
1

Richer U-Net: Learning More Details for Road
Detection in Remote Sensing Images
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Abstract—Road detection in remote sensing images has been
an important research topic in the past few decades. However,
with complex backgrounds and occlusion of vehicles and trees,
it is difficult for most road detection methods to obtain complete
and accurate results. There will be a large number of error
and omission detections in such complex scenes due to the poor
utilization of detailed information. Therefore, in this paper, we
propose a novel road detection method called Richer U-Net,
which alleviates this problem by designing two detail enhance-
ment strategies. Firstly, considering that convolution operation
will cause the loss of detailed information in the feature map, an
enhanced detail recovery structure (EDRS) is introduced to make
full use of those lost information. It combines the output of each
convolutional layer at the same level for the detail recovery of
decoding network, leading to more accurate segmentation results.
Secondly, an edge-focused loss function is proposed to guide the
network to pay more attention to road edge area. By adding
an enhancement factor, the pixels closer to edge will contribute
more loss. Corresponding experiments are conducted on two
public datasets respectively, and it can be shown that our method
effectively improves final detection results.

Index Terms—Remote sensing, road detection, deep learning,
detailed information.

I. INTRODUCTION

ROAD detection from remote sensing images is a very
challenging research topic. It is widely used in urban

transportation, disaster management and geographic informa-
tion updating, and of great significance in our daily life. This
task generally needs to extract the pixels of road areas, or
label the pixels of road centerlines for the construction of the
road network. Since it is time-consuming to manually label
the road areas, accurate automatic road extraction has become
an urgent problem to be solved.

Compared with natural images, remote sensing images have
complex backgrounds, making it difficult to obtain accurate
segmentation results. At the same time, due to the occlusion
of trees, shadows and vehicles, the results may contain many
error and omission detections. In the past few decades, a
large number of methods [1] have been proposed to solve
these problems. Among them, machine learning methods are
relatively common at present, such as [2], [3]. These methods
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need to manually extract representative road features, and then
make pixel-wise classifications using SVM or other classifiers.
After obtaining road areas, morphological thinning or non-
maximum suppression [4] is generally exploited to extract road
centerlines.

Recently, as deep learning has achieved great success in the
field of semantic segmentation [5]–[7], some deep networks
begin to be applied for road detection [8]–[10]. Through learn-
ing from large amounts of data, the networks can automati-
cally extract more effective features, thereby obtaining more
accurate segmentation results. Zhang et al. [8] designed a road
extraction network, which combines the strengths of residual
learning and U-Net. Cheng et al. [9] proposed a cascaded
convolutional network to deal with road segmentation and
centerline extraction tasks simultaneously. The performance
of these two methods both exceeds that of traditional road
detection algorithms.

However, despite the improvements in current road de-
tection methods, there are still many unavoidable error and
omission detections, especially in the road edge areas. In
the process of extracting features, the convolutional network
continuously loses the details. Without these details, it is
difficult to obtain accurate segmentation results, which can
lead to a large number of burrs and deletions in final centerline
extraction results.

To solve the problems mentioned above, in this letter, we
propose a novel method, Richer U-Net, which retains and
learns richer details than other methods. Our network uses an
encoder-decoder architecture similar to U-Net [6]. The decoder
network preserves more details by fusing features from all
convolutional layers at the same level. Meanwhile, considering
the details of road edge area are more difficult to learn, we
design a loss function that pays more attention to the learning
of the road edge region, so that the network can get better
segmentation results in the border area. Our work mainly has
the following two contributions:
• An improved encoder-decoder network, Richer U-Net, is

proposed, which introduces an enhanced detail recovery
structure (EDRS) to preserve richer features for more
accurate segmentation results.

• In order to enable the network to learn more edge detail
features, we propose an edge-focused loss function to
promote the segmentation results of road edge region by
paying more attention to these areas.

The remainder of this letter is as follows. Section II in-
troduces our method in detail, including the enhanced detail
recovery structure (EDRS) and the edge-focused loss function.
Section III shows the experimental results and related analysis,
and Section IV is the conclusion.
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(a) Overall Architecture (b) EDRS

Fig. 1. The network structure of Richer U-Net. (a) Overall Architecture. /2 represents the pooling operation, and ×2 represents the upsampling operation.
The area of gray dotted line stands for EDRS; (b) Enhanced Detail Recovery Structure (EDRS). Take the third level of convolutin layers as an example, the
structure includes an encoding block and a decoding block, and the output of the three convolutional layers is fused for the detail recovery in decoding block.

II. METHODOLOGY

In this section, we explain the overall architecture of Richer
U-Net first, and then introduce the two strategies of EDRS and
edge-focused loss separately.

A. Richer U-Net Architecture

In convolutional neural networks, shallow features often
contain more detailed information, such as edges and textures,
while deep features are more informative in abstract sematic
information. Therefore, most of semantic segmentation meth-
ods use strategies that integrate shallow features to obtain more
refined segmentation results. For road detection from remote
sensing images, this seems to be more important. Complex
backgrounds and small road areas lead to the detailed infor-
mation having a great influence on the segmentation results. In
order to solve the problem of lack of detailed information, in
this paper, we have adopted an encoder-decoder structure that
combines more deep and shallow features to make the output
of the network contain more detailed information. As shown in
Fig.1, the decoding block merges more detailed features into
the feature map during the upsampling process, so we can get

ci = concat(ui, S (xi)) (1)

where ci represents the output of the ith decoding block, ui is
is the feature map after upsampling, S (xi) is the supplementary
details of the corresponding encoding block, concat denotes
the concatenation operation.

Our baseline network uses the first 13 convolutional layers
of VGG16 [11] as encoder and a corresponding symmetric
structure is adopted as decoder. The encoder has a down-
sampling multiple of 32. Considering the road area in remote
sensing images is generally very narrow, if the downsampling
multiple is too large, it will not only affect the segmentation
accuracy, but also cause the missing of small-sized roads. By
changing the stride of the latter two pooling layers to 1, the
entire network downsampling multiple is changed from the
original 32 times to 8 times, thus obtaining a feature map with
more detailed information. As shown in Fig.1, it is the overall
network structure diagram of Richer U-Net. Each convolution
layer is followed by a batch normalization layer [12] and a

relu activation layer [13]. These convolutional layers can be
divided into five levels according to the pooling layer, each
level containing 2 or 3 convolutional units, which are used to
extract adjacent scale features. At the same time, we use the
bilinear interpolation method to upsample feature maps, which
is beneficial to obtain a denser feature map, thus ensuring
the uniformity of segmentation results. After getting the road
segmentation results, a morphological skeleton method is used
to get the road centerline.

In order to improve the segmentation results, most of road
detection networks currently adopt an encoder-decoder struc-
ture, such as [6], [8]. However, there exist many differences
between our network and other networks. On the one hand,
our network pays more attention to the flow of details, and it
is more efficient for the fusion of features both in space and
channels and helps to eliminate semantic differences [14]. On
the other hand, a modified structure is introduced, which uses
a more direct way to facilitate the fusion of different features,
to make the features of each convolutional layer in the encoder
be fully utilized. This structure is different from the residual
block, and there is no identity mapping in the module. Instead,
it makes full use of more features in a reasonable way and
improves the diversity of features, thereby retaining the details
lost during the convolution process.

B. Enhanced Detail Recovery Structure (EDRS)
It is critical to improve the details of the deep features

for road detection tasks. Liu et al. [15] pointed out that the
information obtained by different convolution layers gradually
becomes coarser. In each block, the useful details contained
in the previous convolutional layer are lost in the last layer,
while traditional networks only use the output of the last layer
to recover the details. Therefore, in order to make full use of
the details, an enhanced detail recovery structure (EDRS) is
introduced, as shown in Fig.1. It can be seen that in the past
only the final output of each block was used for the decoding
network to restore the details. By adding EDRS, the outputs of
all convolution layers in each block are fused and then used for
the detail recovery of decoding network. The supplementary
detailed information in the former case is defined as

S (xi) = F(xi) = f3( f2( f1(xi))) (2)
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Fig. 2. The schematic diagram of edge-focused loss. The solid line represents
the edge of the road, and between the two solid lines is the road area. We
set the buffer width with ρ, and the area between the two dashed lines is the
region where our loss focuses on learning.

where F(xi) denotes the output of the ith encoding block. After
adding EDRS, it can be defined by

S (xi) = f1(xi) + f2( f1(xi)) + f3( f2( f1(xi))) (3)

where f1, f2, f3 respectively represent the equivalent functions
of three convolutional layers in the encoding block. From the
perspective of information flow, there is less information lost
in the network, so the details of the segmentation results will
be more accurate.

Unlike RCF [15] for edge detection, EDRS is designed
for road detection tasks. The convolution layer before sum
operation is removed. Instead, the sum operation is directly
applied to the original features, which can avoid more infor-
mation loss. Also, the summation result is concatenated with
the previous high-level feature, and then progressive feature
fusion and dimensionality reduction are performed. In fact,
for road detection, this kind of progressive approach is more
conducive to feature fusion. After adding EDRS, the original
network only have five more sum operations, and there is no
increase in other parameters.

C. Edge-Focused Loss Function

At present, most semantic segmentation methods use cross-
entropy loss for training, which focuses on the classification
correctness of each pixel in the optimization process and has
the same weight for pixels in different regions.

However, for the binary classification problem like road
detection in remote sensing images, both road and background
areas are easy to learn. What is difficult to learn is their border
area, which contains more useful information, and insufficient
attention will lead to the edge areas of segmentation results
being too rough. In response to this problem, we propose a
loss function that can focus on the learning of road boundary
areas. By increasing the weight of the loss in the edge region,
our network can learn more details. Thus, our edge-focused
loss Le f can be defined as

Le f (θ) = −
1
N

N∑
i=1

C∑
j=1

[
(1 + g (di))1{yi = j} log(p j(xi|θ))

]
(4)

where θ represents the network parameters, N is the number
of pixels, C is the number of categories. xi is the ith input
pixel, while yi is its corresponding label. 1{yi = j} is an

(a) EDRS (U-Net) (b) edge-focused loss (SegNet)

Fig. 3. Visual strategy ablation analysis. The first row is the original image,
the second row is the road detection results without EDRS or edge-focused
loss, the third row is the results with EDRS or edge-focused loss.

indicator function, and p j(xi|θ) is the output of the softmax
layer corresponding to the jth class. g(di) is a reinforcement
factor, it is defined by

g(di) =

αe−
di
ρ 0 ≤ di < ρ

0 di ≥ ρ
(5)

where di represents the distance from the ith pixel to the
nearest road edge pixel, α and ρ are two coefficients, of which
α determines the degree of enhancement for learning effect in
the boundary region, and ρ is a buffer width that determines
the buffer region to be enhanced, as shown in Fig.2.

As can be seen from the equation above, our proposed edge-
focused loss does not change the loss of pixels outside the road
edge buffer area, but by adding a variable coefficient, the loss
of edge area is enhanced, and the closer the pixel is to the
edge, the more enhancement is obtained.

In order to reduce the amount of computation in the process
of calculating loss, we use the method of morphological
dilation to get the distance to the nearest road edge. For the
input binary image, we first perform the contour extraction
operation to get the road edge, and then continuously use the
disk with radius of 1 for the dilation operation. Meanwhile,
we set distance value of the added pixel after the kth dilation
to k, and the edge pixel value is set to 0, thereby obtaining a
distance map. It can be seen that the distance from the pixel
to the edge obtained by the dilation is the sum of the lateral
distance and the longitudinal distance, so di is actually the
manhattan distance.

III. EXPERIMENTS

In order to verify the effectiveness of our method, in
this section, we conduct experiments on two public datasets
respectively, and compare the results with other methods.

A. Datasets

1) Google Earth Dataset: The dataset is constructed by
Cheng et al. [9]. It contains a total of 224 remote sensing
images, of which the training set contains 180 images, the
validation set contains 14, and the test set contains 30. The
resolution of images is 1.2m, and the average width of road
is about 15 pixels.
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TABLE I
Hyperparametric experiment results on two validation sets, where the

metrics in bold are the best.

Google Earth
α = 1

ρ 1 2 3 4 5 6
IOU 0.8422 0.8503 0.8508 0.8566 0.8621 0.8612

ρ = 5
α 1 2 3 4 5 6

IOU 0.8621 0.8625 0.8627 0.8632 0.8625 0.8614

Massachusetts
α = 1

ρ 1 2 3 4 5 6
IOU 0.5734 0.5786 0.5812 0.5765 0.5742 0.5724

ρ = 3
α 1 2 3 4 5 6

IOU 0.5812 0.5825 0.5850 0.5863 0.5835 0.5812

2) Massachusetts Dataset: The dataset is published by
Volodymyr Mnih [16] with the resolution of 1m. The training
set contains 1108 images, the validation set is 14 and the test
set is 49. Since the road in this dataset is narrow with the
average width of 7 pixels and there are many occlusions, the
difficulty of segmentation is relatively large.

B. Experiment Setting

The deep learning framework Caffe [17] is used to imple-
ment our network. The encoder uses the pre-training param-
eters of VGG16 [11] on the ImageNet for initialization, and
the decoder adopts the msra [18] for initialization. In order to
train the network better, some data augmentation operations
are adopted. For an original image, we first randomly crop
25 images of 320×320 size, and then the cropped images are
rotated and mirrored. Also, we set the initial learning rate to
0.01, and it is gradually reduced by a factor of 0.1 every 10000
iterations, and there are a total of 60,000 training iterations.
With SGD method for training, the batch size is set to be 4.
The momentum is 0.95, and the weight decay is 0.0005. In the
test phase, we divide the image into small blocks of 512*512
for processing, and there exist overlapping areas of 20 pixels
between these blocks to avoid the border effect. All compared
methods have the same experiment settings.

C. Results and Comparisons

1) Evaluation Metric: Similar to most of semantic segmen-
tation methods, IOU is adopted to measure the performance
of road detection, which can be defined as

IOU =
T P

T P + FP + FN
(6)

where T P represents the true positive, FP represents the false
positive, and FN represents the false negative.

2) Hyperparameter Selection: In edge-focused loss, α de-
termines the degree of enhancement and ρ is a buffer width.
To some extent, α is insensitive to dataset and ρ should be
proportional to the average road width in the dataset. There is
no strong correlation between them, so they can be decoupled
to get the suboptimal values separately. As shown in Table I,
we set α = 1 and then explore an optimal value for ρ. For
Google Earth, this ρ value is 5, and for Massachusetts, this
value is 3. Then we fix the optimal ρ value and explore an
optimal value for α. It can be found that for the two datasets,
α = 4 seems to be a reasonable choice. Also, the average road

TABLE II
Ablation experiments on two test sets, where the horizontal line indicates
that the experiment cannot be performed. EDRS represents the network
with the enhanced detail recovery structure, EF stands for training with

the edge-focused loss.

Datasets EDRS EF SegNet [5] CasNet [9] U-Net [6] Baseline

Google Earth
0.8955 0.8955 0.9104 0.9128

X — — 0.9122 0.9146
X 0.8960 0.8976 0.9125 0.9134

Massachusetts
0.5542 0.5481 0.5842 0.5955

X — — 0.6074 0.6139
X 0.5752 0.5621 0.6125 0.6098

TABLE III
Comparison experiments on two test sets, where the metrics in bold are the
best. Ours represents our baseline with EDRS and edge-focused loss.

Datasets SegNet [5] CasNet [9] U-Net [6] ResUnet [8] Ours

Google Earth 0.8955 0.8955 0.9104 0.8982 0.9154
Massachusetts 0.5542 0.5481 0.5842 0.6181 0.6277

width of the Google Earth is 15, and the Massachusetts is 7.
So ρ is recommended to take about 1/3 to 1/2 of the average
road width.

3) Ablation Analysis: For a fairer comparison, we combine
VGG16 with a symmetrical decoding structure as our baseline.
Since SegNet and CasNet use the Max-pooling Indices for
upsampling, EDRS cannot be applied to these two networks,
but edge-focused loss can. Thus, we separately studied the
impact of these two strategies on different networks. As shown
in Table II, EDRS is applied to U-Net and our baseline
respectively and has stable improvements for both backbones.
Also, experiments about edge-focused loss are conducted on
SegNet, CasNet, U-Net and our baseline respectively. It can
be seen that for different networks, the results using edge-
focused loss are better than those using cross entropy loss. The
above results fully demonstrate the validity of our strategies
and hyperparameters for different backbones. Combined with
the visual results in Fig.3, it can be found that EDRS and edge-
focused loss can indeed improve the details of the segmenta-
tion and avoid many omission detections and discontinuities,
getting more uniform road areas and smoother centerlines.

4) Comparison Experiments: As shown in Table III, it
can be seen that our method has achieved the state-of-the-
art results. Since Google Earth dataset is relatively simple,
our improvement seems to be small. But in Massachusetts
dataset, our approach has greatly improved the results. In fact,
the roads in Massachusetts dataset are much smaller, which
also reflects the effectiveness of our method to improve the
road detection results by retaining and learning more details.
Also, the roads in Massachusetts are regular and the MSE loss
helps to learn this regular structural information, which lead to
ResUnet performing well on Massachusetts but getting poor
results on Google Earth.

As shown in Fig.4, we adopt a more intuitive way to
show the ground truth and segmentation results. For Google
Earth dataset, due to the occlusion of the shadows and trees,
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(a) Original Image (b) SegNet (c) CasNet (d) U-Net (e) ResUnet (f) Ours

Fig. 4. Visual comparision of different road detection algorithms. The first row is on Google Earth dataset, the second row is on Massachusetts dataset. The
area inside the red box is partially enlarged. (a) Original Image; (b) SegNet [5]; (c) CasNet [9]; (d) U-Net [6]; (e) ResUnet [8]; (f) Ours. In the result images,
green represents true positive (TP), red represents false positive (FP), blue represents false negative (FN), black represents the centerline.

there is an obvious omission detection at the lower left
for SegNet and CasNet, as is shown in red box, and their
edge areas of the segmentation are too rough. The omission
detection is slightly avoided for U-Net. ResUnet has many
obvious omission detections, which is likely due to the MSE
loss. Our method completely avoids the bottom left miss,
meanwhile with a finer edge and a smoother centerline. For
Massachusetts dataset, there are large amounts of omission
detections in SegNet, CasNet, U-Net and ResUnet. In our
method, more omissions are avoided, and a relatively complete
road centerline is obtained.

IV. CONCLUSION
In this letter, Richer U-Net is proposed for road detection

in remote sensing images. By learning and retaining more
details with EDRS and edge-focused loss, our network finally
obtains more accurate segmentation results. The experiment
results show that the detailed information contributes to the
identification of the road pixels and plays an important role in
the road segmentation task. However, for images with more
complex backgrounds, the road detection results are still not
ideal. Meanwhile, the improvement of details can not avoid all
error and omission detections. In the future work, we hope to
propose a more effective road detection method to solve these
problems by combining tracking strategies.
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