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Abstract

In recent years, deep learning based methods have attracted broad attention in the field of hyper-

spectral image classification. However, due to the massive parameters and the complex network

structure, deep learning methods may not perform well when only few training samples are available.

In this paper, we propose a small-scale data based method, multi-grained network (MugNet), to

explore the application of deep learning approaches in hyperspectral image classification. MugNet

could be considered as a simplified deep learning model which mainly targets at limited samples

based hyperspectral image classification. Three novel strategies are proposed to construct MugNet.

First, the spectral relationship among different bands, as well as the spatial correlation within

neighboring pixels, are both utilized via a multi-grained scanning approach. The proposed multi-

grained scanning strategy could not only extract the joint spectral-spatial information, but also

combine different grains’ spectral and spatial relationship. Second, because there are abundant un-

labeled pixels available in hyperspectral images, we take full advantage of these samples, and adopt

a semi-supervised manner in the process of generating convolution kernels. At last, the MugNet is

built upon the basis of a very simple network which does not include many hyperparameters for

tuning. The performance of MugNet is evaluated on a popular and two challenging data sets, and

comparison experiments with several state-of-the-art hyperspectral image classification methods are

revealed.
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1. Introduction

Hyperspectral images (HSIs) usually have very high spectral resolution, where hundreds of

continuous channels can be observed. Based on such abundant spectral information, hyperspectral

techniques have been widely used in many fields such as environmental monitoring [1] and materials

analysis [2, 3]. Land cover classification in HSI data is a hot topic, whereas it is still challenging

[4, 5, 6, 7]. One of the major reasons is that labeled samples which could be used for training are

not enough. How to achieve satisfying performance with limited training samples has attracted

many researches.

A feasible idea to handle this problem is combining various features or classifiers. Gu et al. pro-

posed a series of multiple kernel learning based HSI classification methods, which have presented

the capability of representing different data characteristics [8, 9, 10]. In [11], Li et al. constructed

a family of generalized composite kernels by utilizing the spectral and spatial information from

HSI data. Multiply feature fusion is also a popular approach [12]. In [13], extended morpholog-

ical profiles were proposed to fuse the spectral and spatial features. Huang and Zhang combined

spectral, structural and semantic features to improve the classification accuracy [14]. Zhong et al.

compared the performance of hashing based multiple features fusion methods for HSI classification

[15]. Ensemble learning methods have presented better generalization capability via integrating

many individual learners [16]. In [17] a typical ensemble method, random forest, was investigated

for HSI classification. Then improved works based on the random forest were reported [18, 19].

In [20], Mountrakis et al. reported the application of ensemble support vector machine (SVM)

for HSI classification. Based on SVM several ensemble methods were developed [21, 22, 23, 24].

Another idea for small-scale data based classification is semisupervised learning. Although labeled

samples in HSIs are usually not rich, there are many unlabeled pixels which could provide extra

data distribution information. Using very limited labeled samples and large number of unlabeled

pixels, semisupervised methods have presented good performance [25, 26, 27, 28, 29, 30, 31].

Recently, deep learning based methods have shown promising performance in HSI classification.

In [32] Chen et al. explored the application of deep learning methods in HSI classification for the

first time. He proposed a hybrid framework of principle component analysis, stacked autoencoders

and logistic regression. Inspired by this work some variations were developed, such as convolutional
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autoencoder [33] and stacked denoising autoencoders [34]. Another typical network, deep belief

network (DBN), were also used for HSI classification. Chen et al. added spatial correlation to the

DBN in [35]. Zhong et al. improved the performance of DBN by a diversity promoting prior over

latent factors [36]. Convolutional neural network (CNN) is one of the most popular deep learning

methods, and many studies based on CNN are reported during recent years [37, 38, 39]. In order

to reduce the computational complexity, Pan et al. used joint spectral-spatial features to simplify

the deep learning models [40, 41]. Some applications of deep learning methods on remote sensing

can be also observed in [42, 43, 44, 45, 46].

Generally, the feature representation ability of deep learning models is strongly dependent on

large number of training samples. For example, in [32, 35, 40], about half of all the labeled pixels

are used for training. However, manual annotation for hyperspectral data is difficult, which results

in the lack of enough labeled pixels. Although deep learning methods sound promising for HSI

classification, more studies are necessary in small-scale data condition.

In this paper, we propose a new deep learning based HSI classification method, multi-grained

network (MugNet), where only limited training samples are required. The motivations of MugNet

derive from three aspects:

First and foremost, since hyperspectral data are composed of continuous spectral vectors, explor-

ing the relationship among different bands may improve the performance of classification methods.

Moreover, the spatial relationship among neighboring pixels is proven useful for HSI classification.

Multi-grained scanning methods are effective in representing sequential or spatial relationships [47].

Inspired by this recognition, we integrate a new multi-grained scanning strategy with the procedure

of feature extraction, so as to generate a more powerful network.

Second, although labeled samples in HSI data are limited, there are plenty of unlabeled pixels.

These unlabeled pixels could provide extra data distribution information which may contribute to

the final classification. By constructing the classification network in a semi-supervised approach,

its representative ability would be improved.

At last, a more immediate idea of reducing the number of required training samples is adopting

a simpler network structure. Traditional deep learning models such as DBN and CNN usually have

a mass of parameters for optimization, which means sufficient training samples are needed. In [48]

a simplified deep learning method, principal component analysis network (PCANet), was proposed.

PCANet can serve as an effective baseline where more advanced processing components or more
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sophisticated architectures could be justified.

Based on the above motivations, the solution comes as no surprise. We use PCANet as the

foundation, where multi-grain and semi-supervised information are integrated. In addition, research

has shown that image filtering is a powerful preprocessing method for HSI classification [49, 50, 24,

41, 51]. Therefore, we use rolling guidance filtering [52] for preprocessing. Similar strategy is also

conducted in [41, 51].

The major contributions of MugNet can be summarized as follows:

• A deep learning based HSI classification method is developed, aiming at the small-scale data

classification. Comparison experiments with some state-of-the-art methods have verified the

effectiveness of MugNet.

• To enhance the classification performance, three novel strategies are proposed in MugNet,

i.e., multi-grain scanning, semi-supervised learning and simple basic framework.

In the next section we give detailed description of the MugNet based HSI classification method.

Experimental results and discussion are displayed in section 3. We conclude this paper in section

4.

2. Methodology

Inspired by the good performance of edge-preserving filtering for preprocessing [24, 41, 51], we

first conduct rolling guidance filtering on the original HSI data, and the filtering results are used

as the inputs of the spectral and spatial networks. Rolling guidance filtering will not change the

dimensionality of spectral vectors, and it mainly aims at removing small details and noise from the

HSI data [24, 41]. Note that rolling guidance filtering is only a small trick, and we do not pay

special attention to it here.

MugNet includes two parallel branches: spectral MugNet and spatial MugNet. Both of the two

networks are constructed based on a semi-supervised PCANet, S2PCANet. In this section, we give

detailed presentations about the three components of the proposed method: S2PCANet, spectral

MugNet and spatial MugNet. Finally, an overall description about the algorithm flow is provided.
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2.1. S2PCANet

PCANet is a cascade linear network which could be regarded as a simple deep learning method.

Here, we first give a brief introduction to the network structure of PCANet, and then extend it to

a semi-supervised version, S2PCANet. PCANet contains four layers: input layer, two convolution

layers and output layer.

2.1.1. Input layer

Suppose X = {X1,X2, · · · ,XN} denote all the N training samples. Xi ∈ Rm×n is the ith

sample in X with size m × n. For example, if we use spectral vectors directly as samples, then

m = 1 and n is equal to the number of bands. In PCANet, X are labeled.

2.1.2. Convolution layer

For a given Xi, collect all the patches (assuming size k1 × k2) around each pixel, then vectorize

them and remove patch mean. The patch size k1 × k2 is a user-defined parameter. Still take the

spectral vectors for example, k1 × k2 could be set as 3× 1, 5× 1 or others. In this way Xi can be

expressed by

X̂i = [x1,x2, · · · ,xt, · · · ,xmn] ∈ Rk1k2×mn. (1)

Since there are N training samples available, totally N ×mn vectored patches are available, i.e.,

X̂ = [x1,x2, · · · ,xt, · · · ,xN×mn] ∈ Rk1k2×Nmn. (2)

Assuming that the number of filters in this layer is L, the principal components of X̂ can be obtained

by

min
V∈Rk1k2×L

‖X̂−VVT X̂‖2F , s.t.VTV = IL, (3)

where IL is an identity matrix with size L×L, and V is the principal eigenvectors of X̂X̂T . Reshape

each column of V to a k1 × k2 matrix, i.e.,

V̂ = {v1,v2, · · · ,vt, · · · ,vL},vt ∈ Rk1×k2 , (4)

and V̂ are considered as the convolution kernels in this layer. Let L1 and L2 denote the number

of filters in the first and second convolution layers respectively. Then we can find L1 ×N outputs

5



Figure 1: The flowchart of MugNet. We take Indian Pines data set for example. The number of channels in this

data set is 200, and we set the neighboring size as 3×3. (a) and (b) are spectral and spatial MugNets, respectively.

(c) is the semi-supervised PCANet.

in the first layer. These outputs are used as the inputs of the second layer, and the same process

as Eq. (1)-(4) is conducted in the second layer. Totally L1L2 × Noutputs are observed in this

layer. Theoretically, more layers are also acceptable in PCANet. However, as suggested in [48],

two convolution layers are enough in most cases. Note that there is a patch-mean removal process

between the two convolution layers so as to avoid linear cascade.

2.1.3. Output layer

In this layer, binary hashing and histogram feature are used for the final feature representation.

According to Eq. (1)-(4), there are L1 convolved images for a sample Xi in the first convolution

layer, each of which will generate L2 outputs in the second convolution layer. For a sample Xi, let

Oj
i (j = 1, 2, · · · , L1) denote a group of the outputs in the first convolution layer, then we convert
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all the L2 outputs in Oj
i to a single image:

Tj
i
.
=

L2∑
`=1

2`−1H(Oj
i ), (5)

where H(·) is a Heaviside step function with 1 for positive inputs and 0 otherwise, and Tj
i ranges

in [0, 2L2 −1]. Then Tj
i is divided into B blocks with size Bs. The histogram features are extracted

from these blocks. The features of all the blocks in Tj
i are combined and denoted by Bhist(Tj

i ).

The final feature expression for Xi is calculated by

fi
.
= [Bhist(T1

i ),Bhist(T2
i ), · · · ,Bhist(TL1

i )]. (6)

2.1.4. Semi-supervised

In S2PCANet, we use both labeled and unlabeled samples to generate the convolution kernels.

Besides labeled pixels, most HSI data sets also include many unlabeled ones. For example, in Indian

Pines data set, 10249 pixels are labeled, while there are 10776 unlabeled samples. These unlabeled

samples can also provide data distribution information. Let Y = [Yl,Yu] denote all labeled (Yl)

and unlabeled (Yu) pixels. In S2PCANet, we define

Ŷ = [y1,y2, · · · ,yt, · · · ,y(Nl+Nu)×mn] ∈ Rk1k2×(Nl+Nu)mn, (7)

where Nl and Nu are the number of labeled and unlabeled pixels, respectively. Note that although

the labels of test samples are not available in the training process, they cannot be considered as

“unlabeled pixels”. Test sample do not overlap unlabeled pixels. Then the convolution kernels in

the first layer could be obtained by

min
V∈Rk1k2×L1

‖Ŷ −VVT Ŷ‖2F , s.t.VTV = IL1 . (8)

Kernels determined by Eq. (8) are used in S2PCANet. Similar process is also conducted in the

second convolution layer.

Instead of giving pseudo-labels to the unlabeled pixels, in S2PCANet we use all the unlabeled

pixels to learn more representative convolution kernels, and only use labeled pixels for SVM training.

Similar ideas could also be observed in [25, 28].

7



Figure 2: An illustration for spectral MugNet.

2.2. Spectral MugNet

For a given spectral vector, the values presented in different channels have some correlation. In

other words, we can regard hyperspectral vectors as special sequence data. In spectral MugNet,

we investigate the data correlation by adopting 1-Dimensional (1-D) convolution for single spectral

vectors based on S2PCANet. However, it is almost impossible to determine which grains of convo-

lution is the most appropriate. Therefore, a multi-grained scanning based method is proposed for

spectral vectors.

Figure 1(a) and Figure 2 provide the illustrations for spectral MugNet. Suppose there are 100

training and 1000 testing pixels with 200 bands, the size of sliding window is 10×1, and the step

length is 1. Note that training samples could be labeled or unlabeled. For each training sample, we

can get 191 patches. After scanning all the training samples, totally 19100 patches are obtained.

These patches are considered as the Ŷ in Eq. (7). Because spectral MugNet is on the basis of

S2PCANet, we calculate the convolution kernels by Eq. (3)(4). Then these kernels are used in

convolution layers, and the network structure in this grain is determined. Finally, the transformed

features are obtained by Eq. (5)(6), and a linear support vector machine (SVM) [53] is employed

as the classifier. In the test stage, all the 1000 pixels are directly put into the network with the

learned convolution kernels, which leads to 1000 new feature representation for these pixels.
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A natural doubt is that it is almost impossible to judge which size of sliding window can produce

the best performance. In spectral MugNet, we use multi-grained scanning [47] to combine several

different grains. Then, we fuse all the extracted features in different grains using a concatenating

strategy. By selecting multiple sizes of sliding windows, the final features will include more spectral

relationship information.

2.3. Spatial MugNet

As proved in many works [50, 54, 55, 24], properly exploiting the spatial correlation among

neighboring pixels will lead to more accurate classification maps. Based on this recognition, be-

sides spectral MugNet, we design the spatial MugNet to further utilize the spatial relationships in

hyperspectral images.

Spatial MugNet is also on the basis of S2PCANet. An illustration for spatial MugNet is shown

in Figure 1(b) and Figure 3. Follow the same assumption as spectral MugNet (100/1000 samples for

training/testing, 200 bands, 1 step length). For each training sample, we collect its 3×3 neighboring

pixel vectors, and flatten them into a matrix with size 9×200. This matrix is considered as an input

samples in spatial MugNet. Subsequently, we segment it to many patches with a certain size, e.g.,

3×3. Totally 1386×100 patches can be obtained for all the training samples. According to Eq.

(7), we can get the Ŷ by transforming these patches to a 9×138600 matrix. Finally, Ŷ is used to

learn the filters by Eq. (8) and extract the high level features by Eq. (5)(6). Similar process is

also conducted in the test stage, and all the 1000 test samples are expressed by more representative

features.

Similar to spectral MugNet, we extend the spatial network to a multi-grained version. Several

sizes of sliding windows are selected to construct different networks which could extract represen-

tative features from raw HSI data. At last, vector stacking strategy is used to generate the final

feature expression for all the samples. According to the above discussion, we can conclude that

spatial MugNet mainly targets at exploring the relationship between neighboring pixels in nearby

bands.

2.4. Classification with MugNet

The integrated MugNet based HSI classification can be obtained by combining the spectral and

spatial parts. A flowchart of MugNet is displayed in Figure 1. First, the same rolling guidance
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Figure 3: An illustration for spatial MugNet.

filtering as [41] is used on the original HSI data. Then, two parallel branches are observed, i.e.,

spectral and spatial MugNets. The inputs of spectral MugNet are raw spectral vectors, while those

of spatial MugNet are data cubes surrounding training/testing samples. After the process by the

networks, features extracted in different grains are combined via a vector stacking strategy. Finally,

a simple linear SVM is learned and utilized for classification. The regularization parameter in SVM

is determined by cross validation, which is set as 10.

3. Experiments and Discussion

In this section, we discuss the performance of MugNet in three public data sets. Spectral

and spatial MugNet are evaluated in Section 3.2 and Section 3.3. Three popular metrics, overall

accuracy (OA), average accuracy (AA) and kappa coefficient (κ) are used for evaluation. The

results of MugNet are compared with those of 5 recently proposed methods [49, 50, 56, 41, 51].

We have run all the methods for 50 times and the mean values as well as the standard deviations

are reported. Finally, the statistical evaluation is implemented to further verify the effectiveness of

MugNet.

Since MugNet is developed under the basis of PCANet [48], we use the default values to define

the shared parameters between MugNet and PCANet, i.e., L1 = L2 = 8, Bs = 7 × 7. The unique
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(a) (b)

Figure 4: Indian Pines data set. (a) A false composite image with R-G-B=bands 36-17-11. (b) The ground truth

map. Each color corresponds to a certain class.

parameters in MugNet mainly include spectral grains, spatial grains and the number of combined

models. However, because MugNet is an ensemble based method, setting different parameters can

just generate various individual learners. Therefore, analysis about these parameters is embedded

in Section 3.2 and 3.3.

3.1. Data sets

Three hyperspectral data sets are used to evaluate the performance of all the methods: Indian

Pines1, grss dfc 2013 [57, 58, 59] and grss dfc 2014 [60, 61]2:

• Indian Pines is a very popular hyperspectral data set which has been widely used in many

classification works. This data set was acquired by airborne visible/infrared imaging spec-

trometer (AVIRIS) in Northwestern Indiana, with 20m spatial resolution and 0.4 to 2.5 µm

wavelength range. It covers 145×145 pixels, where 10249 pixels are labeled, and the rests are

not. The labeled pixels are classified into 16 different classes. 200 spectral bands are observed

after removing the water absorption bands. Figure 4(a)(b) are false color composite image

and the corresponding ground truth for this data set.

• Grss dfc 2013 is a public hyperspectral data set used in 2013 IEEE GRSS Data Fusion Contest.

It is acquired over the University of Houston campus and the neighboring urban area in 2012,

1Available online: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes
2Available online: http://www.grss-ieee.org/community/technical-committees/data-fusion/
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(a)

(b)

Figure 5: Grss dfc 2013 data set. (a) A false composite image with R-G-B=bands 70-30-12. (b) The ground truth

map. Each color corresponds to a certain class.

(a) (b)

Figure 6: Grss dfc 2014 data set. (a) A false composite image with R-G-B=bands 30-45-66. (b) The ground truth

map. Each color corresponds to a certain class.

with 349×1905 pixels size and 2.5m spatial resolution. This hyperspectral imagery has 144

spectral bands between 0.4 to 1.0 µm region. All the 15029 labeled pixels are classified into

15 classes. In Figure 5 a false color composite image and the ground truth map are displayed.

• Grss dfc 2014 is a more challenging hyperspectral data set which is used in the 2014 IEEE
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(a) (b) (c)

Figure 7: Classification accuracies by spectral MugNet on (a) Indian Pines, (b) grss dfc 2013 and (c) grss dfc 2014

data sets.

GRSS Data Fusion Contest. It is acquired from long-wave infrared (LWIR, thermal infrared)

bands between 7.8 to 11.5 µm wavelengths. It covers an urban area near Thetford Mines

in Québec, Canada, with 84 channels and 1m spatial resolution. The size of this data set

is 795 × 564 pixels with 22532 pixels labeled. A ground truth with 7 land cover classes is

provided. Since this data set is collected from LWIR bands, its quality is relatively lower.

Therefore, this data set is more challenging for classification. A false color composite image

and the corresponding ground truth are shown in Figure 6(a)(b).

For Indian Pines/grss dfc 2013/grss dfc 2014 data sets we randomly select 20/20/50 samples

per class for training, and the rests for testing. Unlabeled pixels used in MugNet refer to the

black regions in Figure 4(b)-6(b), and they do not overlap the test samples. Some classes such as

“Grass-pasture-mowed” and “Oats” only have nearby 20 labeled pixels. For these classes we use

half for training and the rest for testing. All the methods are conducted 50 times with different

training samples, and the average accuracies are reported. Specially, in spatial MugNet, we utilize

a patch around each training sample for feature extraction. This operation may lead to overlap

between training and testing sets. To avoid this problem, we remove the pixels in patches from the

testing set. Note that using neighborhood information is not equal to increasing training samples

number, because the neighboring samples are not labeled. This is also a widely used strategy in

HSI classification. For spectral MugNet, this phenomenon does not exist.

3.2. Spectral classification

Spectral MugNet applies only spectral information for classification. Here, we mainly focus on

effect of single grain in order to compare with the combined grains. We set the grains as 20×1,
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(a) (b) (c)

Figure 8: Classification accuracies by spatial MugNet on (a) Indian Pines, (b) grss dfc 2013 and (c) grss dfc 2014

data sets.

40×1 and 60×1, respectively. Then all the features extracted in different grains are combined via

a vector stacking strategy.

Figure 7 shows the results by spectral MugNet on the three data sets. For Indian Pines data set,

it is observed that smaller grains could lead to better performance, but the gaps are not obvious.

By combining all the grains, spectral MugNet outperforms single grain based networks, as shown

in the 4th column at Figure 7(a). Similar phenomenon can also be observed from the results on

grss dfc 2013 and grss dfc 2014 data sets. The OA/AA/κ of spectral MugNet in Indian Pines,

grss dfc 2013 and grss dfc 2014 data sets are 87.83%/93.32%/86.17%, 88.06%/89.25%/87.10% and

92.37%/87.86%/90.47%, respectively. Note that it is not appropriate to combine too many grains.

In each grain, we have to train a certain network. If too many grains were used in spectral MugNet,

the computational cost and memory usage will be unacceptable. To balance this conflict, we only

use 3 grains for ensemble.

3.3. Spatial classification

The effectiveness of spatial correlation is evaluated in this section. Because spatial MugNet is

constructed using training samples and their neighborhoods, to guarantee the objectivity of the

results, the neighboring pixels around training samples are not used for testing. Here, we set the

grains in spatial MugNet as 3×3, 5×5 and 7×7. Their respective and combined accuracies are all

reported.

The classification results by spatial MugNet are revealed in Figure 8. We can see that the

accuracies decrease in larger grains. This is mainly because the input data of spatial MugNet

are small images with size 9×200, in this case large grains such as 7×7 tend to represent more

14



(a) (b) (c) (d) (e) (f)

Figure 9: Classification maps for Indian Pines data set by (a) IFRF, (b) EPF, (c) NRS, (d) RVCANet, (e) HiFi and

(f) MugNet.

(a) (b) (c) (d) (e) (f)

Figure 10: Classification maps for grss dfc 2013 data set by (a) IFRF, (b) EPF, (c) NRS, (d) RVCANet, (e) HiFi

and (f) MugNet. Because this data set is too large, to provide a better visual effect, we only show part of it.

global information. However, according to this experiments, local information is more beneficial.

Compared with single grain network, the ensemble networks present slightly better performance,

as shown in the 4th columns at Figure 8(a)-(c). The OA/AA/κ of spatial MugNet in Indian Pines,

grss dfc 2013 and grss dfc 2014 data sets are 89.86%/94.29%/88.78%, 89.49%/90.55%/88.47% and

92.19%/89.29%/90.59%, respectively. Overall, spectral and spatial MugNets have reported similar

classification accuracies.

3.4. Joint spectral and spatial features for classification

In this section, we combine the spectral and spatial features to construct the final classification

model, MugNet. The performance of MugNet is compared with those of some recently proposed

methods which are based on nearest regularized subspace (NRS) [49], edge-preserving filtering

(EPF) [50], image fusion and recursive filtering (IFRF) [56], simplified deep learning (RVCANet)

[41] and ensemble learning (HiFi) [51]. To validate the effectiveness of the semi-supervised strat-

egy, supervised MugNet (MugNet-S) using labeled samples only is also compared. The 50-times

average accuracies and the corresponding standard deviations are reported in Table 1-3, and the
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(a) (b) (c) (d) (e) (f)

Figure 11: Classification maps for grss dfc 2014 data set by (a) IFRF, (b) EPF, (c) NRS, (d) RVCANet, (e) HiFi

and (f) MugNet.

classification maps by different methods are shown in Figure 9-11.

3.4.1. Results on Indian Pines data set

In this data set, IFRF, HiFi and MugNet perform better than the others, among which MugNet

achieves about 1-5% advantage. A notable detail is that samples in this data set are quite unbal-

anced, e.g., classes alfalfa, grass-pasture-mowed and oats. All the 6 methods perform well in these

classes although training samples are limited. However, the reason may be that data distribution

in such small-scale sample sets are quite fixed. In other words, the results by all the methods are

actually overfitting. Therefore, it is more meaningful to focus on the classes with many testing sam-

ples. In this case, OA is a more objective metric than AA for Indian Pines data set. We note that

MugNet outperforms IFRF and HiFi in OA by about 1.5%, and semi-supervised manner presents

slightly better results. Overall, due to the problem of sample unbalance, this data set alone cannot

verify the effectiveness of MugNet. More data sets are necessary.

3.4.2. Results on grss dfc 2013 data set

This data set is originally designed for classification contest [57], thus the results on it are

more convincing. Actually this data set is more challenging than some popular ones such as Pavia

University, according to [51]. Although there are only 20 pixels per class for training, MugNet can

still work well. Among all the six methods only MugNet achieves more than 90% OA, AA and κ.

When evaluating the performance of small-scale samples classifiers, the accuracy in each class is

also important. We note that MugNet reports at least 85% accuracies for all the classes, while all

of the others have several classes below 80%.
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Table 1: CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON INDIAN PINES DATASET.

Class Samples Methods

Train/Test IFRF EPF NRS RVCANet HiFi MugNet-S MugNet

OA(%) 88.85±2.51 77.54±3.10 79.86±1.82 83.06±2.32 89.06±1.70 88.42±1.87 90.65±1.77

AA(%) 94.03±1.25 87.04±1.88 88.74±1.03 91.56±0.89 94.11±0.77 93.94±0.63 95.48±0.78

κ×100 87.35±2.81 74.66±3.41 77.14±2.02 80.87±2.56 87.51±1.90 86.87±2.08 89.36±1.99

Alfalfa 20/26 99.69±1.05 98.84±1.78 99.92±0.55 99.00±1.70 99.46±1.35 98.46±1.92 100.0±0.00

Corn-notill 20/1408 85.68±5.96 56.53±11.1 70.28±7.42 63.94±6.85 81.91±5.58 78.35±6.06 78.34±5.46

Corn-mintill 20/810 90.10±6.43 67.27±10.5 75.47±7.71 79.91±7.05 91.49±4.52 89.81±2.78 89.88±6.82

Corn 20/217 97.54±4.43 96.56±4.60 94.58±4.59 98.59±2.22 96.78±3.84 97.93±2.53 99.09±1.88

Grass-pasture 20/463 92.59±4.73 91.09±4.56 87.69±5.18 93.60±3.02 90.06±3.88 93.67±3.79 93.38±3.83

Grass-trees 20/710 97.07±4.42 96.97±3.93 92.55±4.19 98.36±1.10 97.92±1.80 98.74±1.54 99.16±1.43

Grass-pasture-mowed 14/14 100.0±0.00 96.85±3.58 100.0±0.00 99.42±1.95 96.75±5.54 95.42±3.49 99.85±1.03

Hay-windrowed 20/458 99.65±0.84 96.65±5.47 98.20±2.30 98.76±0.63 99.39±0.92 99.75±0.45 99.94±0.10

Oats 10/10 100.0±0.00 99.80±1.41 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00

Soybean-notill 20/952 87.98±6.18 83.09±7.85 72.45±8.16 87.43±3.79 88.16±6.63 86.99±4.44 90.20±4.02

Soybean-mintill 20/2435 80.94±7.82 69.55±9.23 71.75±8.38 72.01±6.49 79.82±5.86 79.89±6.38 85.17±5.10

Soybean-clean 20/573 87.75±4.81 73.26±10.1 81.24±7.00 90.49±4.08 93.31±3.18 93.43±3.76 95.01±3.59

Wheat 20/185 99.36±0.41 99.39±0.32 99.18±1.28 99.49±0.31 99.41±0.29 99.43±0.29 99.89±0.21

Woods 20/1245 92.24±6.02 88.51±7.76 87.09±5.11 94.24±3.49 96.96±2.79 95.69±4.99 98.78±2.19

Buildings-Grass-Trees-Drives 20/366 95.37±4.42 81.44±10.6 90.43±6.09 90.65±4.05 95.23±2.72 96.71±2.59 99.47±1.28

Stone-Steel-Towers 20/73 98.46±3.39 96.93±5.68 98.96±2.02 99.06±1.90 99.07±0.65 98.79±1.07 99.57±0.85

3.4.3. Results on grss dfc 2014 data set

Compared with the other two data sets, grss dfc 2014 is much more challenging. The results

reported in Table 3 are obtained with 50 training samples per class, rather than 20. However,

because there are only 7 classes in this data set, totally 350 pixels are used for training which

is very similar to the other two (320 in Indian Pines and 300 in grss dfc 2013). Since there are

more than 22000 pixels are labeled, our setting could be still considered as “limited samples”. The

advantage of MugNet in this data set is more significant, especially in OA and κ. The accuracy

of MugNet on trees is not satisfying (below 70%), however, MugNet performs well in the other

6 classes. Among all the 7 classes, MugNet outperforms others in 4 ones. The effectiveness of

semi-supervised strategy is also verified, according to Table 3.

Overall, MugNet has achieved better performance than the compared methods in the selected

data sets. Another point we have to emphasize is that as an ensemble method, the individual
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Table 2: CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON GRSS DFC 2013 DATASET.

Class Samples Methods

Train/Test IFRF EPF NRS RVCANet HiFi MugNet-S MugNet

OA(%) 76.86±1.38 87.01±2.10 84.15±1.57 87.51±1.02 86.31±1.29 89.73±0.76 90.82±1.00

AA(%) 78.86±1.26 86.83±2.23 85.88±1.38 89.20±1.01 87.56±1.10 91.12±0.68 91.91±0.93

κ×100 75.00±1.49 85.95±2.27 82.87±1.70 86.50±1.10 85.20±1.39 88.90±0.83 90.08±1.08

Healthy grass 20/1231 72.30±8.27 94.15±4.78 87.96±5.15 91.62±3.80 93.01±4.03 90.39±3.36 91.26±4.36

Stressed grass 20/1234 61.18±5.76 93.80±4.28 86.52±6.73 91.66±3.54 96.11±3.22 94.49±1.94 91.58±3.98

Synthetic grass 20/677 93.31±4.90 98.91±2.10 95.68±3.42 99.99±0.02 99.68±0.12 99.74±0.10 100.0±0.00

Trees 20/1224 58.42±6.38 95.82±5.15 86.48±6.03 91.07±3.19 94.76±3.64 92.24±2.54 93.28±2.93

Soil 20/1222 88.21±4.52 94.19±3.38 94.73±3.69 94.88±3.27 98.83±1.11 99.06±0.61 93.89±3.73

Water 20/305 74.18±9.15 93.96±7.16 91.24±6.09 98.57±2.60 95.87±3.39 97.45±0.83 97.31±2.97

Residential 20/1248 74.19±5.68 84.74±7.04 81.65±5.51 82.22±5.13 89.74±4.58 86.90±3.13 89.15±4.54

Commercial 20/1224 78.55±8.62 84.81±6.08 73.04±7.29 93.19±4.14 58.78±7.12 72.44±7.58 94.80±4.21

Road 20/1232 63.50±7.67 78.93±7.51 92.48±3.30 78.83±4.17 80.33±3.83 83.05±4.40 85.54±4.91

Highway 20/1207 83.79±5.48 87.05±6.13 72.43±9.02 80.99±4.87 82.21±9.61 92.15±6.44 86.54±5.94

Railway 20/1215 87.98±6.50 83.05±5.57 72.98±8.65 80.33±6.13 76.45±7.60 88.63±4.96 91.14±4.44

Parking Lot 1 20/1213 87.35±4.45 72.89±7.75 72.31±8.14 81.76±7.19 76.69±6.57 82.44±5.57 86.51±7.19

Parking Lot 2 20/449 75.86±10.8 49.94±16.2 85.12±5.79 80.32±8.21 73.63±4.71 88.89±2.89 85.98±7.75

Tennis Court 20/408 92.69±6.73 90.29±8.89 95.86±3.34 99.12±1.75 97.81±1.44 98.89±0.60 97.21±3.47

Running Track 20/640 91.33±5.72 99.88±0.37 99.81±0.60 93.43±2.58 99.54±0.53 99.98±0.05 94.50±2.68

learners in MugNet are the feature extraction processes in single grains. Although the improvements

from spectral/spatial MuNet to MugNet are not very apparent, we just hope that they are significant

from individual learners to the final ensemble model.

3.5. Analysis and discussion

3.5.1. Influence of training samples

Since we mainly target at small-scale classification problem, in this section we discuss the influ-

ence of training samples number. Figure 12 displays the curves of AA and κ under different number

of training samples. We only show the curves of IFRF, HiFi, RVCANet and MugNet because they

have presented the closest performance in Table 1-3.

We can see from Figure 12 that MugNet outperforms the compared methods in most cases. In

Indian Pines and grss dfc 2013 data sets, MugNet has achieved more than 85% AA and 70% κ with

only 5 training samples per class. Classification on grss dfc 2014 data set is more challenging, but
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Table 3: CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON GRSS DFC 2014 DATASET.

Class Samples Methods

Train/Test IFRF EPF NRS RVCANet HiFi MugNet-S MugNet

OA(%) 84.26±2.07 68.52±4.76 83.37±1.60 86.40±1.45 88.72±1.51 92.76±1.26 93.15±1.21

AA(%) 79.70±2.40 68.81±2.77 82.30±1.09 80.78±1.77 87.81±1.49 88.76±1.22 89.60±1.82

κ×100 80.65±2.47 62.49±5.09 79.46±1.88 83.21±1.72 86.06±1.82 90.99±1.55 91.49±1.49

Road 50/4393 89.36±2.96 97.21±0.98 94.64±1.94 95.55±1.55 98.95±0.82 95.98±3.13 96.08±1.89

Trees 50/1043 60.08±8.18 17.09±3.69 76.76±4.16 54.47±7.73 81.09±6.25 67.25±9.50 68.25±10.4

Red roof 50/ 1804 74.43±5.99 52.93±8.23 73.90±5.12 70.94±5.12 83.33±3.71 86.89±3.49 87.58±4.63

Grey roof 50/2076 75.89±6.44 56.89±9.11 85.40±4.77 76.57±3.88 83.89±4.30 88.02±2.63 88.72±4.21

Concrete roof 50/3838 83.23±5.56 92.89±6.45 72.19±5.64 91.86±4.14 87.88±3.91 97.68±1.33 97.84±1.51

Vegetation 50/7307 96.96±1.42 87.65±3.70 83.73±5.20 95.35±1.98 85.57±3.75 94.08±3.80 97.78±1.11

Bare soil 50/1721 77.95±7.83 77.03±12.1 89.49±4.12 80.69±7.13 93.98±3.19 91.39±2.14 90.91±3.65

(a) (b) (c)

(d) (e) (f)

Figure 12: Influence of training samples number. AA on (a) Indian Pines, (b) grss dfc 2013, (c) grss dfc 2014. κ on

(d) Indian Pines, (e) grss dfc 2013, (f) grss dfc 2014.
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(a) (b) (c)

(d) (e) (f)

Figure 13: Statistical evaluation. AA on (a) Indian Pines, (b) grss dfc 2013, (c) grss dfc 2014. κ on (d) Indian Pines,

(e) grss dfc 2013, (f) grss dfc 2014.

the AA and κ by MugNet are still higher than other methods. As is expected, the accuracies are

promoted with the increase of training samples’ number. However, we note that the gaps among

different methods shrink with sufficient training samples. For example, in Figure 12(a)(d), IFRF,

HiFi and MugNet have reported very close results with 50 training samples per class. In this case, it

is not safe to conclude which method is better. Therefore, the results obtained by limited samples

may be more important for evaluation. Results in Figure 12 indicates that MugNet has about

2%-5% advantage over the compared methods with 10-20 training samples per class.

3.5.2. Statistical evaluation

To further validate that the observed advantages acquired by MugNet is statistically significant,

we conduct paired t-test on OA, AA and κ. In paired t-test, we accept the hypothesis that m̄1 is

larger than m̄2 only if

(m̄1 − m̄2)
√
n1 + n2 − 2√

( 1
n1

+ 1
n2

)(n1s21 + n2s22)
> t1−α[n1 + n2 − 2], (9)

where m̄1 and m̄2 are the mean values of OA, AA or κ, n1 and n2 are running times which is set

as 50 in our experiments, s1 and s2 are standard deviations, and t1−α is the αth best quantile of
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the Student’s law. According to the results in Table 1-3, MugNet outperforms all the compared

methods at confidence level 95%. The detailed statistics of AA and κ is shown in Figure 13. Figure

13 contains several box plots where the distribution of results are illustrated. Similar to the above

discussion, only results by MugNet, HiFi, RVCANet and IFRF are presented in Figure 13 because

they achieve the closest accuracies. In a box plot, the red line denotes the median of multiple

running result, the box height denotes interquartile range, and the red “+” are outliers. Figure 13

also demonstrates the effectiveness of MugNet.

4. Conclusion

Although deep learning has presented excellent performance in many research fields, more studies

are still required to further explore its application in HSI classification. One of the major challenge is

that labeled pixels in HSI is not sufficient, which may lead to overfitting or underfitting. Fortunately,

compared with visual images, HSIs have provided abundant spectral signatures which could produce

extra discriminant information. Moreover, the spatial relationship between neighboring pixels can

also contribute for classification.

Inspired by this recognition, we develop a new deep learning method, MugNet, which aims at

making full use of the spectral and spatial correlations. MugNet is constructed on the basis of a

simplified network, PCANet, where required hyper-parameters have been significantly reduced. In

MugNet, multi-grained scanning strategy is utilized to represent the spectral and spatial relation-

ships in different grains. In each grain there is an individual deep learning model, and the final

classification results are obtained by an ensemble approach. Therefore, MugNet could be regarded

as an ensemble deep learning based method. Furthermore, to better deal with the problem of lim-

ited samples, we introduce semi-supervised method to MugNet. The experiments have shown that

MugNet outperforms some state-of-the-art HSI classification methods even in the case of small-scale

training set.

In our future work, we will try to transform MugNet to a completely end-to-end manner, and

further improve its computational efficiency.
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