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Abstract

In hazy days, the contrast is reduced with the distance, which hinders the
outdoor surveillance system from working properly. Considering the varia-
tion of aerosols concentration in inhomogeneous atmosphere and the relation
between the attenuation coefficient and aerosols, we propose a more valid
model for the attenuation coefficient than the existing one. In this paper, we
propose an effective and robust algorithm based on dark channel prior and
our optical model in inhomogeneous atmosphere to remove the haze effect
from a single input image. In the proposed approach, we refine the coarse
transmission map using guided filter, which is very effective while achieving
fast speed. Based on our automatically sky region detection, we adjust the
refined transmission, with which we can effectively overcome the color distor-
tion in sky regions similar to the atmospheric light. We demonstrate that our
method yields similar or even better results than the state-of-the-art tech-
niques while performing fast. Moreover, our simple technique can be applied
to most scenes plagued by haze and achieves visually compelling results.

Keywords: Image dehazing, Dark channel, Guided filter, Automatic sky
detector.

1. Introduction

In foggy and hazy days, light reflected from an object is scattered and ab-
sorbed due to the substantial presence of molecules and aerosols suspended in
the atmosphere. With the deterioration of the air quality, haze phenomenon
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frequently occurs. Most Chinese cities have witnessed an increasing occur-
rence of haze in recent years. Due to the effect of dense haze, the transparen-
cy of the atmosphere and the visibility are reduced significantly, which will
cause considerable disruption to traffic and people’s daily lives. Persistent
haze obscures the view, making the vehicles, cyclists, and pedestrians move
slowly, which often leads to massive traffic jams. In this paper, instead of
exploring how to completely wipe out the haze effect from the weather, we
focus our attention on how to perfectly remove haze from single hazy images.

In haze weather, images taken in outdoor environment will be severely
degraded. Such degraded images are often characterized by poor contrast
and low vividness of the scene. The degradation of outdoor images signifi-
cantly influences the reliability of outdoor vision applications, such as video-
surveillance systems, traffic monitoring system and intelligent vehicle. The
existence of haze imposes a challenging problem in algorithms that designed
for images captured in clear weather. On the other hand, weather is affected
by haze at an increasing rate. Moreover, the image dehazing algorithm can
also be applied to images captured in underwater environments [1]. There-
fore, it is urgent and significant to find an effective algorithm to remove the
haze effect from images.

The effect of haze increases with the distance, which makes image de-
hazing a quite challenge problem. Several researchers have been working on
methods of haze removal and proposed several methods by using multiple im-
ages. In [2][3][4], a haze-free image is recovered using two or more images of
the same scene taken under different weather conditions. By using multiple
polarization-filtered images taken at different orientations of the polarizing
filter [5][6], the effects of haze can be successfully removed from hazy images.
Since our goal is to remove the effects of haze from a single image, such
multiple images based techniques are not applicable for our needs.

Widespread attention has been paid to remove haze effects from a single
hazy image. Recently, several successful methods for single image dehazing
have been proposed. Tan [7] removes haze based on an observation that clear-
day images have more contrast than hazy images. The contrast is greatly
enhanced, while the recovered images are mostly oversaturated and even de-
viate from the scene’s original colors. Moreover, this algorithm could produce
halo artifacts at depth discontinuities. Fattal [8] assumes that the surface
shading and medium transmission are locally statistically uncorrelated, and
recovers haze-free scene contrast. This approach is physically sound and the
recovered results are visually appealing, but it could be invalid when the haze
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is thick or the assumption fails. By observing the characteristics of outdoor
haze-free images, He et al. [9] propose a dark channel prior, with which de-
hazing operation can be easily carried out. Although the results obtained by
these methods seem visually compelling, their processing speeds are all slow,
which hinders surveillance systems from proper functioning. In addition, the
attenuation coefficient in these methods is assumed to be constant, while in
the actual atmosphere, it changes as a function of altitude, which we will
discuss later.

In the present work, we propose an effective and robust algorithm for
image dehazing which is based on dark channel prior, originally proposed by
He et al. [9]. In most cases, He et al. [9] can recover high-quality haze-
free images. However, it could fail when processing haze images containing
scene objects similar to the atmospheric light. Color distortions appear in
sky regions similar to the atmospheric light. Besides, the recovered results
contain halo artifacts in abrupt depth discontinuities. This lies in their haze
imaging model, which assumes the attenuation coefficient is constant. Yet
in the actual atmosphere, the attenuation coefficient is not a constant but
varies with altitude. In this paper, considering changes of the attenuation
coefficient, we first present an optical model in inhomogeneous atmosphere.
To satisfy this optical model, we adjust the transmission with some strategy.
Thus, we are able to handle the color distortions in sky regions and produce
high-quality recovered results. Contributions of our paper include:

(1) We take the inhomogeneous atmosphere into consideration and pro-
pose a new model for the attenuation coefficient in the inhomogeneous at-
mosphere, which differs from the constant attenuation coefficient generally
assumed in homogeneous atmosphere.

(2) In order to get the physically valid transmission, we first propose
a simple but effective approach to roughly detect the sky regions, taking
advantage of the dark channel images of the original hazy images.

(3) With the estimated sky region, we adjust the refined transmission.
Our adjusted transmission describes the optical model in inhomogeneous
atmosphere more accurately. Therefore, we are able to overcome the color
distortion in sky regions similar to the atmosphere light and greatly enhance
the image contrast.

The remaining of the paper is organized as follows. In Section 2, a detailed
analysis of optical model is introduced. The method of our image dehazing
algorithm is described in Section 3. Experimental results and evaluation are
shown in Section 4. Finally, in Section 5, we conclude the paper and discuss
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some possible future work.

2. Background

2.1. Optical model in homogenous atmosphere

The widely used optical model in computer vision and computer graphics
[2] [9] [10] is as follows

I(x) = J(x)t(x) +A(1− t(x)). (1)

Here, I(x) represents the observed intensity at a pixel x = (x, y), J(x) is
the original intensity reflected towards the observer from the corresponding
scene point, t(x) is the medium transmission which describes the portion of
the light that is not scattered and not absorbed and reaches the camera, A
represents the global atmospheric light which is a constant vector. In model
(1), both I(x) and J(x) have three color channels, and only the input image
I is known. With a single input image I, we need to estimate the unknowns
J, t, and A. We can see that image dehazing is essentially an ill-posed
problem. Therefore, we need some assumptions or prior knowledge to solve
this challenging problem.

According to the optical model (1), the observed intensity at the sensor is
contributed by two components, the direct attenuation and airlight [11]. The
first term J(x)t(x) on the right hand of model (1) is called direct attenuation,
which describes the scene radiance’s attenuation with increasing distance
to the observer. The second component is called airlight, which is caused
by the scattering of environmental illumination, including direct sunlight,
diffuse skylight and light reflected by the ground, by particles suspended in
the atmosphere [2]. Airlight is the primary cause of the color shifting, and
its expression is A(1− t(x)) in model (1).

In a homogeneous atmosphere, the transmission t(x) can be expressed as

t(x) = e−βd(x), (2)

where β is the attenuation coefficient [3] due to scattering and absorption,
and d(x) represents the distance from the position of pixel x to the observer.
Eq. (2) indicates that the contrast of the scene is reduced exponentially with
the distance d(x) increasing. The coefficient β is usually assumed constant
in homogeneous medium [2].
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2.2. Optical model in inhomogeneous atmosphere
As discussed in Section 2.1, the attenuation coefficient β is considered

constant in homogeneous atmosphere. However, the atmospheric medium
is not always uniform. Obviously in this situation, the assumption that
the attenuation coefficient β is a constant is no longer suitable. In actual
atmosphere, the distributions of aerosols are usually not uniform, or rather,
they change significantly as a function of altitude. Since the attenuation
coefficient β is a result of the scattering properties of the aerosols in the
atmosphere, the significant variation in the density of aerosols leads to the
change of the attenuation coefficient β [12].

The distributions of aerosols are dominated by gravity, and the density
of aerosols presents the exponential decay with the height increasing

ρ(h(x)) = ρ0e
−αh(x). (3)

Here, ρ is the aerosol concentration, ρ0 is aerosol concentration at earth’s
surface, α is an exponential attenuation constant, and h(x) represents the
height from the pixel x to the observer.

Since the attenuation coefficient β is proportional to the density of aerosol-
s, the attenuation coefficient also decreases exponentially with respect to
height, which can be expressed as

β(h(x)) = β0e
−αh(x), (4)

where β0 is the value of attenuation coefficient at earth’s surface. According
to Eq. (4), the attenuation coefficient β(h(x)) in inhomogeneous atmosphere
becomes the constant attenuation coefficient β in homogeneous atmosphere
when the exponential attenuation constant α is zero. Therefore, the attenu-
ation coefficient model in homogeneous atmosphere is a special case of that
in inhomogeneous atmosphere.

According to the definition of the attenuation coefficient in Eq. (4), the
attenuation coefficient depends upon the height of objects in the inhomoge-
neous atmosphere, and a constant attenuation coefficient which is indepen-
dent of the height is not accurate enough to describe the optical model. In
addition, Eq. (4) gives a more accurate description of imaging process in
actual atmosphere.

3. Single Image Dehazing in Inhomogeneous Atmosphere

This section investigates single image dehazing in inhomogeneous atmo-
sphere. Our image dehazing work is based on the dark channel prior [9] and
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Fig. 1: The framework of our algorithm proposed in this paper. We first estimate the global
atmospheric light and calculate the rough transmission map using the dark channel prior,
then refine the transmission map with guided filter. In order to solve the color distortion
in the sky region, we approximately detect the sky region in the input hazy image and
recompute the adjusted transmission map. Finally, we recover the scene radiance with the
global atmospheric light and the adjusted transmission map.

the guided filter [13]. The framework of our dehazing algorithm is shown in
Fig. 1.

In model (1), obviously, when the transmission t(x) and the global atmo-
spheric light A are known, the scene radiance J(x) can be easily calculated
by

J(x) = A− (A− I(x))/t(x). (5)

In the remaining of this section, we first estimate the global atmospheric
light A. To obtain the transmission t(x), we first get the coarse transmission
and refine it with the guided filter, then adjust the refined transmission.
Finally, we restore the scene radiance with the global atmospheric light A
and the adjusted transmission t(x).

3.1. Atmospheric Light Estimation

First, we give a description of dark channel prior, which was originally
proposed by He et al. [9]. The dark channel prior is discovered based on
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Fig. 2: (a) Input hazy image. (b) Coarse transmission map. (c) Refined transmission
map. (d) Our adjusted transmission map. (e) Detected sky region. Red pixels indicate
where the sky region is in the hazy image. (f),(g),(h) Recovered images using (b), (c) and
(d), respectively.

statistic of observations on 5,000 outdoor haze-free images. In a small local
non-sky region, at least one of its RGB channels has very low intensity and
is even close to zero, and this is called dark channel prior. For an image J,
its dark channel is defined as

Jdark(x) = min
y∈Ω(x)

( min
c∈{r,g,b}

J c(y)), (6)

where J c is a color channel of image J, Ω(x) is a local patch centered at x.
According to dark channel prior [9], for an outdoor haze-free image J, the
intensity of its dark channel image Jdark is very low and close to zero except
for sky regions.

However, the dark channel prior is not applicable to images taken under
haze conditions. Due to the effect of additive airlight, the intensity of pixels in
haze regions is high in all color channels, and moreover, the minimal intensity
of local area is high as well. Visually, the intensity of the dark channel is a
rough approximation of the thickness of the haze [9]. According to this prior
information, the global atmospheric light can be easily estimated.

According to the optical model (1), the airlight becomes more dominant
with the distance from the object to the observer increasing. As observed by
Narasimhan and Nayar [14], the global atmospheric light A is best estimated
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in the most haze-opaque region. As discussed before, a hazy image’s dark
channel is the approximation of the haze thickness. Therefore, we can easily
find the most haze-opaque area in the dark channel of images taken under
haze conditions and estimate the global atmospheric light. Since the most
haze-opaque region is usually located at the top of an image, we use the first
L rows of the image to quickly obtain the global atmospheric light. In our
case, the parameter L is fixed at one-twentieth of the input image height. We
first cut out the first L rows of the hazy image and calculate its dark channel,
then we choose the top 0.1 percent brightest pixels in the dark channel as
the most haze-opaque region. In this haze-opaque region, the brightest pixel
in the original hazy image is estimated as the global atmospheric light.

3.2. Transmission Estimation and Refinement

With the dark channel prior, the coarse transmission t̃(x) can be easily
obtained by the following equation

t̃(x) = 1− ω min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)

Ac
), (7)

where Ic is a color channel of image I, Ω(x) is a local patch centered at x,
and ω is a constant parameter representing a small amount of haze kept for
distant objects. A typical value of the parameter ω is 0.95, suggested in [9].

However, as shown in Fig. 2, recovered images (see Fig. 2(f)) using the
coarse transmission (see Fig. 2(b)) usually have block artifacts and halos
especially in regions with abrupt depth discontinuities. This is because the
assumption that the transmission in a local patch is constant is not always
true. Therefore, we need to use some strategies to refine the transmission in
order to get better recovery results.

In [9], He et al. find that the optical model (1) is similar to the image
matting equation, and then apply a closed-form matting framework [15] to
refine the transmission t̃(x). However, although this approach can produce
impressive results, it has the disadvantage of solving large-scale linear system,
which is very time-consuming.

In this paper, we present a fast method, which is called guided filter
[13], to refine the coarse transmission map t̃(x). The guided filter, derived
from a local linear model between the guidance and the filter output, can
preserve edges like bilateral filter [16], while having even better performance
near the edges. Moreover, the computational complexity of the guided filter
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is independent of the filtering kernel size. More specifically, the guided filter
is a fast and linear-time algorithm, which can achieve very fast speed. The
refined transmission map t is assumed to be a linear transform of the input
hazy image I in a window ωk centered at the pixel k:

ti = aT
k Ii + bk, ∀i ∈ ωk, (8)

where ti represents the refined transmission of a pixel i, Ii is a 3 × 1 color
vector, ak is a 3× 1 coefficient vector, and bk is a scalar. The window ωk is
a square window with a side length of r. According to Eq. (8),

∇t = aT∇I, (9)

where ∇t means the gradient of t, and ∇I means the gradient vector of
I. Eq. (9) indicates that the refined transmission will have an edge if the
input image has an edge. In order to maximally reserve the information of
the original transmission and minimize the difference between the refined
transmission and the coarse one, we minimize the following cost function in
window ωk:

E(ak, bk) =
∑
i∈ωk

(aT
k Ii + bk − t̃)2. (10)

In [13], in order to restrict the range of the length of ak, a regulation term
is further added in Eq. (10)

E(ak, bk) =
∑
i∈ωk

((aT
k Ii + bk − t̃)2 + ϵaT

k ak), (11)

where ϵ is a regulation parameter preventing the length of ak from being too
large.

To solve this optimization problem, we use the linear regression [17], and
the solution to Eq. (8) is

ak = (Σk + ϵU)−1(
1

|ω|
∑
i∈ωk

Iit̃i − µk
¯̃tk), (12)

bk =
¯̃tk − aT

kµk, (13)

where µk and Σk are respectively the mean 3× 1 vector and 3× 3 covariance
matrix of I in ωk, |ω| is the number of pixels in ωk, U is a 3 × 3 identity

matrix, and ¯̃tk =
1
|ω|

∑
i∈ωk

t̃i is the mean of t̃ in ωk.
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However, the value of ti calculated with (8) varies in different windows
since the pixel i appears in all windows ωk that contain i. To avoid repeatedly
computation and the uncertainty of ti, we compute the average of all values
of ti:

ti =
1

|ω|
∑

k:i∈ωk

(aT
k Ii + bk) (14)

= āT
i Ii + b̄i, (15)

where āi =
1
|ω|

∑
k∈ωi

ak and b̄i =
1
|ω|

∑
k∈ωi

bk.

With Eq. (15), we can easily obtain the refined transmission map. In
this situation, ∇t ≈ ā∇I, which means that abrupt depth discontinuities in
input image I can be mostly maintained in the refined transmission t. Fig.
2(c) shows the refined transmission using the coarse transmission in Fig. 2(b)
as a guidance. Fig. 2(c) illustrates that refined transmission preserves the
edges in input image and is very smooth without any block artifacts. The
corresponding recovered image is shown in Fig. 2(g), from which we can see
that the result preserves the very fine details and removes the haze effect
thoroughly. However, the color distortion appears in sky regions and some
halo artifacts still exist in abrupt depth discontinuities. In order to solve
these problems, we further adjust the refined transmission.

3.3. Automatic Sky Detector

Due to the halo artifacts and color distortion in recovered images, which
is resulted from the refined transmission obtained by Eq. (15), the results
look unnatural. Fig. 2(c) illustrates that the transmission in sky region is
dark, which satisfies the definition of transmission in Eq. (2). According to
Eq. (2), the transmission decreases with the increasing distance. Therefore,
sky regions with infinite distances have low transmission. However, as we
discussed in Section 2.2, in inhomogeneous atmosphere, the attenuation co-
efficient β decreases exponentially with height, which is β(h(x)) = β0e

−αh(x).
In this situation, the sky region, located at a great distance from the ob-
server, has a low attenuation coefficient near zero, which leads to a high
transmission in the sky region. In brief, the refined transmission calculated
by Eq. (15) is inconsistent with the physics.

Here, we first propose a simple but effective approach to automatically
detect the rough sky region in the input hazy image, based on which we adjust
the refined transmission. The method contains two crucial parameters, the

10



Fig. 3: (a) Input hazy image. (b) Refined transmission map. (c) Detected sky region.
(d) Our adjusted transmission map. (e) Our haze removal result. (f), (g) Two patches
that are extracted from input hazy image and the recovered image indicated with red
rectangles, respectively.

Fig. 4: a) Input hazy image. (b) Detected sky region. (c) Our adjusted transmission map.
(d) Our haze removal result.
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global atmospheric light A and the coarse transmission t̃(x). According to
Section 3.1 and Section 3.2, we can easily estimate these parameters.

Obviously, sky regions are most likely to show up at the top of the field
of view. In sky regions, the intensity of pixels in all color channels is large,
which is close to or even higher than the value of global atmospheric light
A. In addition, according to the coarse transmission obtained using dark
channel prior, the transmission in sky regions is low. With all the above
constraints, we can roughly estimate the sky region in original hazy image.
A pixel x is assumed to be located in the sky region only if the following set
of constraints is true: 

x < N,

I(x) > kA,

t̃(x) < l.

(16)

Here, x represents the row index of input hazy image I, N , k, and l are
all constant parameters. Considering the characteristics of the location of
sky regions and their corresponding transmission, the parameters N and l
are fixed at two-thirds of the input image height and 0.2, respectively. The
parameter k measures the degree of similarity between the atmospheric light
and sky regions. In our experiments, we set k = 0.8.

Some examples of automatic sky detection are shown in Fig. 2(e), Fig.
3(c), Fig. 4(b), Fig. 5(e), and Fig. 7(c), where the estimated sky regions
are marked in red. We can see that our method can detect sky regions effec-
tively. Also, it should be noted that we apply this approach automatically
and routinely in all of our experiments. Fig. 6(c) shows another example of
the sky region estimation. This figure illustrates that no sky region is de-
tected, which is in accordance with the intuition of Fig. 6(a) (a hazy image
containing no sky region at all).

3.4. Scene Radiance Recovery

The scene radiance recovered by the simple refined transmission often
contains halo artifacts and color distortions especially in sky regions. With
the automatic sky detector, we can solve these problems with ease.

An alternative way to express Eq. (5) is

J(x) =
I(x)−A

t(x)
+A, (17)
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which indicates that for sky regions whose intensity is lower than the value
of global atmospheric light A, if their corresponding transmission is low at
the same time, it is most likely to have color distortion in these areas. More
specifically, with the low transmission in sky regions, the difference among
the color channels will be magnified several times after dividing this low
transmission t even if the intensity of the red channel Ir, the green channel
Ig, and the blue channel Ib is very close to each other according to Eq. (17).
As a result, the recovered color inevitably deviates from the original scene
and the restored haze-free image may look unnatural (please see Fig. 2(g)).

We propose an alternative way to solve these problems. Obviously, the
main cause lies in the inaccurate transmission. Regardless of the dark channel
prior, the accurate transmission is

tactual(x) =

1− min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)
Ac )

1− min
y∈Ω(x)

( min
c∈{r,g,b}

Jc(y)
Ac )

. (18)

In bright regions such as sky and white objects, min
y∈Ω(x)

( min
c∈{r,g,b}

Jc(y)
Ac ) is

large and will not be close to zero, which means that the actual transmission
tactual(x) is larger than t(x) estimated by Eq. (15). To satisfy the optical
model in inhomogeneous atmosphere, we adjust the refined transmission by
the following equation:

t′(x) = min(max(M/|I(x)−A|, 1) · t(x), 1). (19)

Here, M is a parameter that thresholds the difference between the color
channel of image I(x) and the global atmospheric light A. In our case, the
threshold M is determined by the relation between the value of the global
atmospheric light A and the intensity of the sky region detected in Section
3.3. If the sky region’s intensity is larger than the value of global atmospheric
light, the threshold M is constrained to a small value. Otherwise, M is given
a large value. In our case, the small and large values of the threshold M are
10 and 80, respectively. Note that, when the threshold M equals zero, the
adjusted transmission t′(x) turns to the refined transmission t(x).

Some examples of our adjusted transmission are shown in Fig. 2, Fig.
3, Fig. 4. Fig. 2(d) and 3(d) are the corresponding adjusted transmissions
of the refined transmissions shown in Fig. 2(c) and Fig. 3(b), respectively.
The difference between the adjusted transmission and the refined one is very
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Fig. 5: Comparison with Tan’s work [7]. (a) Input hazy image. (b) Tan’s result. (c) Our
result. (d) Refined transmission. (e) Detected sky region. (f) Our adjusted transmission.

obvious. In the sky region, the refined transmission is very low and even
close to zero while the adjusted one is high. As we mentioned before, in the
actual atmosphere, the transmission in sky regions is high. Therefore, our
adjusted transmission is more suitable for describing the optical model in
actual atmosphere.

Substituting the refined transmission t(x) with our adjusted transmission
t′(x) in Eq. (19), the ultimate recovered scene radiance J(x) can be restored
by

J(x) =
I(x)−A

t′(x)
+A. (20)

Some final restored images are shown in Fig. 2, Fig. 3, Fig. 4.
We show our proposed scene radiance restoration algorithm in Algorithm

1.

4. Experimental Results and Evaluation

In order to demonstrate the effectiveness and robustness of our proposed
algorithm, we have tested our method on a large set of hazy images in nat-
ural environment and urban traffic scene environment. Also, we give several
comparisons with the state-of-art algorithms. We claim that our method
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Algorithm 1 The scene radiance restoration

Step 1: Input an original hazy image I(x) and compute the dark channel
of the first L rows of I as

Idark(x) = min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)), x < L,

where x represents the row index of the hazy image.
Step 2: Estimate the global atmospheric light.
Among the top 0.1 percent brightest pixels in the dark channel Idark(x),
the brightest pixel in the original image I is considered as the global at-
mospheric light A.
Step 3: Estimate the coarse transmission by

t̃(x) = 1− ω min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)

Ac
).

Step 4: Refine the coarse transmission using guided filter:

ti = āT
i Ii + b̄i,

where āi = 1
|ω|

∑
k∈ωi

ak and b̄i = 1
|ω|

∑
k∈ωi

bk, ak =

(Σk + ϵU)−1( 1
|ω|

∑
i∈ωk

Iit̃i − µk
¯̃tk), bk =

¯̃tk − aT
kµk.

Step 5: Detect the sky region.
If a pixel x satisfies the following set of constraints:

x < N,

I(x) > kA,

t̃(x) < l,

we consider that the pixel x belongs to the sky region.
Step 6: Adjust the refined transmission by the following equation

t′(x) = min(max(M/|I(x)−A|, 1) · t(x), 1).

Step 7: Restore the scene radiance by

J(x) =
I(x)−A

t′(x)
+A.
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generates visually appealing results whether the input images contain sky
regions or not. Compared with other existing techniques, the superiority of
our algorithm is that we are able to enhance the image contrast while re-
taining the very fine details and preserving the color of the original scene.
Our adjusted transmission, which is high in sky regions, is more accurate to
describe the imaging process in actual atmosphere than the refined trans-
mission. Therefore, with the adjusted transmission we can nicely handle the
sky regions, the restored results of which always have color distortion when
recovered using the refined transmission. Another advantage of our algo-
rithm is the computation time. Our method implemented on CPU( 3.2GHz
Intel Core i5 Processor) processes a 600 × 400 pixel image in 0.4 seconds.
In comparison, the method of Tan [7] needs five to seven minutes to process
a 600 × 400 pixel image and the algorithm of Fattal [8] takes 35 seconds to
process a 512 × 512 pixel image, while the method of He et al. [9] requires
10-20 seconds to process a 600× 400 pixel image.

4.1. Qualitative Comparison

Figs. 2, 3 and 4 show sky regions detected in the input hazy images, our
adjusted transmission map, and our recovered images. These images are all
urban traffic scenes plagued by haze, and Fig. 2 and Fig. 4 are taken in dense
haze conditions. The global atmospheric light and sky regions in these images
are automatically estimated by our proposed algorithm. As can be seen
from these figures, the adjusted transmissions calculated by our proposed
algorithm are all high in sky regions, which is consistent with the optical
model in the inhomogeneous atmosphere. As illustrated in these figures, sky
regions are effectively and robustly detected. In addition, restored results
indicate that our method is able to remove the haze effects while retaining
very fine details and preserving the color of original scenes. Furthermore, the
contrast in these images is greatly enhanced. As can be seen from Fig. 3(f),
objects on the roof of the building which can barely be seen by human eye
are well restored by our proposed algorithm (please see Fig. 3(g)), and their
visibility is greatly improved as well.

In Fig. 5, we compare our method with Tan’s work [7]. Tan removes the
haze effect by maximizing the local contrast of the recovered image. As can
be seen from Fig. 5(b), the color of the recovered image using this method
is oversaturated even though the contrast is greatly enhanced. The main
reason is that this method is essentially image enhancement technique which
is physical invalid in most cases. Our dehazing algorithm can greatly improve
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Fig. 6: Comparison with He et al.’s work [18]. (a) Input hazy image. (b) Refined trans-
mission map. (c) Detected sky region. (d) Our adjusted transmission map. (e) He et al.’s
result [18]. (f) Our haze removal result. (g), (h), (i) Three patches that are extracted
from input hazy image , He et al.’s result [18] and our result indicated with red rectangles,
respectively.
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the visibility while preserving the original color information as well, which
can be seen from Fig. 5(c).

In Fig. 6, we compare our method with He et al.’s work [18]. As can be
seen from Fig. 6(g), (h) and (i), He et al.’s recovered result loses some details
at the top right of the image. More specifically, the flowers in the original hazy
image are restored to be white, which may be overflown in He et al.’s result.
Moreover, plants in pots are kind of wrongly recovered. The loss of color
and texture information will lead to enormous loss in important occasions.
However, our recovered result can well maintain all the detail information of
original hazy image without sacrificing the fidelity of the colors.

Fig. 7 shows another example of comparison between results obtained
by He et al.’s work [18] and our algorithm. Fig. 7(e) is the result obtained
by [18], which illustrates that the result of this method has color distortions
especially in the sky region, and the shore near the horizon is oversaturated.
In additon, the buildings near the observer are very dark and lose much de-
tailed information. Notice that our result greatly enhances the visibility of
the scene without producing color distortion, thanks to our adjusted trans-
mission map. Moreover, the color of our result is consistent with the original
scene.

4.2. Quantitative Evaluation

In this work, we apply the Image Quality Assessment (IQA) quality mea-
sure, introduced by Aydin et al. [20], to quantitatively assess and evaluate
the quality of dehazing techniques. The IQA metric, including a model of
the human visual system (HVS), is capable of comparing a pair of images
with radically different dynamic ranges. Carefully calibrated and validated
through a series of perceptual experiments, the IQA metric can evaluate both
the contrast changes and three classes of structural changes yielded by tone
mapping operators. The IQA metric classifies the structural changes into
three intuitive categories: loss of visible contrast (green) - contrast that was
visible in the reference image becomes invisible in the transformed image,
amplification of invisible contrast (blue) - contrast that was invisible in the
reference image becomes visible in the transformed image, and reversal of
visible contrast (red) - contrast that is visible in both reference and trans-
formed images, but with different polarity. Loss of visible contrast (green) is
relating to image blurring, while contrast amplification (blue) and contrast
reversal (red) are relating to image sharpening.
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Fig. 7: Comparison with He et al.’s work [18]. (a) Input hazy image. (b) Refined trans-
mission map. (c) Detected sky region. (d) Our adjusted transmission map. (e) He et al.’s
result [18]. (f) Our haze removal result.

Fig. 8 shows the comparative results of employing the IQA metric on
two input hazy images and their corresponding dehazed results, using the
method of Tan [7], Fattal [8], Kopf et al. [19], He et al. [18] and ours. The
top-right table of Fig. 8 shows the average comparative ratios of the color
pixels obtained by the IQA measure. According to the table, our dehazed
results’ loss of visible contrast scored the second best, which means that
image blurring caused by our algorithm is less than other three techniques,
except for He et al [18]. Since Tan [7] removes the haze effect by maximizing
the local contrast of the restored image, it achieved the maximal score in
improving contrast. However, the colors of its recovered results (please see
Fig. 8(b)) are oversaturated and inconsistent with the scene’s original colors.
Compared with other techniques (excluding Tan’s work [7]), our algorithm
restores the images with higher contrast.
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Fig. 8: Evaluation of the recovered results using the IQA metric. (a) Input hazy images.
(b) Tan’s results [7]. (c) Fattal’s results [8]. (d) Kopf et al.’s results [19]. (e) He et al.’s
results [18]. (f) Our results. (g), (h), (i), (j), (k) Corresponding IQA metric responses of
(b), (c), (d), (e) and (f), respectively.
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5. Conclusion and Discussion

In this work, we present an effective and robust method based on dark
channel prior for single image dehazing. Our approach is physical valid and
can achieve visually compelling results. Meanwhile, the processing speed of
our method is fast. Unlike most of previous researches which assume the
attenuation coefficient to be constant in homogeneous atmosphere, we give a
brief description of the attenuation coefficient which decreases exponentially
with respect to the height in inhomogeneous atmosphere. It is more rea-
sonable and comprehensive to the physical interpretation of the attenuation
coefficient. In order to avoid color distortion in sky regions similar to the
atmospheric light, we first propose a fast and effective way to automatically
estimate the rough sky region in the input hazy image. We then adjust the
refined transmission map by comparing the average intensity of our detected
sky region with the value of the global atmospheric light.

Our proposed algorithm has been tested on a large set of images plagued
by haze in natural environment and traffic scene environment. The recovered
results contain few block artifacts and halos even in abrupt discontinuities.
The color distortion that commonly exists in most sky regions are overcome
by our proposed algorithm. Moreover, the results obtained by our proposed
approach can maximize the preservation of detail information and are con-
sistent with the original scenes.

However, our proposed algorithm has its limitations as well, which is re-
sulted from our estimated sky regions. When handling with images plagued
by very dense haze, our algorithm may lead to a false interpretation of ob-
jects shrouded in dense haze as sky regions. Fortunately, our sky detection
approach can be applied to most cases.

In the future work, we would like to develop more accurate and robust
algorithms for image haze removal and extend our work to the problem of
video dehazing.
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