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Abstract

Fusion based hyperspectral super resolution (HSR) algorithms usually utilize a low-resolution hyperspectral image

and a high-resolution multispectral image to generate a high-resolution hyperspectral image, which have attracted

increasing attention in recent years. However, how to deal with the abundant spectral information of hyperspectral

images and complex structure characteristics of multispectral images has always been the focus and difficulty of fusion

based hyperspectral super resolution. In this paper, we propose a new structure-color preserving network (SCPNet)

for hyperspectral super resolution, which is developed under the basis of the joint attention mechanism. The SCPNet

mainly includes three modules: structure-preserving module, color-preserving module and cross fusion module. The

structure-preserving module is constructed based on the spatial attention, which aims to capture and enhance the

significant structure information from the high-resolution multispectral image. Meanwhile, the color-preserving module

is constructed based on the channel attention, where the spectral characteristics in the low-resolution hyperspectral

image are preserved during the reconstruction process. At last, we propose a cross attention based cross fusion strategy

to integrate the features from the two branches, and reconstruct the final high-resolution hyperspectral image. The

major contribution of SCPNet is that the structure and color information is respectively described and preserved via

the joint attention mechanism. Experimental results indicate that the proposed SCPNet has presented advantages on

three benchmark datasets, when compared with some state-of-the-art HSR methods.

Index Terms

Hyperspectral super resolution, structure-color preserving, attention mechanism.

I. INTRODUCTION

Hyperspectral image sensors collect hundreds of wavelengths ranging from visible to long-wave infrared [1],[2].

Therefore the hyperspectral images (HSIs) contain abundant spectral information which has made contributions

to quite a few applications such as image classification [3–5] and target detection [6],[7]. However, HSIs usually

suffer from low spatial resolution due to the limitations of hardware. Researchers adopt two methods to acquire
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high-resolution hyperspectral image (HR-HSI): improving the spatial resolution of low resolution hyperspectral

images (LR-HSI) [8–10] and reconstructing spectral information from high resolution RGB/mutispectral image

(HR-RGB/HR-MSI) [11],[12]. However, since the complex correlation among channels of hyperspectral images is

difficult to be reconstructed from RGB/multispectral images, it is a more effective method to reconstruct HR-HSI

by super resolving LR-HSI. According to difference of the required inputs, current hyperspectral super resolution

(HSR) methods can be roughly divided into two categories: single image based super resolution with just one input,

and fusion based super resolution with two input images.

Single image based HSR methods directly rely on one low-resolution hyperspectral image (LR-HSI) as the input.

Since no auxiliary information is available, single image based methods often lead to spectral or texture distortions,

especially when the upscaling factor is large. To solve the insufficiency of priors, researchers attempt to exploit the

abundant spectral correlations among spectral bands. Some methods based on sparse and dictionary representation

or low-rank prior have been proposed. [10, 13, 14]. Moreover, deep learning based single image super resolution

methods have achieved excellent performance [15–18]. Based on single image super resolution, researchers proposed

many hyperspectral image super resolution methods [19–21]. Liu et al. employ group convolutions and covariance

statistics based attention mechanism to explore the consecutive information. Mei et al. combine the cross-scale non-

local prior with local and in-scale non-local priors to improve the performance. However, single image based HSR

methods usually require critical priori information but the manually designed prior may not be well representations

of the data.

Fusion based HSR refers to generating a HR-HSI using an LR-HSI and a registered multispectral image (MSI),

which has attracted much attention in recent years [22],[23]. Compared with single image based HSR, fusion based

HSR is more feasible, since most hyperspectral platforms usually integrate synchronous multispectral sensors as

well. In this case, the MSIs usually have higher spatial resolution while the LR-HSIs have finer spectral resolution.

Traditional methods such as matrix factorization based algorithms [24–28] are proposed firstly. These algorithms

respectively decompose the LR-HSI and the high-resolution multispectral image (HR-MSI) into a coefficient matrix

and a basis matrix under some priors. Moreover, tensor decomposition based models have also been widely utilized

since the hyperspectral image is a 3-D cube. In these methods, hyperspectral images are represented as 3-D tensors

and the image tensors are decomposed into the product of kernel tensors and projection matrices using tensor

decomposition techniques, which could account simultaneously for all spectral-spatial information [29–33]. In

addition to the above two algorithms, Bayesian rule based algorithms have been widely applied in HSR. The

dictionary is obtained through Bayesian dictionary learning, then the HR-HSI is reconstructed with dictionary and

sparse coding matrix [34–37].

Recently, deep learning techniques, especially the convolutional neural networks, have presented promising

performance in HSR tasks[38–41]. For example, in order to adapt to the characteristics of hyperspectral images

as 3-D cube, some methods apply 3-D convolution to CNN [42–44]. Mei et al. [42] proposed a 3-D CNN based

algorithm, which showed that 3-D CNN could achieve excellent performance in HSR. These methods facilitate

the representation of correlations among successive bands. Besides, the correlations can also be enhanced with

sufficient capture of the residual information among spectral bands [8],[45]. Xie et al. [8] proposed a network
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which could capture the deep residual features of high-frequency information, and utilize the learned features as a

priori in HR-HSI reconstruction. For fusion based hyperspectral super resolution task, the cross fusion of spatial

information and spectral information is critical for the reconstruction performance. Therefore, researchers mostly

focus on developing networks which could extract significant characteristics and integrate them [46–49]. Han et al.

[49] utilized a multi-level network to upscale the spatial resolution of LR-HSI gradually and integrated the multi-

scale loss functions during the training to avoid the gradient vanish. Moreover, some alternative super resolution

methods have been proposed. Such as unsupervised HSR[50, 51] and HSR algorithms considering PSF[9]. Qu et

al. [50] adopt the mutual information and assume that the characteristics follow a similar Dirichlet distribution.

Kwan et al. [9] super resolve LR-HSI with method incorporates PSF into the deblurring and then fuse an HR color

image with enhanced HSI.

However, recent deep learning based HSR algorithms may suffer from the color and structure distortions.

They usually utilize feature extractors that are not appropriate for both two inputs. In this way, the insufficiency

of feature representation for the spectral information and the structure characteristics leads to loss of color-

structure information. Therefore, how to design a network which simultaneously considers the color and structure

characteristics remains a challenge.

In this paper, we propose a structure-color preserving network (SCPNet) for fusion based hyperspectral image

super resolution, which aims at extracting the spatial details from MSIs while preserving the spectral information in

the LR-HSIs. The kernel of SCPNet is a newly-developed joint attention mechanism, which is composed of three

modules: structure-preserving module (SPM), color-preserving module (CPM) and the fusion module. The SPM is

designed to capture the significant structure information from the MSIs, and to introduce the structure details to the

obtained HR-HSIs based on the spatial attention. Meanwhile, the CPM tries to preserve the spectral characteristics

in the LR-HSIs during the reconstruction process via a channel attention approach. Finally, the SPM and CPM are

integrated based on a new cross attention based fusion strategy.

The major contributions of SCPNet can be summarized as follows.

• We propose a new spatial-attention-based structure preserving module to extract the structure details from

MSIs.

• We propose a new channel-attention-based color preserving module to provide spectral invariance from LR-

HSIs.

• We design a new cross-attention-based cross fusion strategy to achieve joint spatial-spectral information

preservation for the final obtained HR-HSIs.

II. METHODOLOGY

This section presents the architecture of SCPNet, which consists of three parts: 1) Structure Preserving Module;

2) Color Preserving Module; and 3) Cross Fusion Strategy.
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A. Network Architecture

Some notations of terms are as follows: The two inputs HR-MSI, LR-HSI and the reconstructed HR-HSI are

denoted as X ∈ Rswsh×c, Y ∈ Rwh×C and Z ∈ Rswsh×C respectively, where h and w represent the height and

width of LR-HSI. C and c represent the number of channels of HR-MSI and LR-HSI, while s denotes the upscaling

factor. The degradation model is as follows:

X = ZS +N1 (1.1)

Y = DZ +N2 (1.2)

where S ∈ RC×c is the spectral response function, and D ∈ Rwh×swsh is the downsampling operation.

The flowchart of SCPNet is shown in Fig.1. We first use bicubic interpolation to superresolve the LR-HSI to the

specified resolution. After upsampling operation, LR-HSI is divided into four groups on average according to the

number of spectral bands. Then the four groups are input to branches with same parameters, which reduces the

number of parameters and improves the training speed.

Fig. 1: Illustration of proposed SCPNet framework. This network contains three parts: Structure Preserving Module
(SPM), Color Preserving Module (CPM) and cross fusion strategy. SPM and CPM are proposed for feature extraction
of HR-MSI and LR-HSI while the cross fusion strategy is proposed for the fusion of spatial-spectral information.

After a few convolution and ReLU layers, SPM and CPM are utilized for deep feature extraction. Let Conv(·)

and ReLU(·) denote convolution layer and ReLU function respectively. SPM(·) and CPM(·) represent the SPM

and CPM. Then the feature extraction operations of SCPNet can be expressed as:

F2 = Conv(ReLU(Conv(X))) (1.3)

X ′ = SPM(F2) (1.4)
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[Y1, Y2, Y3, Y4] = Conv(Y ) (1.5)

F1i = Conv(ReLU(Conv(Yi))) i = 1, 2, 3, 4 (1.6)

F2i = CPM(F1i) i = 1, 2, 3, 4 (1.7)

Y ′ = [F21, F22, F23, F24] (1.8)

where X ′ and Y ′ are feature maps through SPM and CPM.

Spatial information determines the texture and details while spectral information determines color of a image.

So through capturing and ehancing spatial-spectral information, SCPNet could obtain image with more accurate

structure and color.

Most fusion based HSR methods realize feature fusion by concatenating feature maps. Inspired by Yao [51],

we adopt a newly proposed cross fusion strategy based on cross attention mechanism. The fusion strategy realizes

cross fusion under the guidance of spatial-spectral information, which ensures the preserving of structure-color

characteristics. The formula is as follows:

Z = CF (X ′, Y ′) (1.9)

where CF (·) is the cross fusion strategy.

B. Spatial Attention based Structure Preserving Module

HR-MSI possesses abundant spatial information, which is significant for the structure preserving of reconstructed

HR-HSI. So we propose the SPM to extract the spatial characteristics. The architecture of SPM is shown in Fig. 2.

Fig. 2: Illustration of SPM, which consists of a spatial attention block and a feature extraction block. The spatial
attention block is in the yellow box and the feature preserving block is in the blue box.

SPM consists of a spatial attention block and a feature preserving block. The spatial attention block captures

and enhances the spatial details important for reconstruction while the feature preserving block facilitates the

representation of details. The feature preserving block is composed of stacked convolution layers and ReLU

activation functions. Let SAB(·) denote the spatial attention block. The SPM can be expressed as:

X ′ = Conv(ReLU(Conv(ReLU(Conv(SAB(F2)))))) (2.1)
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SAB(F ) = Ms(F )⊗ F (2.2)

Ms(F ) = σ(f7×7([AvgPool(F ),MaxPool(F )])) (2.3)

AvgPool(·) represents the average pooling operation while MaxPool(·) represents the maximum pooling oper-

ation. f7×7(·) denotes the 7× 7 convolution layer. And σ(·) represents the sigmoid activation fuction.

As the pixel values of a image obey a certain distribution, there are strong similarities among image patches in

a feature map. We extract the correlated characteristics through maximum pooling, average pooling and sigmoid

function and utilize them for subsequent feature extraction. The coherence could be explicitly modeled by learning

the weight of each pixel.

C. Channel Attention based Color Preserving Module

We propose CPM for the feature extraction of LR-HSI, which consists of two branches: the color correction

branch and the feature preserving branch. With color correction branch, we obtain a set of weight coefficients,

which could guide the feature representation of feature preserving block. We first apply a Gaussian blur kernel to

the input feature maps, then two convolution layers, a channel attention block and a sigmoid function. The blurring

operation ensures that only the low frequency information such as color characteristic passes through this branch,

while high frequency information such as fine texture of feature maps is blocked. Apart from the blur kernel, channel

attention is another unit that facilitates the color preserving. Then, the other feature preserving branch focuses on

the representation of spectral information to promote the color preserving of reconstruction. Finally, We multiply

the output of feature preserving block and the weight coefficients from color correction branch to obtain the result.

The structure of CPM is shown in Fig 3.

Fig. 3: Illustration of CPM, which contains a color correction branch and a feature preserving branch. The color
correction module is in the red box, the channel attention block is in the blue box and the feature preserving block
is in the yellow box.

Let CCM(·) represent the color correction operation. Then the CPM can be expressed as:

αi = CCM(F1i) i = 1, 2, 3, 4 (3.1)

F ′
1i = Conv(ReLU(Conv(ReLU(Conv(F1i))))) i = 1, 2, 3, 4 (3.2)
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F2i = αi ⊗ F ′
1i i = 1, 2, 3, 4 (3.3)

CCM(·) = σ(Conv(CAB(Conv(Blur(·))))) (3.4)

CAB(F ) = Mc(F )⊗ F (3.5)

Mc(F ) = σ(MLP (AvgPool(F )) +MLP (MaxPool(F ))) (3.6)

MLP (·) = FC(ReLU(FC(·))) (3.7)

where F1i and F2i are the input and output of CPM. αi is the weight coefficients from the color correction branch

for the ith group of LR-HSI. Blur(·) represents the blur kernel. CAB(·) denotes the CAB operation. MLP (·)

represents the MLP layers, which contains two fully connected layers and a ReLU layer. And finally σ(·) represents

the sigmoid activation fuction.

Since the spectral coherence of hyperspectral images is critical for reconstruction, we employ the channel attention

block to extract and retain this feature. Average pooling and maximum pooling integrate feature characteristics along

the spatial dimensions, which forces the CPM to focus on the spectral relation. Then the sigmoid function converts

spectral information into weights, which explicitly expresses the spectral information. In this way, the spectral

information and interspectral correlation significant for hyperspectral reconstruction are integrated into the feature

maps.

Algorithm 1: The pseudocode for SCPNet.
Input: HR MSI X, LR HSI Y.
Output: reconstructed HR HSI Z.

1 while the SCPNet has not converged yet do
2 For X:
3 Shallow feature extraction: F1 = Conv(ReLU(Conv(X)))
4 Input the shallow features into the SPM: X ′ = SPM(F1)
5 For Y:
6 Upsampling the HR-HSI: Y1 = Upsampling(Y )
7 Divide the upscaled image into four groups: [Y1, Y2, Y3, Y4] = Conv(Y1)
8 Shallow feature extraction: F1i = Conv(ReLU(Conv(Yi))) i = 1, 2, 3, 4
9 Input the shallow features into the CPM: F2i = CPM(F1i)

10 Feature fusion:
11 Z = FC(X ′, Y ′)
12 Renturn Z
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D. Cross Attention based Cross Fusion Strategy

Fig. 4: Illustration of cross fusion strategy. Ms module is utilized to compute the spatial weight coefficients, and the
structure is same as spatial attention block. Meanwhile, the Mc module is adopted to compute the spectral weight,
and the structure is same as channel attention block.

In order to further exploit the spatial-spectral information from the SPM and CPM, we apply a cross fusion

strategy to fuse the feature maps across branches. First, we compute spatial attention weight coefficients from the

branch of HR-MSI (X’) and spectral attention weight coefficients from the branch of LR-HSI (Y’) respectively.

Then, we multiply the input feature maps with the attention weight coefficients from the other branch to integrate

the significant information. In this way, spatial information from the HR-MSI branch could be integrated into the

LR-HSI branch, and spectral information from the LR-HSI branch could be fused into the HR-MSI branch. Then we

concatenate the feature maps after information transfer and input the resulting feature map into several convolution

and activation function layers.

As shown in Fig. 4, the cross fusion strategy can be expressed as:

Ms(X ′) = σ(f7×7([AvgPool(X ′),MaxPool(X ′)])) (4.1)

Mc(Y ′) = σ(MLP (AvgPool(Y ′)) +MLP (MaxPool(Y ′))) (4.2)

X ′′ = Ms(Y ′)⊗X ′ (4.3)

Y ′′ = Mc(X ′)⊗ Y ′ (4.4)

Z = Conv(Relu(Conv(Relu(Conv(X ′′, Y ′′))))) (4.5)

E. Loss Function

To obtain the optimal network parameter set, the losses between training samples and ground truth need to be

minimized. The L2 loss is generally utilized in most methods to maximize the PSNR. However, the L2 loss often

fails to capture the underlying multimodal distributions of the HR patches, which results in the over-smoothness of
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TABLE I: The PSNR, SSIM and SAM values by different methods on ICVL dataset.

Scale GSA CNMF FUMI HiBCD CSTF GLORIA TFNet SCPNet

×2
PSNR

SSIM

SAM

29.3731

0.6453

6.0583

35.3415

0.8454

3.3435

33.5582

0.7345

4.6143

33.8501

0.9630

5.1462

38.0348

0.8653

2.4734

40.2977

0.9810

2.3234

38.5241

0.9134

3.2747

40.8147
0.9906
1.4722

×4
PSNR

SSIM

SAM

29.0430

0.7307

9.7251

34.3442

0.8106

3.8963

36.9734

0.8918

2.8703

30.4961

0.9316

6.6594

38.3786

0.8869

2.3228

34.9232

0.9740

4.4032

37.8434

0.9359

2.8148

42.2033
0.9889
1.4497

×8
PSNR

SSIM

SAM

25.8619

0.7716

13.2301

38.3451

0.6987

5.0453

37.2233

0.9471

2.6378

29.3375

0.9252

7.5202

39.6238

0.9164

1.9213

28.7139

0.9409

11.1151

37.0159

0.9388

3.0403

40.1055
0.9889
1.6079

TABLE II: The PSNR, SSIM and SAM values by different methods on DFC2018 Houston dataset.

Scale GSA CNMF FUMI HiBCD CSTF GLORIA TFNet SCPNet

×2
PSNR

SSIM

SAM

32.2142

0.8152

5.8020

38.6136

0.9314

3.1126

39.3360

0.9406

2.7528

28.8065

0.8894

17.0610

42.3147

0.9455

2.6018

38.9604

0.9731

3.4616

35.3147

0.9569

2.9131

43.1563
0.9907
1.3103

×4
PSNR

SSIM

SAM

31.5929

0.8658

6.2262

36.7528

0.9040

3.6216

39.8612

0.9562

2.5605

25.9030

0.8541

20.5555

42.0802

0.9462

2.6545

30.1886

0.9195

11.9335

34.7288

0.9519

3.2387

42.2311
0.9889
1.4447

×8
PSNR

SSIM

SAM

28.3718

0.8786

9.7769

33.9525

0.8441

4.6247

37.4007

0.9457

3.2550

24.6918

0.8318

23.0552

41.5519
0.9453

2.7339

25.9161

0.8651

22.3022

35.4862

0.9574

2.7990

41.1030

0.9897
1.6928

TABLE III: The PSNR, SSIM and SAM values by different methods on TG1HRSSC dataset.

Scale GSA CNMF FUMI HiBCD CSTF GLORIA TFNet SCPNet

×2
PSNR

SSIM

SAM

37.1437

0.8679

6.2052

42.4636

0.9370

4.0938

43.1266

0.9733

2.3896

41.4067

0.9492

6.3981

46.7022
0.9708

2.5533

40.9173

0.9505

4.9034

35.6435

0.9192

5.0556

43.5513

0.9754
3.4060

×4
PSNR

SSIM

SAM

36.3512

0.8706

6.9451

41.1210

0.9250

4.3561

45.4276

0.9738

2.7147

37.2205

0.9133

11.9277

45.9850
0.9690

2.8272

33.0627

0.8227

15.5473

36.4373

0.9313

4.6637

42.7133

0.9829
2.5809

×8
PSNR

SSIM

SAM

33.8293

0.8298

11.0983

39.0538

0.8975

5.1371

42.7513
0.9498

4.2480

34.8726

0.8717

17.9753

41.8198

0.9212

4.5432

30.6919

0.7583

23.8257

35.7888

0.9221

5.1649

41.6064

0.9800
2.8458

December 31, 2021 DRAFT



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

the reconstructed images. Therefore, We select the L1 loss since it provides better convergence. The loss function

is shown in Eq. (5.1).

loss =

N∑
i=1

∣∣∣I(i)− Î(i)
∣∣∣ (5.1)

More training details are provided in Section III.

FUMI HiBCD CSTF TFNet SCPNet GT

Fig. 5: Visual display of ICVL dataset when upscaling factor is 8.

III. EXPERIMENTS

This section presents the experiment results and analysis. To validate the superiority of SCPNet, we conduct

comparison experiments and ablation experiments on three datasets: ICVL dataset, DFC2018 Houston dataset and

TG1HRSSC dataset.

A. Compared Methods and Performance Evaluation Measures

Seven methods are selected as comparative methods: GSA [52], CNMF [24], FUMI [26], CSTF [53], GLO-

RIA [54], TFNet [55] and HiBCD [56]. Among them, GSA, CNMF and FUMI are both representative matrix
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factorization-based HSR methods; GLORIA, HiBCD, TFNet and CSTF are the state-of-the-art HSR methods.

GLORIA and HiBCD are based on matrix factorization while CSTF and TFNet are factorization based and deep

learning based HSR methods respectively.

We utilize peak signal to noise ratio (PSNR), structural similarity index (SSIM) and spectral angle mapper (SAM)

to evaluate the quality of reconstructed HSIs. The better the reconstruction effect, the higher the PSNR and SSIM

value, the lower the SAM value.

B. Datasets and Settings

The datasets we utilize are listed as follows.

1) ICVL: The ICVL data set contains 201 images. These hyperspectral images cover a 400-700 nm spectral

range with 31 bands. Subimages with size of 31×256×256 are utilized as ground truth. Then the corresponding

LR-HSIs are constructed by applying a Gaussian spatial filter on each band of the HR-HSI and downsampling

every 2/4/8 pixels in both height and width directions. A three-bands HR-MSI with size of 256×256 is constructed

by filtering the HR-HSI with a spectral responses function [27].

2) DFC2018 Houston: The data was obtained over the University of Houston campus and its neighborhood.

These HSIs were collected with 50 spectral channels from 380 to 1050 nm. Subimages with size of 50×200×200

are used as the ground truth. Then the corresponding LR-HSI and HR-MSI are constructed via the same operations

as ICVL.

3) TG1HRSSC: TG1HRSSC dataset is a space hyperspectral remote sensing scene classification data set acquired

by Tiangong-1 hyperspectral imager. We select visible near-infrared spectral data which covers a 400-900 nm with

54 effective bands for the experiment. Subimages with size of 54×256×256 are used as the ground truth. Then the

corresponding LR-HSI and HR-MSI are constructed via the same operations as ICVL.

C. Comparison Experiments on Synthetic Datasets

In order to verify the performance of the proposed method SCPNet for HSR, we conduct comparision experiments

on three hyperspectral datasets. And we choose three kinds of upscaling factors for experiments: 2, 4 and 8. The

details and analysis of experiments can be seen as follows.

Performance on ICVL Dataset. We randomly select 60 subimages from ICVL dataset for training and 20 for

testing. Then we construct corresponding LR-HSIs and HR-MSIs with Guassian filter and SRF respectively. Table

I summarizes the PSNR, SSIM, and SAM values of SCPNet and comparative algorithms for different upscaling

factors. SSIM reflects the structural difference between reconstructed image and real image while SAM measures the

spectral difference between two images. Thus the performance of SPM and CPM can be demonstrated by the values

of SSIM and SAM. Moreover, PSNR represents the overall difference between the reconstructed image and the real

one, thus PSNR could also reflect the reconstruction effect. For the representative traditional optimization based

super resolution algorithms, CNMF performs better than GSA, which indicates that appropriate prior information

benefits super resolution performance. FUMI provides with better results than CNMF, which means sum-to-one

and nonnegativity constraints help improve the performance. For the state-of-the-art super resolution comparative
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FUMI HiBCD CSTF TFNet SCPNet GT

Fig. 6: Visual display of DFC2018 Houston dataset when upscaling factor is 8.

algorithms, performance of TFNet is the worst in ×2 case. HiBCD performs poor in ×4 case. And in ×8 case,

GLORIA is the worst. CSTF surpasses GLORIA, TFNet and HiBCD a lot in both ×4 and ×8 cases, while it gets

worse performance than GLORIA in ×2 case. Compared with both deep learning based and optimization based

comparison methods, SCPNet has the best performance in all 3 cases. Since the SSIM and SAM of SCPNet are both

better than others, we assume that SPM and CPM successfully capture and preserve the structure characteristics

and color information respectively. Especially for SAM, our SCPNet is far superior to the others. For example,

when the upscaling factor is 4, SCPNet is the only one with an SAM value below 2. Even the second lowest SAM

of method CSTF is almost 1.5 times bigger than that of ours. In addition, when the LR-HSI is upsampled 8 times,

the value of SSIM is significantly higher than other algorithms, which means the SPM could preserve the structure

information effectively.

We choose four comparison methods for visualization: TFNet, FUMI, HiBCD and CSTF. Fig. 5 shows the

visualization results of the proposed method and the comparison method, where representative subimages of "BGU-

0522-1113" and "BGU-0522-1127" are chosen as examples. For reconstructed HR-HSIs, we select three bands of
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FUMI HiBCD CSTF TFNet SCPNet GT

Fig. 7: Visual display of TG1HRSSC dataset when upscaling factor is 8.

(a) ICVL (b) DFC2018 Houston (c) TG1HRSSC

Fig. 8: Spectral curves of the selected pixel in the reconstructed HSI from three dataset.

red (22th band), green (14th band) and blue (7th band), and then concatenate them to generate the synthetic RGB

images. In Fig. 5, the first and third rows list synthetic RGB images, and the second and fourth rows represent error

maps between reconstructed HR-HSIs and ground truth. As can be seen from the reconstructed images, there is color

difference between ground truth and the reconstructed images obtained by HiBCD, which indicates that HiBCD
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does not sufficiently capture the spectral information, thus leading to color distortion. What’s more, from the error

maps we find that other comparative methods fail to adequately address the deviations in texture detail. SCPNet

method performs better both in structure and color. To further validate the reconstruction ability of SCPNet, we

randomly select one pixel from each reconstructed HR-HSIs and plot their spectral curves, which are demonstrated

in Fig. 8 (a). From the 1st channel to the 31st channel, the pixel values of image reconstructed by SCPNet are

always the closest to the real image. Moreover, image obtained by FUMI method is significantly different from the

real one in the first 20 channels, while the overall difference of the image obtained by TFNet method fluctuates

greatly from the first channel to the last channal. According to the curves shown in Fig. 8 (a), our SCPNet gets

the best reconstruction performance.

Performance on DFC2018 Houston Dataset. For the DFC2018 Houston dataset, we randomly select 60

subimages for training and 20 for testing. More details and analysis on DFC2018 Houston dataset are provided in

Table II. For the representative super resolution algorithms, FUMI performs better than GSA and CNMF. CNMF

provides with better results than GSA. For the state-of-the-art super resolution comparison algorithms, performance

of CSTF is the best in all cases. HiBCD and GLORIA perform poor in both ×4 and ×8 cases. In ×2 and ×4

cases, our SCPNet performs best for all the three assessments. Especially under the evaluations of SSIM and SAM,

SCPNet remains a significant advantage in reconstruction. Though the PSNR value of SCPNet in ×8 case is slightly

smaller than CSTF, SSIM and SAM values still maintain our competitive superioity. So we conclude that SCPNet

could reconstruct more accurate HR-HSI than other comparison methods under quantitative assessment criteria.

Fig. 6 shows the visualization results of the proposed method and comparison methods. For reconstructed HR-

HSIs, we select three bands of red (17th band), green (11th band) and blue (5th band), and then concatenate them to

generate the synthetic RGB images. From Fig. 6, we can see that in terms of edge texture two error maps from the

proposed method are both darker than other algorithms, which demonstrates that our network preserves structure

characteristics best. Compared with HiBCD, our network captures spectral information and preserves color features,

which can be represented in error maps too. Moreover, we also provide with the reconstructed spectra of DFC2018

Houston dataset in Fig. 8 (b) same as ICVL dataset. Image obtained by our SCPNet is closest to the real one from

the first channel to the last. And image obtained by CNMF fluctuates the most.

Performance on TG1HRSSC Dataset. For experiments on TG1HRSSC dataset, we select 40 images for training

and 7 for testing. Table III demonstrates the numerical results on TG1HRSSC dataset. Our network gets best SSIM

values in ×2, ×4 and ×8 cases, which means the SPM contributes to preserve color characteristic effectively.

Moreover, when the upscaling factor is 4 or 8, spectral information of HR-HSI from SCPNet is maintained, since

the SAM values is the smallest. However, the performance of CSTF and FUMI sometimes outperform ours on

PSNR measure. So we need to validate the reconstruction performance through visualization results.

Fig. 7 shows the visualization results, where representative images "city-015-VNI-2013041514" and "port-001-

VNI-2013010214" are chosen as examples. For reconstructed HR-HSIs, we select three bands of red (27th band),

green (17th band) and blue (7th band), and then concatenate them to generate the synthetic RGB images. From

synthetic RGB images and error maps, it is obvious that results from FUMI and HiBCD still remain distortions in

structure and color. On the contrary, images from our network perform well both in terms of structure and color.
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Besides, spectral curves are depicted in Fig. 8 (c), which also shows the performance of SCPNet.

D. Ablation Study

(a) reconstruction error map
of SCPNet

(b) reconstruction error map
of network without SPM

(c) spectral curves of SCPNet and net-
work without CPM

Fig. 9: visual display of ablation experiment and SCPNet

To verify the contribution of the SPM, CPM and fusion strategy, we conduct ablation experiments on ICVL

dataset. Table IV summarizes the numerical evaluation of comparative methods by three assessments. Let the

model with convolution layers instead of SPM, CPM and fusion strategy be baseline.

For network without SPM, the spatial information can not be efficiently represented while the network without

CPM fails to capture the spectral details completely. Besides, since the spatial-spectral information cannot be well

integrated, the networks without cross fusion strategy perform worse than methods with it. Therefore, we conclude

that the SPM, CPM and fusion strategy all contribute to improve the performace.

Fig. 9 represents the visualization results of ablation experiments. Fig. 9 (a) and Fig.9 (b) are reconstruction error

maps of SCPNet and network without SPM. Obviously, SCPNet reconstructs HR-HSI with more accurate texture,

which means SPM contributes to the preservation of structure information. Fig.9 (c) shows the reconstructed spectral

curves of SCPNet and network without CPM. The reconstructed image spectrum obtained by the full network is

closer to the ground truth, thus it proves the function of CPM.

TABLE IV: Ablation Study on ICVL dataset when the upscaling factor is 8.

Options Baseline 1st 2nd 3rd 4th 5th 6th SCPNet

SPM

CPM

FS

!

!

!

!

! !

!

!

!

!

!

!

PSNR

SSIM

SAM

35.5075

0.9639

3.6051

38.9906

0.9853

1.7869

38.8906

0.9842

1.8560

39.1059

0.9860

1.7303

39.0339

0.9858

1.7875

39.0727

0.9865

1.7257

39.7619

0.9865

1.7227

40.1055

0.9889

1.6079

December 31, 2021 DRAFT



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 16

IV. CONCLUSION

We propose a fusion based HSR framework SCPNet with three modules based on joint attention mechanism:

a structure preserving module based on spatial attention mechanism, a color preserving module based on channel

attention mechanism and a cross fusion strategy based on cross attention mechanism. SPM and CPM capture spatial

and spectral information respectively while the fusion strategy integrates both information to reconstruct structure and

color preserved HR-HSI. Comparison experiments demonstrate that our SCPNet outperforms all the other methods

and the ablation study shows the contributions of all three modules. So we conclude that the SCPNet is a promising

algorithm not only in numerical assessments but also in visual effects. Although fusion based hyperspectral super

resolution methods have achieved excellent performance, these methods do not consider the point spread function

(PSF), which may lead to poor reconstruction results when the upsampling factor is large. Therefore, in the future

we will incorporate PSF to improve the reconstruction performance.
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