupy a large portion. The uniform
division of the feature map inevitably leads to an underexploit
of the spatial structure of remote sensing semantic contents.
Besides, due to the coarse division of attention units, these
methods also fail to produce fine-grained attention maps of
irregularly shaped semantic contents.

In this article, we show that the structured and pixel-level
regional information can be used to enhance the efficacy of
attention-based remote sensing image captioning. In computer
vision, in-depth research has been made on the pixel-level
description of irregularly shaped semantic contents, where
a representative group of the method is semantic segmenta-
tion [41]–[45]. We, thus, introduce a structured attention mod-
ule in our captioning model and propose a joint captioning and
segmentation framework for high-resolution remote sensing
images by taking advantage of the structured attention mech-
anism. The structured attention module aims to focus on the
semantic contents in the remote sensing images with structured

Fig. 1. Brief comparison between (a) standard attention-based captioning
method and (b) proposed structured attention-based captioning method. In (a),
the captions are learned from a set of coarse and unstructured image regions.
As a comparison, in (b), our method exploits the fine-grained structure of the
image and, thus, generates more accurate descriptions.

geometry and appearance. Structured attention is performed
on each structured unit obtained in the segmentation proposal
generation, that is, the pixels within each structured unit
receive the same attention weight, while different structured
units get different attention weights. In this way, the proposed
method can exploit the spatial structure of semantic contents
and produce fine-grained attention maps to guide the decoder
to more proper caption generation. We show our method
generates better sentence descriptions and pixel-level object
masks under a unified framework. It is worth mentioning that,
in our method, the segmentation is trained solely based on the
image-level ground-truth sentences and does not require any
pixelwise annotations.

Fig. 1 shows the key differences between the proposed
method and previous attention-based methods. In our method,
we first divide the input image into a set of class-agnostic
segmentation proposals and then encode the structure of each
of the segmentation proposals into our attention module.
Structured attention can guide the model to accurately focus
on highly structured semantic contents during the training,
thereby improving the performance of the image captioning
task. Although the class label of each proposal is not available
during the training and is considered as latent variables,
we show the correspondence between the predicted words
and the attention weights for each proposal can be adaptively
learned under a weakly supervised training process. Our
method, therefore, produces much more accurate attention
maps for the semantic contents than those unstructured atten-
tion methods.

Extensive evaluations of our method are made on three
benchmark data sets. Our method achieves higher captioning
accuracy than other state-of-the-art captioning methods and
generates object masks with high quality. Detailed ablation
studies and parameter analysis are also conducted, which
suggests the effectiveness of our method.

The contributions of this article are summarized as
follows.
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Fig. 2. Overview of the proposed captioning method. Our method consists of three parts: an encoder, which maps the input image to feature maps; a decoder,
which generates the sentences based on the image feature; and a structured attention module, which interacts with the decoder during the captioning and at
the same time generates pixel-level object masks.

1) We propose a novel image captioning method for
high-resolution remote sensing images based on the
structured attention mechanism. The proposed method
deals with image captioning and pixel-level segmenta-
tion under a unified framework.

2) We investigate the possibility of using structured atten-
tion for weakly supervised image segmentation. To the
best of our knowledge, such a topic has rarely been
studied before.

3) We achieve higher captioning accuracy over other state-
of-the-art methods on three remote sensing image cap-
tioning benchmark data sets.

The rest of this article is organized as follows. In Section II,
we will introduce the structured attention and the details of
our method. Experimental results and analysis are given in
Section III. The conclusions are drawn in Section IV.

II. METHODOLOGY

In this section, we give a detailed introduction to the
proposed structured attention method and how we build our
image captioning model on top of it.

A. Overview of the Method
The captioning model proposed in this article mainly con-

sists of three parts: an encoder, a decoder, and a structured
attention module. Fig. 2 shows the processing flow of the
proposed model. From the natural image captioning literature,
we borrow the encoder–decoder framework that has been
shown to work well in the image captioning task. We use
a deep CNN as our encoder to extract high-level feature
representations from the input image. It is worth mentioning
that our method is, indeed, independent of the choice of the
backbone model. Any deep CNN can be used as an encoder.
We use a long short-term memory network [46], [47] as
our decoder to decode the image features to the sentence
description. Before feeding features to the structured attention

Fig. 3. Input images (first row) and the class-agnostic segmentation proposals
generated by the selective search method (second row).

module, we use a predefined method “Selective Search” [48]
to segment the input image to a set of class-agnostic seg-
mentation proposals based on the color and texture features.
The selective search module in our framework requires the
remote sensing image to be high resolution to extract available
segmentation proposals. Fig. 3 shows some samples generated
by the selective search. The proposals are then synchronously
encoded to our attention module with the image features by
using a newly proposed pooling method, named the “structured
pooling” method. In this way, the original image features are
recalibrated, and we, thus, can obtain a set of structured region
descriptions for captioning and mask generation. The attention
weights generated by the model for each region on predicting
a certain word are considered as the probability that the region
belongs to the word category (e.g., building, tree, and bridge).

B. Encoder and Decoder

We use the 50-layer deep residual network (ResNet-50) [49]
as our encoder. We remove the full connection layer (predic-
tion layer) of the ResNet-50 and use the feature maps produced
by the last convolution block “Conv_5” as our internal fea-
ture representations. Our decoder is a one-layer LSTM with
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512 hidden units. The LSTMs are a special kind of RNN,
capable of learning long-term dependences. By selectively
forgetting and updating information in the training process,
the LSTM can achieve better performance in the complex
sequential prediction problems than the vanilla RNNs. Our
decoder is trained to generate the word score vector yt � RK at
each time step t based on a context vector zt , a previous hidden
state vector ht�1 and a previously generated word score vector
yt�1, where K is the size of the vocabulary. The prediction of
yt can be written as follows:

yt = Lo
�
Lhht + Lyyt�1 + Lzzt�1

�
(1)

where Lh , Ly , and Lz are a group of trainable parameters that
transform the input vectors to calibrate their dimensions. The
Lo is a group of trainable parameters that transform from the
summarized vectors to the output score vectors. To compute
ht , zt , and yt at each time step, the LSTM gates and internal
states are defined as follows:

it = �(Wi xt + bi )
ft = �

�
W f xt + b f

�

ot = �(Woxt + bo)
c̃t = tanh (Wcxt + bc)
ct = ft � ct�1 + it � c̃t

ht = ot � tanh (ct) (2)

where xt is the concatenation of previous hidden state ht�1,
and the previously generated word vector yt�1 and the context
vector ẑt are xt = [ht�1; Pyt�1; ẑt ]. P � Rm×K is an embed-
ding matrix, where m denotes the embedding dimension. it ,
ft , ot , ct , and ht are the outputs of the input gate, forget
gate, output gate, memory, and hidden state of the LSTM,
respectively. Wi , W f , Wo, and Wc are trainable weight
matrices, and bi , b f , bo, and bc are their trainable biases.
�(•), tanh (•) and � represent the logistic sigmoid activation,
hyperbolic tangent function and elementwise multiplication
operation, respectively.

Finally, to produce word probabilities pt , we use a “soft-
max” layer to normalize the generated score vectors to
probabilities

pt = softmax(yt)

= exp(yt)
� K�

i=1

exp
�
y(i)

t
�
. (3)

C. Structured Attention
1) Structured Pooling: Most CNNs produce unstructured

image feature representations. Here, we propose a new pooling
operation called “structured pooling” to generate structured
feature representations given a set of region proposals of
any shapes. The structured pooling can be considered as a
modification of the standard “region of interest (ROI) pooling.”
The difference between the two operations is that the ROI
pooling is only designed to pool the features from rectangular
regions, while the structured pooling applies to the regions of
any shape. Suppose that I is the input image and F � Rh×w×c

Fig. 4. Illustration of the proposed structured pooling method. The notation
� represents the elementwise product operation.

represent the image features produced by the encoder, where
h, w, and c are the height, width, and the number of channels,
respectively. The region proposals Ri , i = 1, . . . , N produced
by the selective search are considered as the base units when
performing structured pooling.

For the unit i , the structured feature representation si
produced by the structured pooling can be represented as
follows:

si =
1

hw

�

(x,y)�R�
i

F(x, y) � R�
i (4)

where R�
i is the projected region proposal, which is resized

from the size of the input image to the size of the feature
map. The summation is performed among the pixels (x, y)
within the region R�

i along the spatial dimensions. It should
be noticed that, when we average the feature values within a
certain region R�

i , we divide the number of all spatial pixels in
the feature map (hw) instead of the number of valid pixels in
that region. The reason behind this is that we want to enhance
the features according to their structured unit size, that is,
the features of small structured units will be less weighted to
reduce the noise effect from these regions.

Fig. 4 gives a simple illustration of the proposed structured
pooling operation. To help understand, in this figure, we show
an alternative but equivalent way of performing structured
pooling, where we first pixelwisely multiply the features on
a set of resized region masks and then perform the global
average pooling to produce the pooling output. To reduce the
misalignment effect, we use the bilinear interpolation when
we reduce the size of the binary region masks.
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It is worth noting that, although proposal-based approaches
are widely used in computer vision tasks, the proposed struc-
tured attention method is designed specifically for remote sens-
ing images. Since remote sensing images are captured from
high above, many semantic contents in remote sensing images,
such as rivers and bridges, show highly structured charac-
teristics. For example, bridges are always long and straight,
and rivers are always winding and slender, while buildings
are mostly in the form of regular polygon aggregation. As a
comparison, semantic contents in natural images often lack
regular and structured shape outlines under different views and
occlusions. Since the proposed structured attention mechanism
relies on effective structure extraction of the semantic contents
in images, it is more suitable for remote sensing images rather
than natural images.

2) Context Vector Generation: The context vector ẑt in
our method is a dynamic representation of the corresponding
structured unit of the image at the time t . Given the feature
representations si and the previous hidden state ht�1, we calcu-
late an attention weight value �(i)

t , which represents the degree
of correlation between the structured units and the generated
word vector yt

�̃(i)
t = fatt(si , ht�1) (5)

where fatt(•) represents a multilayer perceptron (MLP), which
is trained to generate the attention weights.

To build the network fatt(•), we first adjust the dimensions
of si and ht�1 to the same number by passing each of them
through a fully connected layer. Then, the transformed vectors
are added together to fuse the information from both the
structured unit and the context, and the fusion vector is further
fed to another fully connected layer to produce the attention
weight �(i)

t

fatt(si , ht�1) = f3(ReLU( f1(si) + f2(ht�1))) (6)

where f1, f2, and f3 represent the three fully connected layers
and ReLU(•) represents the rectified linear unit activation
function. Then, the attention weights of the N unique regions
at the time step t are normalized with a softmax layer to
produce the final attention vector �t

�t = softmax
��

�̃(1)
t , . . . , �̃(N)

t

��
. (7)

Once we get the attention weighted vector, the context vector
zt can be finally computed as a linear combination of the
structured feature represents si and their attention weights �(i)

t

zt =
N�

i=1

�(i)
t si . (8)

Note that, at the time step t , the attention weight of
each structured unit is computed based on the same context
information ht�1, which ensures that the initial competitive-
ness of each structured unit is fair and reduces the possi-
bility of introducing deviation. This is called the “context
information broadcast” mechanism, which was introduced by
Vinyals et al. [1] for the first time.

3) Object Masks’ Generation: We generate the object
masks based on the attention weights of each structured region.
In our attention module, the attention weights �(i)

t , i = 1, . . . N
represent the semantic correlation between the tth word of
the sentence and each of the N regions. The larger the �(i)

t ,
the more relevant it is to the i th structured unit Ri . We use the
attention weights as the category probability of the segmenta-
tion output. The nouns of the semantic contents of interest can
be easily picked out from the generated captions by comparing
each word to a predefined noun set. The pixelwise object
masks can be finally generated by binarizing the segmentation
weights of each region.

D. Loss Functions
Since image captioning is a sequential prediction prob-

lem of each word in the sentence, we follow the previous
works [1], [21] and formulate the prediction of each word
as a regularized classification process. The loss can, thus,
be written as a running sum of the regularized cross-entropy
loss of each word in the sentence

L(x) = �
C�

t=1

log

�

�
K�

j=1

ŷ( j)
t p( j)

t

	


 + �rd(�t) + � rv (�t ) (9)

where pt = [p(1)
t , . . . , p(K )

t ] is the predicted word probability
vector. �yt = [ŷ(1)

t , . . . , ŷ(K )
t ] is the one-hot label of the tth

word in the ground-truth caption, and ŷ( j)
t � {0, 1}. C is the

number of words in the generated sentence. rd(�t) and rv (�t )
are the doubly stochastic regularization (DSR) [21] and the
proposed attention variance regularization (AVR), which we
will introduce later. � and � are the weight coefficients for
balancing different loss terms.

1) Doubly Stochastic Regularization: In Section II-C2,
we show that

�
i �t,i = 1 since the attention weights are

finally normalized by a softmax function. Here, we further
regularize the attention weights from the time dimension and
introduce the DSR as follows:

rd(�t) =
N�

i=1

�

1 �
C�

t=1

�t,i

�2

. (10)

This regularization term encourages the model to pay equal
attention to each part of the image during the generation of
captions. In other words, it can prevent some regions from
always receiving strong attention, while it can prevent other
regions from being ignored all the time.

2) Attention Variance Regularization: When we fixed the
time step t and look at the attention weights of each structure
regions, we usually hope to see these regions receive a highly
diverse attentions. This means that we do not want each region
receive equal attentions. We, thus, design the AVR term to
enforce the regions have a high variance in their attention
weights

rv (�t ) = �
C�

t=1

��t � E{�t }�2
2

= �
C�

t=1





�t �
1
N






2

2
(11)
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where we have E{�t } = 1/N since the �t has been normalized
by the softmax function. We take the negative value of the l2
norm since we want to maximize the attention variance. It is
easy to proof that, when the �t is an one-hot vector, i.e., only
one region contributes to the prediction of the current word,
the value of rv (�t) will reach its minimum. On the contrary,
when every region receives equal attention, i.e., �(i)

t = 1/N ,
i = 1, . . . , N , in which we do not hope to see, rv (�t) will be
maximized.

E. Implementation Details
1) Training Details: In the training phase, we use the

Adam optimizer [50] to train our model. We set regularization
coefficients � = � = 1. We set the learning rate of our encoder
to 1e�4 and set the learning rate of our decoder learning rate
to 4e�4. The batch size is set to 64, and the model is trained
for 100 epochs. In our encoder, the ResNet-50 is pretrained
on the ImageNet data set [51]. To speed up training, we only
fine-tune the convolutional blocks 2–4 of the ResNet-50 during
training. In our decoder, the memory and hidden state gate of
the LSTM at the time step 0 are initialized separately based on
the averaged image features. We use a fully connected layer
to transform the features to produce their 0-time inputs.

2) Segmentation Proposal Generation: When we use the
selective search to generate segmentation proposals, three key
parameters need to be specifically tuned, including a smooth
parameter � of the Gaussian filter, a min_size parameter,
which controls the minimum bounding box size of the pro-
posals, and a scale parameter s, which controls the initial
segmentation scales. We set � = 0.8, min_size = 100, and
s = 100. Besides, to prevent oversegmentation, we applied
the guided image filter [52] to preprocess the image before
the selective search. The guided image filter can effectively
smooth the input image while keeping its edge and structures.
The smoothed images are only used for generating segmenta-
tion proposals. When the encoder computes the image features,
we still use the original images.

3) Beam Search: At the inference stage, instead of using a
greedy search that chooses the word with the highest score and
uses it to predict the next word, we apply the beam search [53]
to generate more stabilized captions. The beam search selects
the top-k candidates in each time step and then predicts top-
k new words accordingly for each of these sequences in the
next step. Then, the new top-k sequences of the next time
step are selected out of all k × k candidates. It is worth
mentioning that, in consideration of computational efficiency,
top-k candidate sequences are selected for each time step, and
the sequence with the highest score is selected as the final
caption output at the last time step. Therefore, up to time t , k
sequences are generated instead of kt . k is called the “beam
size,” which is set to 5 for our experiment.

III. EXPERIMENTS

In this section, we will introduce in detail our experimental
data sets, metrics, and comparison results. We also provide
ablation experiments, parameter analysis, and speed analysis
to verify the effectiveness of the proposed structured attention
module.

A. Experimental Setup

1) Data Sets: We conduct experiments on three
widely-used remote sensing image captioning data sets:
UCM-Captions [27], Sydney-Captions [27], and RSICD [28].
For each data set, we followed the standard protocols on
splitting the data set into training, validation, and test sets.
In any of the three data sets, each image is labeled with five
sentences as ground-truth captions. The following are the
details of the three data sets.

a) UCM-Captions: The UCM-Captions data set [27] is
built based on the UC Merced land use data set [54]. It con-
tains 2100 remote sensing images from 21 types of scenes.
Each image has a size of 256 × 256 pixels and a spatial
resolution of 0.3 m/pixel.

b) Sydney-Captions: The Sydney-Captions data set [27]
is built based on the Sydney land data set [55]. It totally
contains 613 remote sensing images collected from the
Google Earth imagery in Sydney, Australia. Each image has
a size of 500 × 500 pixels and a spatial resolution of
0.5 m/pixel.

c) RSICD: The RSICD [28] is the most widely used
data set for remote sensing image caption generation task.
It contains 10 921 remote sensing images collected from the
AID data set [56] and other platforms, such as Baidu Map,
MapABC, and Tianditu. The images are in various spatial
resolutions. The size of each image is 224 × 224 pixels.

2) Evaluation Metrics: We use four different metrics to
evaluate the accuracy of the generated captions, including the
bilingual evaluation understudy (BLEU) [57], ROUGE-L [58],
METEOR [59], and CIDEr-D [60], which are all widely used
in recent image captioning literature.

a) BLEU: The BLEU [57] measures the co-occurrences
between the generated caption and the ground truth by using
n-grams (a set of n ordered words). The key of the BLEU-n
(n = {1, 2, 3, 4}) is the n-gram precision—the proportion of
the matched n-grams out of the total number of n-grams in
the evaluated caption.

b) METEOR: Since the BLEU does not take the
recall into account directly, to address this weakness,
the METEOR [59] is introduced to compute the accuracy
based on explicit word-to-word matches between the caption-
ing and the ground truth.

c) ROUGE-L: ROUGE-L [58] is a modified version of
ROUGE, which computes an F-measure with a recall bias
using the longest common subsequence (LCS) between the
generated and the ground-truth captions.

d) CIDEr-D: CIDEr-D [60] is an improved version of
CIDEr, which first converts the caption into the form of
the term frequency inverse document frequency (TF-IDF)
vector [61] and then calculates the cosine similarity of the
reference caption and the caption generated by the model.
CIDEr-D penalizes the repetition of specific n-grams beyond
the number of times they occur in the reference sentence.

For any of the above four metrics, a higher score indicates
a higher accuracy. The scores of BLEU, ROUGE-L, and
METEOR are between 0 and 1.0. The score of CIDEr-D is
between 0 and 10.0.
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TABLE I
ABLATION STUDIES ON THE PROPOSED STRUCTURED ATTENTION MECHANISM. THE EVALUATION SCORES (%)

ARE REPORTED ON THE UCM-CAPTIONS DATA SET [27]

TABLE II
ABLATION STUDIES ON THE TWO REGULARIZATION TERMS: DSR AND AVR. THE EVALUATION SCORES (%)

ARE REPORTED ON THE UCM-CAPTIONS DATA SET [27]

TABLE III
EVALUATION SCORES (%) OF OUR METHODS WITH A DIFFERENT NUMBER OF PROPOSALS PER IMAGE. ALL MODELS ARE

TRAINED AND EVALUATED ON THE UCM-CAPTIONS DATA SET [27]

B. Ablation Studies
The ablation studies are conducted to analyze the impor-

tance of three different technical components of the pro-
posed method, including the structured attention module,
DSR, and AVR. The ablation studies and parameter analy-
sis experiments are performed on the UCM-Captions data
set, the Sydney-Captions data set, and the RSICD data set.
We found that the proposed method behaves similarly on
these data sets. For brevity, we only report results on the
UCM-Captions.

We first remove the proposed structured attention module of
our method and replace it with a standard soft-attention mod-
ule [21] while keeping other configurations unchanged. Table I
shows the comparison results. The best scores are marked
as bold. The results show that, compared with the baseline
method, the structured attention improves the accuracy with a
large margin in terms of all evaluation metrics (+5.47% on
BLEU-4, +3.39% on METEOR, +3.78% on ROUGE-L, and
+20.11% on CIDEr-D).

We then gradually remove the regularization terms from
our loss function and train the corresponding captioning
model separately. Table II shows their evaluation accuracy.
We show that the DSR and the AVR can both yield noticeable
improvements in captioning accuracy. Particularly, the pro-
posed method trained with both of these two regularization
terms achieves the best accuracy on all metrics.

C. Parameter Analysis
We also analyze two important parameters in our method:

1) the number of segmentation proposals N and 2) the beam
size k.

We set the number of segmentation proposals N in the
selective search to 4, 8, 12, and 16, train each model, and
then evaluate the captioning accuracy accordingly. Table III
shows the accuracy of our model with different segmentation
proposals. The result shows that, when the number of regions
increases from 4 to 8, the evaluation scores are greatly
improved. However, when the number of regions further
increases from 8 to 16, the improvement of evaluation scores
becomes less significant, and some scores even decrease. This
is because, when the number of segmentation proposals set
by N is much larger than the actual number of regions
in the remote sensing image, the oversegmentation of the
image will destroy the structures of the semantic contents.
We also report the models’ training time in the last column
of Table III. We show that increasing the number of regions
leads to an increase in training time. To balance the accuracy
of different metrics, we finally set the number of regions to
N = 8.

The beam size k will affect the captioning accuracy and
the inference time. We set different beam sizes in our method
and analyze their accuracy and speed. All models are trained
and evaluated on the UCM-Captions data set [27]. Table IV
shows the evaluation results of our method with different beam
sizes. We can see that, when the beam size increases from
1 to 5, the evaluation scores are improved but are saturated
at 6. We also show that increasing the beam size leads to a
slower inference speed. To balance the captioning accuracy
and the inference speed, we set the beam size to k = 5.

Figs. 5 and 6 show the percentage of accuracy improvement
of the proposed method with different numbers of segmen-
tation proposals and different beam sizes. The percentage
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TABLE IV
EVALUATION SCORES (%) OF OUR METHODS WITH DIFFERENT BEAM SIZES. ALL MODELS ARE EVALUATED ON THE UCM-CAPTIONS DATA SET [27]

Fig. 5. (Better viewed in color) Percentage of accuracy improvement of
the proposed method with a different number of segmentation proposals
N = {4, 6, 8, 10, 12, 16}. All models are trained and evaluated on the
UCM-Captions data set [27].

Fig. 6. (Better viewed in color) The percentage of accuracy improvement
of the proposed method with different beam sizes k = {1, 2, 3, 4, 5, 6}. All
models are evaluated on the UCM-Captions data set [27].

of improvement is defined as follows: (acc � acc0)/(acc0) ×
100%. We define the accuracy on N = 4 and k = 1 as the
baseline accuracy acc0.

D. Comparison With Other Methods
In this section, we evaluate our method on three data

sets and compared our method with a variety of recent
image captioning methods. The comparison methods
include the VLAD + RNN [28], VLAD + LSTM [28],

mRNN [27], mLSTM [27], mGRU [62], mGRU-
embedword [30], ConvCap [63], Soft-attention [28],
Hard-attention [28], CSMLF [29], RTRMN [31], and
SAA [30]. Among these methods, most of them (except
mGRU and ConvCap) are initially designed for the remote
sensing image captioning task. However, their basic ideas are
mainly borrowed from the natural image captioning [1], [21].
The details of these models are described as follows.

1) VLAD + RNN: VLAD + RNN [28] uses the handcrafted
feature descriptor “VLAD” [64] as its encoder to compute
image representations and use a naive RNN as its decoder to
generate captions.

2) VLAD + LSTM: VLAD + LSTM [28] also uses VLAD
to compute the image features, but the difference is that it uses
an LSTM as its decoder.

3) mRNN, mLSTM, and mGRU: These three methods [27],
[27], [62] all use the VGG-16 [65] as their encoders but
use different RNNs (naive RNN, LSTM, and GRU) as their
decoders.

4) mGRU-Embedword: Similar to the mGRU [62],
the mGRU-embedword [30] also uses the VGG-16 as its
encoder and the GRU as its decoder. The difference is that
mGRU-embedword uses a pretrained global vector, namely,
GloVe [66], to embed words.

5) ConvCap: The ConvCap [63] uses the VGG-16 as its
encoder and computes the attention weights based on the
activations of the last convolutional layer. Instead of using the
RNN-based decoder, this method generates captions by using
a CNN-based decoder [63].

6) Soft-Attention and Hard-Attention: Soft-attention [28]
and Hard-attention [28] are two methods using VGG-16 as
the encoder and LSTM as the decoder. The decoders are build
based on soft attention and hard attention mechanism [21],
respectively.

7) CSMLF: CSMLF [29] is a retrieval-based method that
uses latent semantic embedding to measure the similarity
between the image representation and the sentence represen-
tation in a common semantic space.

8) RTRMN: RTRMN [31] uses Resnet-101 as its encoder
and then uses the topic extractor to extract topic information.
A retrieval topic recurrent memory network is used to generate
captions based on the topic words. “RTRMN (semantic)” and
“RTRMN (statistical)” are two variants of the RTRMN, which
are based on semantic topics repository and statistical topics
repository, respectively.

9) SAA: SAA [30] introduces an SAA framework to com-
bine the sound information during the generation of captions.
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