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ABSTRACT

In this paper, we present an algorithm to simultaneously
obtain high-resolution images and segmentation maps from
low-resolution inputs. Super-resolution and segmentation
both are challenging task, but they may have certain rela-
tionship. Super-resolution will provide images with more
details that may help to improve the segmentation accuracy,
while label maps in segmentation dataset may contribute to
finer edges during super-resolution process. Therefore, we
aim to combine these two tasks and explore the influence
for each other. For this end, we proposed a new deep neu-
ral network to simultaneously address the super-resolution
and segmentation tasks for remote sensing images, which
is named S2Net. The S2Net is an integrated network com-
posed of a super-resolution sub-network and a segmentation
sub-network, which is trained in an end-to-end manner. Ex-
perimental results demonstrate that this combination can
enhance the performance on these two tasks.

Index Terms— Remote sensing images, Super-resolution,
Segmentation, S2Net

1. INTRODUCTION

Super-resolution aims to recover high-resolution images
from the corresponding low-resolution ones, which has been
widely used in many applications such as security and surveil-
lance imaging, medical imaging and remote sensing image
reconstruction. In the field of remote sensing, high-resolution
images which contains many details are important for re-
mote sensing applications such as image segmentation, target
detection and recognition [1, 2]. Apart from developing
physical imaging technologies, image super-resolution is
an alternative way to obtain high-resolution remote sensing
images.

Single image super-resolution generates a high-resolution
image from a low-resolution input, which has received in-
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creasing attentions in recent years. Sparse coding method
is used to learning compact dictionary for recovering low-
resolution images [3]. Pan et al. [4] combined compres-
sive sensing with structural self-similarity to recover high-
resolution remote sensing images from low-resolution ones.

Recently, deep convolutional neural networks (CNN)
have made a breakthrough in the computer vision community
and also has been widely used in many remote sensing tasks
including super-resolution [5, 6, 7]. The deep CNNs can
extract high-level feature representations automatically from
data and learn a deep mapping function between low/high-
resolution images. Dong et al.[8] introduced a three-layers
CNN named SRCNN to generate high-resolution images
trained in an end-to-end manner. Lei et al.[7] proposed a
local-global combined network to learn multilevel represen-
tation of remote sensing images. Wang et al.[9] utilized
multiple convolutional neural network,s to learn wavelet mul-
tiscale representations of remote sensing images.

However, these existed methods mainly focus on the
recovery of the low-resolution inputs and little researches
explore the influence of super-resolution task for some high-
level applications such as segmentation, where they may have
certain rela,tionship. Super-resolution will provide images
with more details that may be helpful for following segmen-
tation. Meanwhile, label maps in segmentation dataset may
contribute to finer edges during super-resolution process.
Therefore, more attentions should be paid on the combination
of super-resolution and segmentation tasks.

In this paper, we aims to super-resolve low-resolution re-
mote sensing images with a large upscale factor 4, and ex-
plore whether the super-resolution task would be combined
with a high-level segmentation task. For this end, we here
propose a new deep neural network to simultaneously per-
form super-resolution and segmentation for remote sensing
images, which we call S2Net. Specifically, the S2Net is com-
posed of a super-resolution sub-network and a segmentation
sub-network to handle these two issues respectively, which is
trained in an end-to-end manner. The flowchart of the pro-
posed method is shown in Fig.1.

The mainly contributions of this paper lie in that we pro-
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Fig. 1: Flowchart of the proposed method for remote sensing
images. The ’conv/w’ indicates that the convolutional layer is
followed with a nonlinear function ReLU.

posed a new method named S2Net to simultaneously address
super-resolution and segmentation tasks for remote sensing
images, and experimental results show that the combination
can enhance the performances of each task.

2. THE PROPOSED METHOD

2.1. Super-resolution Sub-network

Before segmentation, the low-resolution images are firstly re-
constructed by the super-resolution sub-network. The archi-
tecture of the super-resolution sub-network is illustrated in
Fig.1. We found that in an end-to-end training manner the
reconstructions (ŷ2 in Fig.1) followed with the segmentation
part would not be pleasant for human perception. Thus we
design two branches in the super-resolution network to gen-
erate high-resolution images. The first branch is composed of
four convolutional layers and generate final high-resolution
images for visualizations, and the second one is a a shal-
low network with two convolutional layer to obtain recon-
structions for the following segmentation sub-network. They
are both built on a same backbone and share the network
weights. In this paper, the backbone consists of one convolu-
tional layer and two residual blocks, where the residual block
is constructed following [10] without batch normalization.

In order to prevent from information loss, pooling layers
are avoided and only fully convolutional layers are utilized.
Moreover, these convolution layers are followed a nonlin-
ear function ReLU except output layers of the two branches,
which are showed in Fig.1.

Here, we denote the low-resolution remote sensing im-
ages as {x(i), ..., x(N)} and the corresponding high-resolution
ones as {y(i), ..., y(N)}, respectively. The low-resolution in-
put x is firstly upscaled to the same size of high-resolution
reference y using bicubic interpolation. Furthermore, we
use ŷ1 and ŷ2 present the outputs of these two branches,
and pixel-wise loss functions are defined to optimize for the

super-resolution network:

Lsr1 =
1

N

N∑
i=1

||y(i) − ŷ(i)1 ||2

Lsr2 =
1

N

N∑
i=1

||y(i) − ŷ(i)2 ||2 (1)

where N is the total number of training samples.

2.2. Segmentation Sub-network

The outputs of the second branch of super-resolution part are
taken as inputs of the following segmentation sub-network to
obatin segmentation maps. In order to distinguish the object
from its surroundings, strided-convolutional layers are used to
enlarge the receive field of the segmentation model. And de-
convolution operations are applied to get original spatial res-
olution. Specifically, the receive field of CNNs can be com-
puted as follows:

RF (l+1) = (k(l+1) − 1) ∗
l∏

i=1

s(i) +RF (l) (2)

whereRF (l) and s(i) is the receive field and the stride of layer
l, respectively, and k(l) denote the kernel size of this layer. In
our experiments, images are 96×96 pixels and we thus design
the network with a maximum receive field of 63 pixels, and
the feature maps of bottom and top layers are concatenated for
finer segmentation maps. The detailed configurations of the
segmentation architecture are presented in Table 1. In order
to accelerate the training phase, we add batch normalization
in this model.

Following Mask R-CNN [11], in this paper, we used
binary cross-entroy loss function for the segmentation sub-
network which is defined as:

Lseg =
1

N

N∑
i=1

(z(i)∗log(ẑ(i))+(1−z(i))∗log(1−ẑ(i))) (3)

where ẑ and z denote the output of the segmentation sub-
network and the corresponding label.

Therefore, the overall loss function of S2Net model can
be computed as:

L = λsr1 ∗ Lsr1 + λsr2 ∗ Lsr2 + λseg ∗ Lseg (4)

where λsr1, λsr2 and λseg are the weights of their correspond-
ing losses.

3. EXPERIMENTS

3.1. Dataset and Implementation Details

The experimental dataset contains three classes of remote
sensing images including airplanes, ships and oiltanks with
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Table 1: The Detailed Configurations of the Segmentation
Sub-network

Layer names Kernels Sizes/Strides
seg conv1 64 3× 3/2

seg conv2 64 3× 3/2

seg conv3 64 3× 3/2

seg conv4 64 3× 3/2

seg conv5 64 3× 3/1

seg deconv6 64 3× 3/2

cconcat: conv3/deconv6 − −/−
seg deconv7 64 3× 3/2

cconcat: conv2/deconv7 − −/−
seg deconv8 64 3× 3/2

cconcat: conv1/deconv8 − −/−
seg logits 1 3× 3/1

the size of 96×96, and the numbers of these targets are 2609,
1732 and 2208 respectively. We randomly select 80% of the
samples for training and the others for test. All the images
are downsampled (scale factor = 4) as low-resolution images
with the original as high-resolution references. Furthermore,
the training samples are augmented by random rotation and
mirroring and they all are normalized in the range of [0, 1].

In this paper, three metrics are used to evaluate the pro-
posed method, including PSNR (peak-signal-noise-ratio),
SSIM (Structural Similarity Index Measure) and IoU (Inter-
section of Union). PSNR and SSIM are utilized to measure
the super-resolution performance, and IoU is used to evalu-
ate the segmentation performance. Since the samples in the
dataset are RGB images, PSNR and SSIM are computed by
averaging among three channels.

In the training phase, λsr1, λsr2 and λseg are fixed as 1,
1 and 0.01. For optimization, we use Adam to minimize with
β1 = 0.9 and β2 = 0.999. Moreover, learning rate is 0.0001
and the number of mini-batch is 64. All these experiments are
implemented with tensorflow package.

3.2. Experimental Results

Here, we evaluate the performance of the proposed method
on the test set, compared with some other methods including
bicubic interpolation, SRCNN [8], SR-9 and Seg-8. It should
be noted that SR-9 and Seg-8 both are the baseline models of
our proposed method, where SR-9 with 9 convolutional lay-
ers has the same architecture with the super-resolution sub-
network without the second branch and Seg-8 is similar with
the segmentation sub-network with convolutional and decon-
volutional layers. These methods are trained with the same
configurations with the proposed method.

Table.2 presents the results of different methods on the
test set. We can see that S2Net obtains higher PSNR and
SSIM than SR-9 and meanwhile achieves better segmentation
results than Seg-8, which proves the effectiveness of the pro-

Fig. 2: Super-resolution results for remote sensing targets
(PSNR/dB): (a) airplane; (b) ship; (c) oiltank (Zoom in for
best view).

posed method. Fig.2 and Fig.3 show the super-resolution and
segmentation results for remote sensing targets, respectively.
From Fig.2, it can be found that the results of the proposed
method have less artifacts than other methods. Moreover,
Fig.3 demonstrates that via combining with super-resolution
sub-network, S2Net obtains more accurate segmentation re-
sults than Seg-8.

4. CONCLUSION

In this paper, we design a new network named S2Net to
simultaneously perform super-resolution and segmentation
tasks for remote sensing images. The S2Net is composed of
a super-resolution sub-network with a two-branch structure
and a segmentation sub-network with low/high-level repre-
sentation concatenations. The experimental results on three
kind of remote sensing targets including airplanes, ships and
oiltanks show that the S2Net can obtain improvements on
both super-resolution and segmentation tasks.
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Table 2: Mean PSNR (dB), SSIM and IoU over all the test data set

class
Bicubic

PSNR / SSIM
SRCNN

PSNR / SSIM
SR-9

PSNR / SSIM
Seg-8
IoU

S2Net
PSNR / SSIM / IoU

airplane 23.42/0.721 24.89/0.777 25.14/0.788 0.666 25.36/ 0.793 / 0.673
ship 28.59/0.827 29.26/0.842 29.52/0.849 0.553 29.61/ 0.852 / 0.632

oiltank 28.32/0.829 29.23/0.863 29.45/0.867 0.784 29.81/ 0.871 /0.765
average 26.78/0.792 27.80/0.827 28.04/0.835 0.668 28.26/ 0.839 / 0.690

Fig. 3: Segmentation results for remote sensing targets: (a)
airplane; (b) ship; (c) oiltank (LR denotes the low-resolution
input).
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