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Abstract—High-resolution hyperspectral remote sensing im-
ages are of great significance to agricultural, urban, and military
applications. However, collecting and labeling hyperspectral im-
ages is time-consuming, expensive and usually heavily relies on
domain knowledge. In this paper, we propose a new method
for generating high-resolution hyperspectral images as well as
sub-pixel groundtruth annotations from RGB images. Given
a single high-resolution RGB image as its conditional input,
unlike previous methods directly predict spectral reflectance
that ignores the physics behind, we consider both imaging
mechanism and spectral mixing, and introduce a deep generative
network that first recovers the spectral abundance for each
pixel, and then generate the final spectral data cube with the
standard USGS spectral library. In this way, our method not
only synthesizes high-quality spectral data existing in real-world
but also generates sub-pixel-level spectral abundance with well-
defined spectral reflectance characteristics. We also introduce
a spatial discriminative network and a spectral discriminative
network to improve the fidelity of the synthetic output from both
spatial and spectral perspectives. The whole framework can be
trained end-to-end in an adversarial training paradigm. We refer
to our method as “Physics-informed Deep Adversarial Spectral
Synthesis (PDASS)”. On the IEEE grss dfc 2018 dataset, our
method achieves an MPSNR of 47.56 on spectral reconstruction
accuracy and outperforms other state-of-the-art methods. As
latent variables, the generated spectral abundance and the
atmospheric absorption coefficients of sunlight also suggest the
effectiveness of our method.

Index Terms—Hyperspectral image, remote sensing, Gener-
ation Adversarial Networks (GAN), spectral super-resolution
(SSR), imaging model

I. INTRODUCTION

HYPERSPECTRAL remote sensing imagery (HSI) en-
dows its unique advantages in object recognition [1],

and is widely used in many fields such as urban planning [2–
5], precision agriculture [6], and environmental monitoring [7].
However, high-spatial resolution hyperspectral remote sensing
images are very hard to obtain. Usually, for airborne spectral
sensors, the spatial resolution of hyperspectral imagery is
usually lower than 1m/pixel [8, 9]. For spaceborne sensors, the
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resolution is even as low as 30m/pixel [10]. The ground truth
annotation is time-consuming, expensive, and may heavily
require extensive fieldwork. The mixture of subpixel spectral
data also brings additional difficulties.

In recent years, efforts have been made in developing post-
processing methods to overcome hardware limitations and
acquire remote sensing images with both high spatial and
spectral resolution. There are mainly three groups of approach-
es: hyperspectral image spatial super-resolution [11], spectral
super-resolution [12] and image fusion [13]. Although efforts
have been made in the above directions, there is still a huge
gap between current methods and practical applications of
hyperspectral images. The key reason is that the hyperspectral
data synthesis process is highly ill-posed and the data from
the above methods lacks necessary physical meaning. For
example, most recent super-resolution based methods [10, 14–
18] frame the spatial/spectral data generation as a pair-wise
regression process. At the inference stage, these methods di-
rectly predict band-wise spectral reflectance of each input pixel
location while ignoring the physics behind. This will bring a
problem that the predicted spectral data may not truly exist
in the real world. Although some recent approaches [19, 20]
introduce adversarial training to improve the visual fidelity
of the generated data, the imaging mechanism, and sub-pixel
spectral mixing are simply ignored.

In this paper, we propose a deep conditional generative mod-
el for high-resolution hyperspectral image synthesis and refer
to it as “Physics-informed Deep Adversarial Spectral Synthesis
(PDASS)”. We start from the remote sensing imaging model
that fully considers imaging mechanisms including spectral
mixing, the influence of sunlight intensity, atmospheric absorp-
tion, and quantification. Given a single input high-resolution
RGB image, the method first recovers the abundance for each
type of ground feature at each pixel location, then generates
the final spectral data cube by utilizing the standard USGS
spectral library [21] and the imaging model. As a result,
the method not only produces high-quality spectral data but
also generates sub-pixel-level spectral abundance with well-
defined spectral reflectance characteristics. To further improve
the visual fidelity of the synthetic hyperspectral data cube, we
design our learning framework based on the recent success of
deep generative adversarial networks [22–24]. We introduce
a spatial discriminator and a spectral discriminator to model
the true distribution of real-world hyperspectral data from
both spatial and spectral dimensions, and help the generative
network produce better results.



IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2022 2

The proposed method has several advantages. First, the
causal factors behind the generated data can be nicely re-
covered. This means that we can not only generate synthetic
hyperspectral data itself but also clearly know which types of
ground objects (spectrum identity in the library) are contained
at each pixel and how much proportion (spectral abundance)
they have. Second, the training of our method is conducted in
a self-supervised fashion, neither relies on the pairwise RGB-
hyperspectral images, nor the groundtruth of abundance. Third,
the effect of solar radiation after atmosphere absorption at dif-
ferent wavelengths and quantification can be easily eliminated
since it can be optimized all together with the spectral mixing
model under a unified framework.

Extensive experiments are conducted to verify the effec-
tiveness of the method. Our method generates physically
and visually meaningful results in terms of both band-wise
spatial images and pixel-wise spectral curves. On the IEEE
grss dfc 2018 dataset, our method outperforms other state-
of-the-art methods on spectral reconstruction accuracy. Since
our method can synthesize high-quality hyperspectral data
based on RGB data, at the same time generate sub-pixel
labels, it may be of great help to real-world problems such as
hyperspectral target detection and ground object classification.
Our code is publically available at http://levir.buaa.edu.cn/
Code.htm.

The contributions of this paper are summarized as follows:

1) We propose a new method for remote sensing hyper-
spectral image synthesis. Given an input high-resolution
RGB image, the proposed method can not only produce
realistic hyperspectral image data but also recover the
causal factors behind each pixel location, including the
ground object spectral signature as well as the abundance.
As a comparison, most previous methods ignore the
physics and can only produce spectral data.

2) Starting from the imaging mechanism and linear mixing
model, the proposed method fully considers the effects
of solar illumination and atmospheric absorption. The
atmospheric absorption factors and the abundance map
are solved as implicit variables without using per-image
ground truth annotation. Although there are no auxiliary
supervised signals added to the training process, exper-
iments show that the estimated atmospheric absorption
factors are consistent with the true measurements [25],
which strongly suggests the rationality of our design.

The rest of the paper is organized as follows. Section II
introduces the related works of HSI reconstruction. In section
III, details of the proposed method are introduced. Section IV
provides experiments on the effectiveness and rationality of
the method. Finally, we conclude the method in Section V.

II. RELATED WORK

In this section, we briefly review three groups of methods
for hyperspectral image reconstruction, including hyperspec-
tral image (spatial) super-resolution, image fusion, and spectral
super-resolution.

A. Hyperspectral Image Super-Resolution

Hyperspectral image super-resolution aims at improving
the spatial resolution of HSI while keeping the spectral da-
ta unchanged [26]. Many manual prior based methods use
sparsity and image neighborhood dependence [11, 27] for
spatial super-resolution, but they have limited model capacity
and fail to recover more details. With the development of
Convolution Neural Networks (CNNs), many super-resolution
methods directly learn a mapping from low-resolution input
to high-resolution output with CNNs [26, 28–32]. In addition
to CNNs, some classical image analysis methods are also
introduced to hyperspectral image super-resolution, such as
Non-negative Matrix Factorization (NMF) [33] and Mutu-
al Dirichlet Net [34]. Besides, single-image super-resolution
methods mining the internal characteristics of HSI to restore
spatial details with CNN [32] or Bayes energy minimization
(EM) [35].

B. Image Fusion

Different from image spatial super-resolution, image fu-
sion approaches aim at improving spatial resolution hyper-
spectral images with well-registered auxiliary high-resolution
RGB/multispectral images (MSI) [36, 37]. These methods are
also known as a variant group of super-resolution methods in
recent literature [38–42]. Image fusion methods can be roughly
divided into four categories: CNN based [36, 39, 41, 43],
dictionary learning based [13, 37, 44], tensor factorization (TF)
based [42, 45–49], and optimization based [38, 40, 50–52]. In
CNN based methods, deep networks are used to model the
degradation of hyperspectral images [36, 39, 43]. Dictionary
learning based methods assume that the low-resolution HSI
and high-resolution RGB/MSI share the same spatial sparse
codes [37, 44]. Similarly, tensor factorization based methods
decompose the images into different components to establish
the relationship between HSI and RGB [42, 45, 46, 48, 49]. In
optimization based methods, local-global similarity measure-
ment is usually applied for the reconstruction process [38, 40].
In addition, for fusion-based methods, the high-resolution
RGB and low-resolution hyperspectral image pairs are typical-
ly required, which are often difficult and expensive to obtain
due to sensor limitations and image registration issues.

C. Spectral Super-resolution

Spectral super-resolution (SSR) reconstructs hyperspectral
images by improving spectral information of high-resolution
RGB/MSI while preserving the spatial size and details [53,
54]. Recent spectral super-resolution methods mainly utilize
powerful CNN structures [55–60] and are trained to learn
from an inverse mapping of the imaging degradation mod-
el [61]. Spectral Response Function (SRF) is used to guide
band grouping and model deep spatial-spectral prior with an
optimization-driven CNN [61]. Besides, coupled dictionary
learning with different regularization terms are adopted to
reconstruct spectral information [54, 62]. Apart from remote
sensing hyperspectral applications, spectral super-resolution
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Fig. 1. Hyperspectral remote sensing imaging model. The sunlight ρs(λ) passes through the atmospheric absorption t(λ) and incidents to the ground ρt(λ).
Reflectance of different ground objects are represented as r1(λ), r2(λ), ... and their abundance in pixel area is represented as α1, α2, ... Finally, the sensor
receives the reflected spectra and the spectral image is obtained according to the Linear Mixing Model.

has also increased broad attention in computer vision com-
munity. Many spectral super-resolution methods have been
proposed and verified on nature scenes [14–18, 53, 63].

III. PROPOSED METHOD

In this section, we start from the hyperspectral remote
sensing imaging model, and then introduce the details of
abundance prediction, hyperspectral image reconstruction, and
loss functions.

A. Imaging Model
Fig. 1 shows an overview of the hyperspectral remote

sensing imaging model used in our method. In this paper, we
follow [64] and assume the incident light hitting the ground
objects is determined by the intensity of the sunlight and the
atmospheric absorption:

ρt (λ) = ρr (λ) + ρas (λ) + t (λ) ρs (λ) , (1)

where, ρt (λ) represents the spectral intensity after transmis-
sion at wavelength λ. ρr (λ), ρas (λ), ρs (λ) represent the
intensity contributions from the molecules (Rayleigh scatter-
ing), aerosols (including Rayleighaerosol interactions), and the
sunlight before absorbed by the atmosphere. t(λ) denotes the
proportion of sunlight transmitted after atmospheric absorp-
tion.

For airborne hyperspectral sensors, the spectrum intensity
ρf (λ) received by the sensors can be written as a product of
ground object reflectance and the incident light intensity at the
ground surface [65]:

ρf (λ) = ρt (λ) r (λ) , (2)

where ρf (λ) represents the spectrum intensity received by
the sensor, r (λ) represents the spectral reflectance of ground
objects, and ρt (λ) represents the sunlight intensity after at-
mospheric absorption. In vector form, the above equation can
be written as follows:

y = ϕ · r, (3)

where y, ϕ, and r are the vector representation of ρf (λ),
ρt (λ), and r (λ), respectively, at different wavelength. The
notation · represents element wise multiplication of two vec-
tors.

Due to the nature of hyperspectral imaging, remote sensing
hyperspectral images usually have a limited spatial resolution.
Therefore, spectral mixing is very common, which means
the spectrum of a single-pixel may contain multiple ground
objects. In this paper, we assume the spectral signature of a
single-pixel follows the Linear Mixing Model [66]:

se =

Ng∑
i=1

αiri + n,

αi ≥ 0; α>1 = 1,

(4)

where se ∈ RK×1 represents spectrum after linear mixing.
R ∈ RK×Ng = [r1, . . . , rNg

] are the spectral library of Ng

objects, also known as endmember matrix [66]. αi represents
the proportion of i-th objects in the spectrum se, also known
as spectral abundance. n ∈ RK×1 represents the perturbation
including the noise and modeling errors.

Since the spectral library is usually measured in a laboratory
environment, the Linear Mixing Model [66] is inaccurate
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Fig. 2. An overview of the proposed method. Given an input RGB image, we introduce a U-Net based abundance prediction network to generate pixel-wise
spectral abundance maps. With a spectral library and linear mixing model, the hyperspectral image can be constructed. We also introduce a spatial discriminator
and a spectral discriminator to improve the realisticity and visual quality of the generated hyperspectral image. All networks can be trained in an end-to-end
fashion with self-supervised reconstruction losses.

for airborne hyperspectral imaging tasks most of the time.
Therefore, we consider the solar radiation and atmospheric
absorption, and take the quantification into account. By com-
bining Eq. 3 and Eq. 4, the final spectral intensity received by
the sensor can be written as follows:

s = q

Ng∑
i=1

αiyi + n

= t ·
Ng∑
i=1

αiri + n,

αi ≥ 0; α>1 = 1,

(5)

where q is the quantitative coefficient to brige the gap between
laboratory spectrum and remote sensing image, t = qϕ rep-
resents the atmospheric absorption factors with quantification
correction. yi = ϕ ·ri denotes the reflectance spectrum of ith
object.

B. Spectral Abundance Prediction and Image Reconstruction

In this paper, we focus on hyperspectral remote sensing
image synthesis based on a single RGB image input. Instead
of directly predicting the spectral reflectance, we start from
an imaging model and predict the causal factors during the
imaging processing, i.e., abundance map associated with the
spectral library and the solar atmospheric absorption spectrum
of sunlight. Finally, the spectral image can be constructed
based on the linear mixing model after atmospheric absorption
correction (Eq. 5). Fig. 2 shows an overview of the proposed
method.

In our method, we introduce a conditional generative net-
work for spectral abundance prediction. Given an input RGB
image x, the generative network F is trained to recover the
abundance maps A for each pixel location and each object:

A = F(I|θF ), (6)

where θf are trainable network parameters of F , and A ∈
RNg×W×H , where W ×H are the spatial size of the hyper-
spectral image.

After we have the predicted abundance maps, the spectral
data at pixel location l can be constructed with the spectral
library and the abundance:

sl = t ·
Ng∑
i=1

αl,iri

= t ·
Ng∑
i=1

F(x|θF )l,iri,

(7)

where αl,i = F(x|θF )l,i represents the abundance value at
the pixel location l and object number i. The noise term n is
ignored during the reconstruction process.

C. Loss Function
The generative network F is trained in a self-supervised

manner. Given a hyperspectral image S, we first sample from
its channel dimension and compose a “spectral down-sampled”
version S(I) with only R, G, B channels. We then input I to
F and enforce the reconstructed hyperspectral image Sr to
be similar to the original image S as much as possible. To
measure the similarity between S and Sr, we introduce three
groups of loss functions: 1) pixel similarity loss, 2) spectral
angle similarity loss, and 3) adversarial losses.

1) Pixel similarity losses: The pixel similarity loss is de-
fined as the pixel-wise L1 distance between the input and the
reconstructed hyperspectral image:

Lpxl = ES∼DS
{‖S − Sr‖1},

= EI∼DI ,l∼Il{‖sl − t ·
Ng∑
i=1

F(S(I)|θF )l,iri‖1}
(8)

where DS is the training dataset of hyperspectral images. Il
means the total pixels in image S.
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2) Spectral angle similarity loss: The spectral angle sim-
ilarity loss is defined as the cosine similarity between the
original spectral vector and the reconstructed one. The loss
is written as follows:

Lcos = ES∼DS
{cos< S, Sr >},

= EI∼DI ,l∼Il{cos< sl, t ·
Ng∑
i=1

F(S(I)|θF )l,iri >},

(9)

where the cosine distance between two vectors β1 and β2 is
defined as follows:

θ (β1,β2) = arccos
βT
1 β2

(
√
‖β1‖22‖β2‖22

. (10)

3) Adversarial losses: The spectral abundance prediction
we faced is naturally an ill-posed problem. Given one input
RGB pixel, there could be multiple solutions for the underlying
spectral abundance. With only the above pair-wise losses,
we may have a blurring effect on the reconstructed images.
To tackle this problem and improve the visual fidelity, we
propose to train our networks under a conditional adversarial
training framework [23, 24]. The joint discriminative learning
introduced in our previous work [20] is adopted to improve the
spatial-spectral realisticity and visual quality of the generated
hyperspectral images.

We design two discriminators, a conditional spatial discrimi-
nator Dspat, and a spectral discriminator Dspec. The condition-
al spatial discriminator takes in the reconstructed hyperspectral
image Sr or a real hyperspectral image S, and is trained to
tell whether the input is generated (fake) or not (true). The
spectral down-sampled RGB image S(I) is also used as the
conditional input and is concatenated with the spectral images.
The spectral discriminator Dspec takes in the spectral vectors
from S or Sr, and is also trained to tell whether they are
authentically generated. The abundance prediction network F
is also trained to fool the two discriminators and make the
generated hyperspectral images as real as possible either from
spatial or spectral dimensions. The adversarial losses for Dspat

are defined as follows:

Lspat
adv = ES∼D logDspat(S)

+ ES∼D log(1−Dspat(Sr)),
(11)

where

Sr(l) = t ·
Ng∑
i=1

F(x|θf )l,iri, (12)

Similarly, for the spectral discriminator Dspec, we have the
following adversarial loss:

Lspec
adv = ES∼D logDspec(S(l))

+ ES∼D log(1−Dspec(Sr(l))).
(13)

The above adversarial losses can be trained with a minimax
optimization process, where the generator tries to minimize
this objective while the discriminators try to maximize it:

min
F

max
Dspat,Dspec

(Lspat
adv + Lspec

adv ). (14)

4) Total loss: Since all components of our networks are
differentiable, the whole framework can be trained in an end-
to-end fashion. The total loss function is written as follows:

Ltotal = Lpxl + λ1Lcos + λ2Lspat
adv + λ3Lspec

adv , (15)

where λ1, λ2, and λ3 are the pre-defined weights for balancing
different loss terms. We set the solar atmospheric absorption
as all trainable variables. The final loss functions are trained
by solving the optimization problem below:

θ∗F , t
∗ = argmin

θF ,t
max

θspat
D ,θspec

D

Ltotal. (16)

Note that although there are no losses or constraints attached
on t, it is trained as implicit variables all together with other
network parameters.

D. Implementation Details

1) Spectral Library: We construct our spectral library
based on the USGS Spectral Library Version 7 [21]. The
library contains measured spectra, the spectra convolved to
other spectrometer or imaging spectrometer characteristics,
the spectra resampled to broad band multispectral sensors,
and that oversampled to finer wavelength spacing [21]. Since
the AVIRIS sensor has a high spectral resolution (10nm)
and wide coverage of wavelength (0.4-2.5µm), we select the
AVIRIS 2014 of the convolved spectra as our base spectral
library where spectra captured by many different sensors are
convolved to the AVIRIS sensor. The base spectral library
consists of 7 types of object spectra including artificial ma-
terials, coatings, liquids, minerals, organic compounds, soils
and mixtures, and vegetation. After removing those abnormal
spectra, we further remove the mineral and organic categories
since we mainly focus on urban scenes. In artificial materials,
the spectra of some chemical reagents are also removed. There
are 345 spectra left in our library. Detailed information of the
spectral library is shown in Table I and the comparison of
using different subsets of the library can be found in section
IV-C.

TABLE I
NUMBER OF SPECTRA IN OUR SPECTRAL LIBRARY

Category USGS-v7 Normal Removed Selected

Artificial Materials 290 263 263 84
Coatings 12 11 11 11
Liquids 24 14 14 14
Minerals 1276 877 – 0

Organic Compounds 360 142 – 0
Soils and Mixtures 209 164 164 164

Vegetation 286 72 72 72
Total 2457 1543 524 345

Considering the discrepancy between the USGS library and
the data to synthesis, we calibrate all the spectra data by
aligning their wavelength to the sensor of the synthesized data
with linear interpolation. Different from [67] using the nearest
neighbor method, which may cause local spectral distortion,
linear interpolation can better preserve the spectral information
and improve the accuracy of abundance inversion.
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Fig. 3. Structure of resblocks in our abundance prediction network.

2) Abundance Prediction: To generate fine-grained abun-
dance maps, we adopt U-Net [68] as the backbone architecture
of our generative network F . Skip-connections between dif-
ferent layers are adopted to fuse features of different semantic
depths. The features are fused with element-wise addition.
The backbone network consists of 6+6 residual blocks. We
set the stride size to 2 for every layer consisting of two
blocks, where the input image is downsampled 26 = 64
times on its spatial dimension. The configuration of each
residual block is shown in Fig. 3. When upsampling the
feature maps, bilinear interpolation upsampling followed by
a convolution layer is used instead of deconvolution or pixel-
shuffle to avoid checkerboard artifacts. The final abundance
maps are generated with a convolutional layer. Since the object
abundance has non-negative values and the sum of the values
for different objects in each pixel is 1, we add a softmax layer
at the output-end of the network. The softmax normalization
is performed along the channel dimension.

3) Training details: We randomly select 128×128 patches
on the training image pairs for training. In our loss function,
we set λ1 = 10 and λ2 = λ3 = 0.01. To avoid model
collapse, we update the discriminators after every 3 updates
of other parameters. The networks are trained with the Adam
optimizer [69]. We adopt cosine learning rate drop [70] after
training 400 epochs using the initial learning rate and set the
max-iteration number to 800. The initial learning rate is set
to 10−4 for the abundance prediction network and 10−5 for
the discriminators. The learning rate for solar atmospheric
absorption t is set to 10−4.

IV. EXPERIMENT

A. Datasets and Experimental Setup

We evaluate our method on the IEEE grss dfc 2018 [8]
and GF5 datasets [20]. The IEEE grss dfc 2018 is collected
by NCALM (National Center for Airborne Laser Mapping)
from Houston University on February 16, 2017 [8, 9]. The
hyperspectral data is acquired by an ITRES CASI 1500 (a
VNIR sensor of ITRES company, which offers 1500 pixels
across its field of view), covering a 380-1050nm spectral
range with 48 bands. We use the hyperspectral data for HSI
generation, the data has a spatial size of 4172×1202 pixels.
We chose bands 23, 12, 5 from the hyperspectral images to
construct RGB image input. The original hyperspectral images

and downsampled RGB images are cropped into 27 paired
patches of 512×512 pixels, with 24 pairs for training and
3 for testing. There are no overlaps between training and
testing patches. Moreover, 3 test patches were divided into 12
256×256 patches for inference due to GPU memory limitation.

The GF5 dataset [20] has 6 scenes of HSI captured by the
GF5 visible and near-infrared sensor (VNIR). The HSIs have
150 bands covering the wavelength range 390-1035nm and
are cropped to 120 512×512 patches, where 115 for training
and 5 for testing. Same experiment settings can be find in [20].

The experiment is conducted on a desktop PC with an
Intel (R) Core (TM) i7-7700K CPU @ 4.20GHz and an
NVIDIA GeForce GTX 1080 GPU card. The training process
of PDASS takes about 5 hours and the testing process of a
256×256 image only takes 0.0317s. We compare our method
with four state-of-the-art spectral super-resolution methods,
including HSRNet [61], HSCNN+ [71], FMNet [15], and
R2HGAN [20]. HSCNN+ [71] learns to map a RGB image
directly to a hyperspectral image with Densely Connected
Networks [72]. FMNet [15] uses the pixel-aware receptive
field to integrate multi-layer features for the spectral super-
resolution. HSRNet [61] reconstructs hyperspectral image with
Spectral Response Functions (SRF). R2HGAN [20] recovers
hyperspectral image under the GAN framework with joint
discriminative learning. For fair competition, all these methods
are optimized adequately and parameters for the best results
are selected.

We choose multiple criteria, including RMSE (Root Mean
Squared Error) [10, 53, 73], MRAE (Mean Relative Absolute
Error) [14, 73], SAM (Spectral Angle Mapper) [55, 74],
MSSIM (Mean Structural SIMmilarity) [10, 60, 75] and
MPSNR (Mean Peak Signal-to-Noise Ratio) [10, 60, 75] as
evaluation metrics. RMSE, MRAE and MPSNR are pixel-wise
measures widely used for image super-resolution [43, 76].
SAM measures the shape similarity of the generated spectra
and the real ones and has been widely used in hyperspectral
image processing methods. MSSIM is a structural similarity
index, which measures the mean SSIM of each band between
generated HSIs and real ones. The detailed calculation of the
indicators can be found in [20].

B. Comparison with Other Methods
Fig. 4 shows the comparison results between different

methods on IEEE grss dfc 2018 [8] dataset. The false-color
image (band 23, 12, and 5) of the generated hyperspectral
images as well as their MPSNR are shown. We can see that
the spectral details of the image generated by HSRNet [61]
are completely lost and only part of the spatial structure is
retained. HSCNN+ [71] generates hyperspectral images with a
slight color deviation but most spatial information is consistent
with the real one. FMNet [15] correctly restores RGB color
information with a slight spatial distortion. The false-color
images generated by R2HGAN [20] and PDASS (ours) are
visually indistinguishable from the real images. However, our
method has a higher reconstruction accuracy (MPSNR) than
R2HGAN [20].

The generation results on other bands are shown in Fig. 5.
HSRNet [61] loses most spatial information in most spectral



IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2022 7
IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2021 11

1 HSRNet (27.478) 1 HSCNN+ (39.741) 1 FMNet (45.318) 1 R2HGAN (49.986) 1 PDASS (51.589) 1 Real

2 HSRNet (27.341) 2 HSCNN+ (40.665) 2 FMNet (45.636) 2 R2HGAN (49.851) 2 PDASS (51.864) 2 Real

3 HSRNet (26.696) 3 HSCNN+ (39.108) 3 FMNet (39.965) 3 R2HGAN (43.43) 3 PDASS (44.583) 3 Real

4 HSRNet (28.08) 4 HSCNN+ (40.951) 4 FMNet (45.772) 4 R2HGAN (49.45) 4 PDASS (51.551) 4 Real

5 HSRNet (26.044) 5 HSCNN+ (39.179) 5 FMNet (44.64) 5 R2HGAN (48.464) 5 PDASS (49.98) 5 Real

6 HSRNet (26.398) 6 HSCNN+ (38.984) 6 FMNet (42.996) 6 R2HGAN (48.205) 6 PDASS (49.442) 6 Real

Fig. 7. False-color image of the recovered HSI for six typical test patches, Each row represents the effect of different methods on the test patches, and each
column represents the different test patches of the same method. Numbers before the methods represent different test patches and the end ones represent the
PSNR of the generated HSI. For example, 1 HSRNet (27.478) means it shows the false-color image of generated HSI of image 1 by HSRNet, and the PSNR
of the HSI is 27.478.

the real spectrum of solar radiation [87] is demonstrated in
(b). In (b), we paste the recovered SAA on the spectrum of
solar radiation from [87]. It can be found that the recovered
solar atmospheric absorption spectrum is consistent with the
actual sunlight at sea level after atmospheric absorption. Near
wavelength at 750nm and 950nm, there are oxygen (O2) and
water (H2O) absorption bands respectively in the sunlight
at sea level. The restored SAA managed to learn the trend
of sunlight at sea level in (b), the irradiance rising from
wavelength at 380nm, max out at wavelength around 500nm,
and then start dropping till 1050nm. Meanwhile, the recovered

SAA successfully restored the trough of oxygen and water
absorption.

The inverted abundance map of the objects is shown in
Fig. 11. We combined the abundance of objects of the same
category to show it. For example, Fig. 11(a) shows the
abundance map of all objects belonging to artificial materials.
The abundance of the ground objects is mainly distributed
in artificial materials. The buildings and cars have a high
percentage of artificial materials, almost above 0.6. The coat-
ings have very little abundance distribution because we see
less paint from an aerial view. The abundance of soils and

Fig. 4. False-color visualization (band No. 23, 12, and 5) of the generated hyperspectral image with different methods: HSRNet [61], HSCNN+ [71],
FMNet [15], R2HGAN [20], and PDASS (ours). The test image ID and reconstruction MPSNR are also given. For example, 1 HSRNet (27.478) means the
result of HSRNet on test image #1 with MPSNR = 27.478.

TABLE II
SPECTRAL RECONSTRUCTION ACCURACY OF DIFFERENT METHODS ON
IEEE grss dfc 2018 [8] DATASET. FOR RMSE, MRAE, AND SAM, A

LOWER SCORE INDICATES BETTER, WHILE FOR MSSIM AND MPSNR A
HIGHER SCORE INDICATES BETTER.

Method RMSE ↓ MRAE ↓ SAM ↓ MSSIM ↑ MPSNR ↑
HSRNet 19899.24 3.4615 1.1257 0.765 29.7306

HSCNN+ 986.6544 0.1737 0.1515 0.9455 38.9456
FMNet 697.9392 0.1177 0.0875 0.9729 42.8291

R2HGAN 466.7432 0.075 0.0596 0.9861 46.8614
PDASS (Ours) 406.3703 0.076 0.0553 0.9879 47.5641

bands. For the recovery of the first band, HSCNN+ [71],
FMNet [15], and R2HGAN [20] produce noisy band images
and only recover part of the spatial structure. PDASS (Ours)
produces results with the best visual quality and has less noise
than all the other methods. Table II shows the performance of
different comparison methods on different metrics, including
MRAE, RMSE, SAM, MSSIM and MPSNR. The spectral
curves generated by the methods are shown in Fig. 6. From
Table II and Fig. 6, we can see that HSRNet [61] fails
to produce reasonable results where the pixel-wise error is
even three times higher than the real spectral reflectance
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HSRNet 1 HSCNN+ 1 FMNet 1 R2HGAN 1 PDASS 1 real HSI 1

HSRNet 4 HSCNN+ 4 FMNet 4 R2HGAN 4 PDASS 4 real HSI 4

HSRNet 8 HSCNN+ 8 FMNet 8 R2HGAN 8 PDASS 8 real HSI 8

HSRNet 12 HSCNN+ 12 FMNet 12 R2HGAN 12 PDASS 12 real HSI 12

HSRNet 21 HSCNN+ 21 FMNet 21 R2HGAN 21 PDASS 21 real HSI 21

Fig. 8. Different bands of the generated HSI on three test images. Each row represents the effect of different methods on the same band, and each column
represents the different bands of the same method to generate HSI. Numbers before the methods represent different test images and the following ones
represent the index of the band. For example, 1 MsCNN 30 means it shows the 30th band in the HSI generated for image 1 by MsCNN.

TABLE IV
A COMPARISON OF DIFFERENT METHODS ON OUR DATASET. FOR RMSE,
MRAE, SAM A LOWER SCORE INDICATES BETTER, WHILE FOR MSSIM

AND MPSNR A HIGHER SCORE INDICATES BETTER.

Method RMSE ↓ MRAE ↓ SAM ↓ MSSIM ↑ MPSNR ↑
HSRNet 19899.24 3.4615 1.1257 0.765 29.7306

HSCNN+ 986.6544 0.1737 0.1515 0.9455 38.9456
FMNet 697.9392 0.1177 0.0875 0.9729 42.8291

R2HGAN 466.7432 0.075 0.0596 0.9861 46.8614
R2HbSL 406.3703 0.076 0.0553 0.9879 47.5641

mixtures mainly appears on roads, it is mainly because the
roads are paved with a mixture of artificial materials and soil
mixtures including gravel, stones, etc. The grass and tree are
evident in the abundance map of vegetation. Since there is
almost no water body, the abundance of liquids is small at

most pixels, only some pixels under the shadow are given a
certain proportion. We can regard the abundance distribution
of liquids as a shadow distribution. In a word, the recovered
abundance map is consistent with the distribution of actual
objects, the abundance inversion is valid.

V. CONCLUSION

The phenomenon of spectral mixing generally exists in
remote sensing HSI due to the low spatial resolution, which
increases the diversity of spectra and the difficulty of discrim-
inating spectral rationality. We propose a remote sensing gen-
eration method based on spectral library, instead of recovering
the HSI as a 3D data cube, we restore the remote sensing HSI
from the imaging process. We invert the abundance map of
ground objects from RGB image input and establish a remote
sensing HSI imaging model to recover HSI. The HSI imaging

Fig. 5. Different bands of the generated hyperspectral images. Each row shows a particular band generated by different methods: HSRNet [61], HSCNN+ [71],
FMNet [15], R2HGAN [20], and PDASS (ours). Each column show different bands. The test image ID and reconstruction PSNR are also given.

and a numerical overflow has occurred on those generated
abnormal spectral peaks. HSCNN+ [71] uses DenseNet [72]
as its network backbone to learn the mapping between input
RGB images and the output hyperspectral images, and gets
reliable MPSNR (38.95) and MSSIM (0.9455). The spectral
curve generated by HSCNN+ [71] has a similar shape to
the real spectrum, but the response values are far from the
real one. FMNet [15] designs pixel-aware receptive field and
improves all the five indicators compared to HSCNN+ [71].
Particularly, the SAM of the FMNet [15] decreases 42% from
that of HSCNN+ [71] and the spectra in Fig. 6 are much more
closer to the real ones than HSCNN+ [71]. However, for some
ground objects such as road in (a) and artificial turf in (e), the
spectra of FMNet [15] of them still have clear shape errors at
some wavelength compared with real ones. R2HGAN [20] and
PDASS (Ours) have better reconstruction accuracy, compared

to FMNet [15], the MPSNR of R2HGAN [20] has been
improved from 42.8291 to 46.8614. The spectra generated by
R2HGAN [20] are closer to the real ones than HSCNN+ [71]
and FMNet [15] as shown in Fig. 6. There are still some
cases that R2HGAN [20] behaves not very well. For example,
the spectrum of soil in (b) generated by R2HGAN is quite
different from the true spectrum at wavelength 700-1050nm.
Compared to R2HGAN, the proposed PDASS recovers spectra
through the abundance inversion of objects in the spectral
library, so that the spectra have more actual physical meaning.
The reconstruction accuracy outperforms R2HGAN [20] and
other methods except on MRAE. The MRAE of PDASS
(Ours) is 0.076, which is quite close to the best 0.075 of
R2HGAN [20]. The spectra recovered are closest to the real
ones as shown in Fig. 6.

The reconstruction accuracy of the GF5 dataset is shown
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(b) Soil
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(c) Building
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(d) Car
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(e) Artificial turf
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(f) Tree

Fig. 9. Comparison of generated spectra by SL-HGAN with state-of-the-art methods. (a) shows the spectra generated by all the five methods, the HSRNet
generated spectra abnormal for all pixels, which has many peaks out of the normal spectral range. (b-f) eliminate the spectra recovered by HSRNet to facilitate
comparison.
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Fig. 11. The recovered abundance map of the objects of five categories. (a)-(e) represent abundance map of artificial materials, coatings, liquids, soils and
mixtures, and vegetation. (f) shows the false-color image.

Fig. 6. Spectral curves generated by different methods: HSRNet [61], HSCNN+ [71], FMNet [15], R2HGAN [20], and PDASS (ours). Because HSRNet
has a numerical overflow problem, we only visualize its result in the first sub-figure for easy comparison.

in Table III. HSCNN+ [71], HSRNet [61] and FMNet [15]
have unreliable generation with MRAE>5. R2HGAN [20] and
PDASS (Ours) have similar synthesis accuracy with MPSNR
over 60. Although the performance of PDASS (Ours) is
slightly lower than that of R2HGAN [20] except RMSE,
PDASS (Ours) achieves a significant improvement on the
RMSE accuracy, from 178.3 to 100.84 (lower is better).
Most importantly, PDASS (Ours) recovers the per-pixel feature
abundance while achieving comparable results to R2HGAN,
while R2HGAN can not.

TABLE III
SPECTRAL RECONSTRUCTION ACCURACY OF DIFFERENT METHODS ON

GF5 DATASET [20].

Method RMSE ↓ MRAE ↓ SAM ↓ MSSIM ↑ MPSNR ↑
HSCNN+ 2241.99 6.8294 0.192 0.9432 46.273
HSRNet 2625.23 5.9974 0.4832 0.9426 48.166
FMNet 7793.36 40.7865 0.4842 0.8741 42.792

R2HGAN 178.3 0.126 0.0435 0.9972 61.479
PDASS (Ours) 100.84 0.1342 0.0608 0.9956 60.218

C. Ablation Studies

We conduct ablation studies on different technical com-
ponents of our method, including the cosine similarity loss,
discriminative, network architecture design, and latent solar
atmospheric absorption with quantification factor. Table IV
shows the result of all ablation experimental results. The
spectra generated by the proposed method with different
configurations are shown in Fig. 7 and 8.

1) Similarity Loss: In experiment 4 of Table IV, we remove
Lcos from the loss function. The reconstruction accuracy
decreases sharply after removing Lcos. For example, the SAM
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Fig. 9. Abundance maps (“Lawn Grass”) generated by F under two
upsampling configurations: (a) deconvolution, and (b) bilinear upsampling
+ convolution. There is a noticeable checkerboard artifact produced by the
deconvolution layers.

error increased by 10% (0.0553 to 0.0605). In Fig. 7, we show
the spectra generated without Lcos loss (marked by wo-ls).
Comparing with our full implementation, the wo-ls has much
larger spectral variation compared to the real one particularly
at wavelength 1000-1050nm.

2) Network Architecture: We design residual blocks for
feature extraction in our abundance prediction networks. In
experiment 5 of Table IV, we replace the resblocks with 4×4,
stride = 2 standard convolution layers. After the replacement,
the MPSNR drops sharply, which suggests that fine-grained
feature extraction from RGB images is crucial for pixel-wise
and ill-posed hyperspectral image generation process. In Fig.
7, the curves marked with wo-res show the result of removal of
the resblocks. We can see the removal causes a clear deviation
in the recovered spectral curves.

We also replaced the bilinear interpolation with deconvolu-
tion layers in U-Net (experiment 6 of Table IV). As a result,
in Fig.9, we can see that the abundance map generated by



IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2022 10

IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2021 9

TABLE II
ABLATION STUDIES, THE CROSS IN t MEANS MODELING THE SAA AS A VARIABLE WHILE THAT OF OTHER COLUMNS MEANS WITHOUT THE ITEM. THE

POSITION DEFAULT INDICATES THE SAME SETTINGS AS SL-HGAN.

Name t t image-free Ls FEM resblock AIM Up+conv Dc, Ds RMSE ↓ MRAE ↓ SAM ↓ MSSIM ↑ MPSNR ↑

1 % % 625.5191 0.1718 0.1222 0.9698 42.5559
2 % ! 615.8163 0.1738 0.1239 0.9707 43.0278
3 ! % 430.9514 0.093 0.0663 0.9838 46.2568
4 % 430.4892 0.0837 0.0605 0.9861 46.8193
5 % 581.1201 0.1099 0.0685 0.9804 43.2282
6 % 417.9923 0.0781 0.0565 0.9876 47.7349
7 % 419.1033 0.0809 0.0576 0.9867 47.051

SL-HGAN ! ! 406.3703 0.076 0.0553 0.9879 47.5641
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(d) Car
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(e) Artificial turf
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Fig. 4. Comparison of generated spectra by different t design. (a-f) show the spectra generation of different ground objects. var-image means set t as a
variable for every image, and var-free means t is image-free and unified. Vec-image denotes t is a vector different for each band and it depends on the image,
while vec-free represents different images share the same vector t (SL-HGAN).
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(c) Building
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(d) Car
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(e) Artificial turf
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(f) Tree

Fig. 5. Comparison of generated spectra by different methods for ablation study. (a-f) show the spectra generation of different ground objects. wo-bilinear
represents replacing the bilinear upsample by deconvolution, wo-d denotes the removal of the joint discriminative learning. wo-res denotes removing resblocks
in FEM and replacing them with convolution. wo-ls means getting rid of the Ls loss.

Fig. 7. Comparison of generated spectra by different methods for an ablation study. (a-f) show the generated spectra on different ground objects. “wo-bilinear”
represents replacing the bilinear upsample with deconvolution. “wo-d” denotes the removal of the discriminators. “wo-res” denotes removing resblocks in our
abundance prediction network and replacing them with standard convolutions. “wo-ls” means removing the Lcos loss term.
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TABLE II
ABLATION STUDIES, THE CROSS IN t MEANS MODELING THE SAA AS A VARIABLE WHILE THAT OF OTHER COLUMNS MEANS WITHOUT THE ITEM. THE

POSITION DEFAULT INDICATES THE SAME SETTINGS AS SL-HGAN.

Name t t image-free Ls FEM resblock AIM Up+conv Dc, Ds RMSE ↓ MRAE ↓ SAM ↓ MSSIM ↑ MPSNR ↑

1 % % 625.5191 0.1718 0.1222 0.9698 42.5559
2 % ! 615.8163 0.1738 0.1239 0.9707 43.0278
3 ! % 430.9514 0.093 0.0663 0.9838 46.2568
4 % 430.4892 0.0837 0.0605 0.9861 46.8193
5 % 581.1201 0.1099 0.0685 0.9804 43.2282
6 % 417.9923 0.0781 0.0565 0.9876 47.7349
7 % 419.1033 0.0809 0.0576 0.9867 47.051

SL-HGAN ! ! 406.3703 0.076 0.0553 0.9879 47.5641
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(e) Artificial turf
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Fig. 4. Comparison of generated spectra by different t design. (a-f) show the spectra generation of different ground objects. var-image means set t as a
variable for every image, and var-free means t is image-free and unified. Vec-image denotes t is a vector different for each band and it depends on the image,
while vec-free represents different images share the same vector t (SL-HGAN).
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(e) Artificial turf
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Fig. 5. Comparison of generated spectra by different methods for ablation study. (a-f) show the spectra generation of different ground objects. wo-bilinear
represents replacing the bilinear upsample by deconvolution, wo-d denotes the removal of the joint discriminative learning. wo-res denotes removing resblocks
in FEM and replacing them with convolution. wo-ls means getting rid of the Ls loss.

Fig. 8. Comparison of generated spectra by different t learning strategies. “per-image scalar” means t is a trainable scalar and is optimized separately for
every image. “global scalar” means t is a trainable scalar and is optimized as a global variable on the whole dataset. “per-image vector” means t is a trainable
scalar and is optimized separately for every image. “global vector” means t is a trainable vector and is optimized as a global variable on the whole dataset
(our final implementation).
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TABLE IV
ABLATION STUDIES OF DIFFERENT TECHNICAL COMPONENTS OF THE PROPOSED METHOD.

Name t vector t global Lcos resblock Up+conv Dspat,Dspec RMSE ↓ MRAE ↓ SAM ↓ MSSIM ↑ MPSNR ↑

1 % % 625.5191 0.1718 0.1222 0.9698 42.5559
2 % ! 615.8163 0.1738 0.1239 0.9707 43.0278
3 ! % 430.9514 0.093 0.0663 0.9838 46.2568
4 % 430.4892 0.0837 0.0605 0.9861 46.8193
5 % 581.1201 0.1099 0.0685 0.9804 43.2282
6 % 417.9923 0.0781 0.0565 0.9876 47.7349
7 % 419.1033 0.0809 0.0576 0.9867 47.051

PDASS ! ! 406.3703 0.076 0.0553 0.9879 47.5641

deconvolution layers has clear checkerboard artifacts. The wo-
bilinear curves in Fig. 7 show the spectra recovered with
deconvolution instead of bilinear upsampling. A similar effect
can be observed after the replacement and bilinear interpo-
lation has more accurate spectral reconstruction, particularly
for the artificial turf and trees (Fig. 7(e,f)) at wavelength 700-
1050nm.

3) Adversarial training: In experiment 7 of Table IV, we
evaluate the effect of with or without adversarial training. The
wo-d curves in Fig. 7 show the influence after removing the
spatial discriminator Dspat and spectral discriminator Dspec.
We can find the adversarial training improved the authenticity
of the generated spectra. MSSIM decreases from 0.9879 to
0.9867 and MPSNR decreases from 47.564 to 47.051 after
removing the discriminators.

4) Solar atmospheric absorption with quantification factor:
When learning the atmospheric absorption with quantification
correction factor t, we can either optimize it as a vector with
a factor corresponding to the element of each band, or we can
simply set it as a trainable scalar. The column of “t vector”
in Table IV shows the results of the above two configurations.
We also investigate whether we should estimate a separate t
for each image or on the whole dataset as a global trainable
vector (column “t global”). In Table IV, experiment 1, 2, 3
and PDASS show the comparison of different design of the
solar atmospheric absorption factors. We can see estimating
a separate absorption value for each band (t vector) gives to
better reconstruction. Meanwhile, our full implementation has
a 1.3 improvement on MPSNR compared with experiment 3,
which suggests that estimating t as a global vector gives a
better result than estimating in an image-by-image manner.

Fig. 8 plots the spectra generated from different t designs.
The per-image scalar, global scalar, per-image vector,
global vector curves correspond to experiment 1,2,3 and our
full implementation. We can find that estimating t as a scalar
will produce over-smooth spectral curves and can not produce
faithful spectra especially near the atmospheric absorption
bands (wavelength 900-1050nm).

5) Spectral library: We compare the reconstruction accu-
racy of different spectral library selection. Note that a higher
reconstruction accuracy of PSNR does not necessarily mean a
higher accuracy for downstream tasks. Therefore, in addition
to the reconstruction accuracy, the accuracy of a downstream
segmentation task is also used as the criterion for selecting the
spectral library. The Mean Intersection over Union (mIoU)

[77] between the segmentation output and the ground truth
is used as the criteria, where a higher mIoU means a better
spectral library quality. As shown in Table V, Ng=1543
denotes using all the normal spectra in the library and it
reaches the best reconstruction accuracy, but causes fallacious
abundance and the mIoU of the downstream task is lower
than others. Ng=524 represents removing the two categories
and reduces the degree of freedom of abundance regression
to about 1/3 of the original (1543 to 524). When further
removing some chemical reagents and using 345 spectra as
the library, the reconstruction accuracy and the mIoU of the
downstream task basically remain unchanged as Ng=524 and
even have a slight improvement. This may be because the
difficulty of abundance regression reduces and avoids illogical
abundance after removing unreasonable spectra. To ensure the
completeness of the spectral library, we no longer remove
spectra for experiments.

TABLE V
COMPARISON OF DIFFERENT SPECTRAL LIBRARY SELECTION

Ng in R RMSE ↓ SAM ↓ MSSIM ↑ MPSNR ↑ mIoU ↑
1543 404.75 0.0546 0.9882 48.1449 0.2074
524 416.62 0.0568 0.9874 47.4338 0.2098
345 406.37 0.0553 0.9879 47.5641 0.2105

Considering the rationality of abundance, problem difficul-
ty, library completeness, reconstruction accuracy and perfor-
mance on the downstream task, we chose Ng=345.

D. Analysis of Latent Variables

In the top of Fig 10, we show the estimated solar atmo-
spheric absorption factors by using our method (recovered
solar atmospheric absorption with quantification factors). In
the bottom of Fig 10, we show the true spectrum of solar
radiation [25] as well as the measured absorption factors. We
can see that the recovered absorption factors are consistent
with the true reference, although there is no supervised loss
or constraint attached to these variables during training. Our
method learns the irradiance rising from wavelength at 380nm,
max out at wavelength around 500nm, and decrement till
1050nm. Also, the absorption peak near wavelength at 750nm
for oxygen (O2) and 950nm for water (H2O) are visible in
the estimated absorption curve.

We add the abundance maps according to the categories of
the library and show them in Fig. 11. The recovered abundance
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Fig. 11. The recovered abundance map of the objects of five categories. (a)-(e) represent abundance map of artificial materials, coatings, liquids, soils and
mixtures, and vegetation. (f) shows the false-color image.
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Fig. 12. Visualization of the recovered abundance map on 10 ground objects. We select 10 high abundance maps from the abundance of each object. The
name of the abundance map represents the corresponding object.

map is consistent with the distribution of the ground objects.
For example, Fig. 11(a) shows the abundance map of all
objects belonging to artificial materials. The buildings and cars
all have a high-value response (mostly >0.6) since they all
belong to artificial materials. The coatings have a very low
response because we see less paint from an aerial view. The
abundance of soils and mixtures mainly appears on roads,
it is mainly because the roads are paved with a mixture of
artificial materials and soil mixtures such as gravel, stones,
etc. The grass and tree have large responses in the abundance
map of vegetation. Since there is almost no water region, the
abundance of liquids is very low at most pixels, except the

pixels under the shadow. The above visualization suggests that
the abundance maps generated by our method are reasonable
and have significant physical meaning.

We also provide a per-spectral-abundance shown in Fig.
12, where 10 relatively high abundance of the features is
visualized. The abundance of the ‘brick’ is mainly distributed
on the road. The abundance map of ‘iron oxide’ is relatively
high in some tin roof areas. The ‘covellite pyrite’ and ‘pyrite
LV95’ all have high abundance distribution on both buildings
and roads since pyrite is the most distributed sulfide in the
earth’s crust and is mainly used for buildings and roads. ‘Black
needlerush’ is found mainly in afforest areas and ‘lawn grass’
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Fig. 10. Estimated solar atmospheric absorption factors and their true
values [25].

has the highest abundance on trimmed grass areas. These
show the rationality of abundance distribution. Although, there
are also some ground features with unreasonable abundance.
For example, the paint pigment of ‘Prussian blue’ has a
high abundance on the tree and grass. Simultaneously, the
paint pigment of ‘natural umber’ has a global high abundance
distribution.

E. Downstream Task Verification

To verify the effectiveness of the generated spectra for
downstream tasks, we re-divide the training and testing set
of IEEE grss dfc 2018 [8]. All the labeled samples are used
for classification training and testing while those un-annotated
are used for training the HSI generator. We designed a U-
Net [68] with 5+5 residual blocks in Fig. 3 as the backbone
for the 20-class object (spectral) classification task. 75% of all
the labeled pixels are used for training and the rest for testing.

Table VI shows the accuracy of different input data, where
Macro-F1, overall accuracy (OA) and Mean Intersection over
Union (mIoU) are chosen as indicators [77, 78]. It can be
found that when using input synthesized HSI instead of the
original RGB as input, both the classification criteria have a
clear improvement. The mIoU increased 0.0122 from 0.1983
to 0.2105. Typically, there is a 3.6% increment on OA even
exceeding that of the real HSI. Although less effective than us-
ing real HSI, synthesis HSI shows great potential in improving
the accuracy of RGB segmentation.

TABLE VI
PERFORMANCE OF DIFFERENT DATA ON THE CLASSIFICATION TASK

Input data F1 ↑ OA ↑ mIoU ↑
RGB 0.2351 0.8042 0.1983

Synthesis HSI 0.2490 0.8400 0.2105
Real HSI 0.2810 0.8350 0.2327

V. CONCLUSION

Spectral mixing generally exists in remote sensing hyper-
spectral images due to the low spatial resolution of airborne

and spaceborne hyperspectral sensors. We propose a hyper-
spectral remote sensing image synthesis method based on
spectral library and conditional RGB input images. Instead of
directly recovering the spectral reflectance, we start from the
hyperspectral imaging model and predict the subpixel level
abundance map of ground objects. The hyperspectral data
thus can be constructed based on the predicted abundance,
spectral library, the solar atmospheric absorption factors, and
the linear mixing model, with clear physical significance. The
following experiments suggest the superiority and rationality
of our method. First, on the IEEE grss dfc 2018 dataset, our
method achieves the best reconstruction accuracy compared to
previous state-of-the-art methods with an MPSNR of 47.56.
Second, the predicted abundance maps have a clear physical
meaning and are consistent with the distribution of ground
objects. Third, the estimated solar atmospheric absorption
factors are consistent with the true measurement. Finally,
an extensive ablation study verifies the effectiveness of our
design. Since our method can synthesize high-quality hyper-
spectral data based on RGB data, at the same time generate
sub-pixel labels, our method may be of great help to real-
world problems such as hyperspectral target detection and
ground object classification. In the future, the direction of our
efforts lies in two parts, the first one is beyond the LMM [79]
and the second one is more reasonable abundance distribution
constraints.
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