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Abstract

We propose a retinex improvement for nighttime image enhancement. Retinex
is often used on images under nonuniform illumination in terms of either col-
or or lightness and has satisfactory results to achieve color constancy and
dynamic range compression. Few studies focus retinex on nighttime images,
especially those under extreme conditions (i.e. images with over-lighted or
extremely under-lighted areas or with noise speckles), on which retinex op-
eration can perform badly. Original multi-scale retinex (MSR) is extremely
sensitive to noise speckles that cameras produce in low light areas, and it has
unsatisfactory effect on areas with normal or intensive illumination. More-
over, original MSR uses a gain-offset method for prior-to-display treatment
and can lead to apparent data loss on nighttime images. This paper replaces
the logarithm function in MSR with a customized sigmoid function to mini-
mize data loss, and adapts MSR to nighttime images by merging results from
sigmoid-MSR with original images. Experiments show our framework, when
applied to nighttime images, can preserve areas with normal or intensive
lighting and suppress noise speckles in extreme low light areas.
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1. Introduction

Nighttime image enhancement is a particular problem of those dealing
with images with variant lighting conditions. Retinex, is one effective theory
aiming at simulating Human Visual System (HVS) to achieve color constancy
and dynamic range compression. This paper shows that with modifications,
retinex can be applicable to nighttime images even under extreme conditions.
In 1986 , Edwin Land [1] proposed the last version of his retinex theory as a
model for human color constancy. Later, several works emerged implement-
ing this retinex theory but with huge computational cost and sometimes low
performance in some extreme cases. What caught our attention is the cen-
ter/surround retinex, which was also brought up by Edwin Land [2] and has
the characteristics of easy implementation, fast computation and less param-
eters. Research from NASA [3, 4] further improved this c/s retinex leading
to what is called single-scale retinex (SSR) and multi-scale retinex (MSR),
which is shown to be able to accomplish color rendition and dynamic range
compression at the same time.

Recent research focus on retinex, especially on multi-scale retinex, recedes
a bit and only a few works stand out. Work from Jang [5, 6] focuses on better
color correction for retinex algorithm. Robinson et al. [7] improve MSR by
reducing halo artifacts and graying effect. Rahman et al. [8] investigate
the relationship between retinex and image compression. Jang [9] improves
the MSR with respect to weights of different scales of retinex. And papers
[10, 11] both propose to accelerate the implementation of MSR.

Through experiments we see that MSR can have a overall acceptable re-
sults on nighttime images. It consistently provides color constancy, dynamic
range compression and in short, better visual quality. However, one of their
post-processing algorithms has to be reconsidered. Due to the logarithm
function in c/s retinex and SSR or MSR, the primary results of these retinex
processes can have large range of value and are impossible to be displayed
as images directly. One approach we now commonly use is proposed in [3]
involving a gain-offset method which clips those pixels with too high or too
low lightness, in which case, it is shown little information is lost. However,
as for nighttime images where extreme high light and low light pixels are
of common occurrence, critical information may lose resulting in apparent
artifacts.

This is where sigmoid function comes in. Our intuitive idea is to eliminate
the uncertainty of the value range of the result from the beginning, where we
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used to take the logarithm of the ratio between two intensity values. This
ratio ranges from 1/256 to 256 and the logarithm of the ratio makes itself
distribute loosely across its range. We set the higher and lower threshold
of the gain-offset method empirically. However, considering the extreme
conditions in nighttime images, the gain-offset method is not satisfactory.
In originally processed nighttime images, too many pixels’ lightness exceeds
those thresholds. However, to maintain the natural lightness and color of a
image, shifting these thresholds is not an option.

So we came up with an idea to replace the logarithm function with the
sigmoid function, which has a certain range of output. This certainty is ob-
tained by compressing the ’extreme’ pixels rather than clipping them. So
unlike the logarithm method, it doesn’t need the gain-offset method which
involves clipping and leads to information loss. Combined with other meth-
ods discriminating between areas of different illumination, our framework has
overall better enhancement effect among nighttime images.

In the following section, we first introduce the well known MSR. Next,
Section 3 introduces our proposed method, including the aforesaid sigmoid
function and methods to suppress noise and preserve high-light details. Sec-
tion 4 presents the experiment results to show the improvements.

2. Original MSR

The retinex theory was brought up by Edwin Land [1] to simulate Hu-
man Visual System which, when capturing images, is surprisingly good at
adapting to variation of lighting condition, compared to how nowadays cam-
eras perform. This paper mainly bases itself on one of retinex’s successful
formulation from Rahman’s work [4]. Its MSR proves to be able to achieve
dynamic range compression on daytime images suffering from uneven light-
ing condition. Nighttime images share the same characteristics but behave
more extremely.

The Original MSR [4] can be written as

Fi(x, y) =
N∑

n=1

Wn · {log[Si(x, y)]− log[Si(x, y) ∗Mn(x, y)]} (1)

where F is the result we get from MSR operation, the subscripts i ∈ R,G,B
indicate the 3 color channels, N is the number of scales of retinex computed,
and Wn are the weighting factors of each scale. Si(x, y) is the ith channel
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2-dimensional matrix of the input image, mark ∗ is the convolution operator,
and the Mn(x, y) are the surround functions given by

Mn(x, y) = Kn exp[−(x2 + y2)/σ2
n] (2)

where Kn is to insure
∫ ∫

Mn(x, y)dxdy = 1. Each of the expressions within
the summation in Eq. 1 represents an SSR. This expression of SSR can also
be written as

log[
Si(x, y)

Si(x, y) ∗Mn(x, y)
] (3)

which can be intuitively perceived as a comparison between the current pixel
and its weighted, surrounding pixels. σn are the standard deviations of the
gaussian distribution determining the scales of the surrounding neighborhood
taken into account. Smaller scales provide more dynamic range compression,
and larger ones provide more color constancy.

After the initial retinex process accomplished by Eq. 1, it’s shown that
among various scenes, there’s a characteristic form for the resulting histogram
(Fig. 1).
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Figure 1: The clipping method after initial retinex operation illustrated on histogram.

Regardless the various scenes, the data is distributed around zero and
has a form of a gaussian distribution. A usual approach to display the result
as an image is to clip both the highest and lowest data and use gain-offset
method to produce the final image.

The higher and lower threshold for this clipping step can be determined
by

TH = M + α · d (4)

TL = M − α · d (5)
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where M and d is the average lightness and standard deviation of the whole
image, respectively. α is a factor determining how much variation of the
lightness to keep. Large α keeps more lightness information but has poor vi-
sual effect, since the lightness distribution will be closely around the average
value and little lightness variation can be perceived. Small α will lead to bet-
ter lightness distribution but also greater information loss since it has lower
TH and higher TL. So it’s basically a trade-off between more information for
highlight/lowlight pixels and more nature visual effect.

3. Proposed Method

When directly used on nighttime images, the original MSR may manifest
the following defects:

(1) The clipping method prior to display can lead to data loss especially
in areas highlighted or non-lighted. This kind of areas are very common
in nighttime images unlike those took in normal daytime (See Section 4 for
details).

(2) Retinex’s nature tends to magnify the lightness difference between
pixels to improve clarity, which, in nighttime images where noise is quite
common, can significantly increase the noise effect.

What we propose is firstly to replace the logarithm function with a cus-
tomized sigmoid function, which is intended to act as the logarithm one
except that it’s nicely bounded and only to compress the lightness close to
its bound. Thus no clipping is needed and no apparent data loss is incurred.
It’s a monotonic increasing function and its form can be easily manipulated,
i.e. the upper bound and the lower bound and the derivative at a certain
point. Secondly, based on the cause of the magnified noise effect, we imple-
mented a simple method to suppress the noise. Finally we apply a similar
method to also preserve areas with good illumination.

3.1. Sigmoid function

A simple form for a sigmoid function is

Sig(x) =
1

1 + e−x
(6)

and the corresponding shape is shown in Fig. 2.
The function is bounded and is monotonically increasing like logarithm.

It needs to be modified so that it has the output range between 0 and 1,
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Figure 2: The shape of a original sigmoid function.

appropriate derivative and function value when x = 1, and a similar form to
the logarithm function.

To replace the logarithm function with sigmoid in Eq. 3, we have

Sig(
Si(x, y)

Si(x, y) ∗Mn(x, y)
) (7)

The input of the Sig() function can be regarded as a ratio between 2 images,
meaning it’s always larger than 0. So we only have to consider the function
with a domain on the right side of zero. When the input equals 1, it means
the lightness of the current pixel is the same as the weighted average one
of the surrounding pixels and the output should be near 0.5, which can
be considered as the medium lightness of the picture, conforming to one’s
common sense.

The sigmoid function we choose is

Sig(x) =
1

1 + e−k·x+b + c
· 1

c+ 1
(8)

where k is a factor to determine overall steepness of the sigmoid function -
the larger k is, the more sensitive retinex becomes. b and c are parameters
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Figure 3: Sigmoid curves with different ks.

to make sure sigmoid goes through point (0, 0) and (1, 0.5), and ends at
(+∞, 1). The corresponding curves with different k are shown in Fig. 3.

This curve is similar to the logarithm one, except it reaches 0 when x
comes to 0, 0.5 when 1, and, it gradually approaches 1 when x goes beyond
1 and further.

3.2. Noise suppression

Noise can be distinctive in dark area after the original retinex operation.
Firstly it’s due to that in nighttime scene where light coming into the camera
is limited, high ISO is used and can incur more noise. Secondly, retinex
operation’s nature is to magnify difference between nearby pixels, and noise
can be magnified this way. Thirdly, retinex operation’s division part (as can
be seen in Eq. 3) involves dividing one pixel’s lightness by it’s surrounding
pixels’ averaged lightness. In dark area, the averaged value is often close to
0 and a noise pixel whose lightness is even slightly larger can be significantly
magnified after the division (See Fig. 4). In this section, we propose an
approach to limit the noise effect specially in dark area based on the third
cause of the retinex noise.

An effective method is to suppress the noise first before applying retinex
operation. But denoising can be time consuming and it affects the natural-
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Figure 4: (a) Origin MSR tends to magnify noise speckles. (b) Original image.

ness of the image. What we see is, when the surrounding lightness is extreme
low, the information can be exploited from this area is quite limited since
it’s full of noise pixel and often damaged by the compression algorithm used
in storing pictures/videos.

So, when in a certain area where the lightness is very low, the retinex
operation should only produce small effect. We use a weight factor W 1 to
achieve this.

Ii(x, y) = Fi(x, y) ·W 1
i (x, y) + Si(x, y) · (1−W 1

i (x, y)) (9)

where i means a certain color band of the image, I is the final image we get,
F is the primary retinex result, and S is the original image. W 1 is the weight
factor determining how much of the retinex result we will use to constitute
the final image. In very low-light area the retinex result can be basically not
utilizable, the W 1 should be near 0. And W 1 should be close to 1 in other
areas.

The weight factor we use is

W 1
i (x, y) = 1− (1− Li(x, y))

20 (10)

where
Li(x, y) = Si(x, y) ∗Mn(x, y) (11)

indicating the surrounding pixel lightness at ith color band. Thus W 1 is
determined respectively in each color band. This is because the division
takes place separately in each color band.
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3.3. High-light preserving

Using the above operation we have satisfactory results from most night-
time images. Though in nighttime pictures sometimes we encounter areas
which have relatively normal illumination. That’s to say, some areas are
already acceptable to human eyes and therefor the retinex operation may
damage the ’good’ areas. This is also due to the division step of retinex. In
normal lighting area, the overall lightness is high, so the division step will
make the ’good’ pixel close to medium lightness and lead to lightness reduc-
tion. As a matter of fact, the retinex operation tends to move overall pixel
lightness and redistribute them around the medium value, 0.5. This ’grayish’
effect can have nice outcome on low-light areas and yet not-nice on normal
lighting areas.

So, to distinguish poor lighted areas and normal ones, we use

Hi(x, y) = max
i=1,2,3

Li(x, y) (12)

to determine the illumination degree of the current pixel. It’s intuitive that
in poor lighting areas, all lightness levels of the 3 color bands will be very
low. So we only need to use the greatest lightness level over the 3 bands to
indicate the lighting level of this area.

To implement the lighting level we create another weight factor

W 2
i (x, y) = 1−Hi(x, y)

0.5 (13)

Finally we get the overall weight through simple multiplication:

Wi(x, y) = W 1
i (x, y) ·W 2

i (x, y) (14)

and the final equation for our proposed MSR:

Ii(x, y) = Fi(x, y) ·Wi(x, y) + Si(x, y) · (1−Wi(x, y)) (15)

where

Fi(x, y) =
N∑

n=1

Wn · {Sig(Si(x, y))− Sig(Si(x, y) ∗Mn(x, y))} (16)
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Algorithm 1: Framework for the proposed method

Input: Original nighttime image
Output: The result from our proposed retinex framework
Step 1
Apply different scales of gaussian filter on the original image.
Step 2
Compute the ratio between the lightness of the current pixel and the
results from Step 1.
Step 3
Take the sigmoid computation of the ratios and calculate the average
value.
Step 4
Compute the weight factors based on results from Step 1.
Step 5
Apply the weight factors and addition according to 16.

4. Experiments

Fig. 5 shows results from different algorithms, including MSR, our method
with and without noise suppression, with and without highlight reserving.

These results show the retinex with logarithm function and the one with
sigmoid function have similar overall effect except that sigmoid function needs
no pre-display processing or histogram clipping. The noise suppression op-
eration can significantly suppress the noise in dark areas. Notice the dark
areas in the 3rd image, original retinex has exaggerated noise pixels. And
the highlight reserving can protect good areas from excessive retinex modi-
fication. Comparison in the 3rd image is again most noticeable. Due to the
dark area around these people on the stage, the middle area is excessively
intensified by the original retinex.

In Section 2 we introduced factor α in Eq. 4. Different α will result in
different enhance effect and different amount of clipped pixel. Fig. 6 shows
results of original algorithm using different αs.

With lower α the picture is more colorful, more natural, yet it also makes
noise more intensive and the highlighted areas flooded with white and also
entails more pixels to be clipped. When α is lower, the textures are reserved,
yet the color is poorly represented and the whole image tends to be grayish.

Table 1 shows the average percentage of pixels, with lightness in at least
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α percentage of pixels clipped
1 41.45%
2 7.92%
4 0.41%
6 0.04%

Table 1: Percentage of pixels clipped under different αs.

one channel beyond clipping threshold, of 20 nighttime images after original
retinex with different αs.

And in Fig. 7, white pixels indicates those, when α = 2, with at least
one channel reaching lightness 1 and have to be clipped. Noticeable portion
of the pixels are clipped and can lead to unnatural areas.

Whereas the proposed method, though has a parameter similar to α, need
not consider clipped data and the results tend to be more natural.

Images usually will be compressed before saved to any media. Most of the
compression are lossy ones which omit details deemed undetectable by human
eyes, including details that have very low lightness. During the experiments
we see the original retinex operation can expose these compression artifacts
and our noise suppression method is also able to suppress these artifacts.
Since the lost details cannot be recovered anyway. We simply use the original
parts rather than brutally enhance them. Fig. 8 shows the comparison
between these results.

It’s clear that areas consisting of squares have little information and pro-
duce bad results in original method. Ours tends to skip these areas (Square
areas originally have very low lightness and hence endured greater compres-
sion) and has better visual quality.

5. Conclusion

Based on some distinct characteristics of nighttime images, we propose
an improved retinex framework. This framework replaces the traditionally
used logarithm function with a customized sigmoid function which is more
suitable for later image displaying step and needs no lightness clipping. This
framework is also able to preserve the ’good’ areas under normal lightings
and avoid intensifying noise effect in very dark areas.
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Figure 5: Origin images and results from different algorithms.
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Figure 6: (a) Result with α = 1. (b) Result with α = 2. (c) Result with α = 4. (d) Result
with α = 6.

Figure 7: (a) White pixels are those to be clipped with α = 2. (b) The original nighttime
image.
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Figure 8: (a) The original compressed image. (b) The result from original MSR. (c) The
result from proposed method.

16


