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Abstract: Building segmentation for remote sensing images usually requires pixel-level labels which
is difficult to collect when the images are in low resolution and quality. Recently, weakly supervised
semantic segmentation methods have achieved promising performance, which only rely on image-
level labels for each image. However, buildings in remote sensing images tend to present regular
structures. The lack of supervision information may result in the ambiguous boundaries. In this
paper, we propose a new weakly supervised network for refined building segmentation by mining the
cross-domain structure affinity (CDSA) from multi-source remote sensing images. CDSA integrates
the ideas of weak supervision and domain adaptation, where a pixel-level labeled source domain
and an image-level labeled target domain are required. The target of CDSA is to learn a powerful
segmentation network on the target domain with the guidance of source domain data. CDSA mainly
consists of two branches, the structure affinity module (SAM) and the spatial structure adaptation
(SSA). In brief, SAM is developed to learn the structure affinity of the buildings from source domain,
and SSA infuses the structure affinity to the target domain via a domain adaptation approach.
Moreover, we design an end-to-end network structure to simultaneously optimize the SAM and SSA.
In this case, SAM can receive pseudosupervised information from SSA, and in turn provide a more
accurate affinity matrix for SSA. In the experiments, our model can achieve an IoU score at 57.87%
and 79.57% for the WHU and Vaihingen data sets. We compare CDSA with several state-of-the-art
weakly supervised and domain adaptation methods, and the results indicate that our method presents
advantages on two public data sets.

Keywords: weakly supervised segmentation; remote sensing; refined building segmentation;
cross-domain structure affinity

1. Introduction

Building segmentation in remote sensing images aims to localize rooftops at the
pixel-level [1], which has received extensive attention in many practical applications [2–4].
When the available remote sensing images are in low resolution and quality, how to obtain
refined segmentation boundaries (representing the roof outer shape for buildings) remains
a challenge.

In the past few years, deep convolutional neural networks have achieved remarkable
performance in processing remote sensing building segmentation tasks which mainly
attributed to the accurately annotated pixel-level data [5–7]. However, collecting a great
deal of labeled pixels is not only expensive and time-consuming, but may be limited
when the images are in low resolution and quality. To address the difficulty of pixel-level
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data collection, weakly supervised learning has received widespread attention in semantic
segmentation tasks [8–10]. The training set usually only needs image-level labels to indicate
whether the image contains objects. As shown in Figure 1a, most segmentation methods
under weak supervision follow the same route that first generates class activation maps
(CAMs) by the classification network and then applies them as pseudolabels to train the
segmentation network. Based on this approach, Fu et al. [11] suggested to utilize feature
fusion to observe the feature distribution of objects and backgrounds of various sizes.
Chen et al. [12] incorporated superpixel pooling and multiscale feature fusion to improve
the segmentation accuracy of the detected object boundary.

Figure 1. (a) A popular weakly supervised segmentation route is to train a classification network
with single domain information, from which class activation maps are derived as pseudosupervision
information for further supervising segmentation network training. (b) Our CDSA segmentation
network mines cross-domain structure affinity as context for weakly annotated data to benefit
pseudolabel inference and object refinement.

Recently, a new weakly supervised semantic segmentation method called saliency
and segmentation network (SSNet) [13] was proposed, which has demonstrated promising
performance. Different from the works that only consider a single domain, SSNet learns
context information in saliency data to promote the completion of weakly supervised
segmentation tasks. Inspired by the superiority of SSNet, we adapt it as our baseline and
incorporate the features of remote sensing images to create a new segmentation network.

Compared with semantic segmentation in natural scenes, building segmentation of
remote sensing images under weak supervision is more difficult. First, remote sensing
building images are usually taken from the top-down perspective by satellite sensors. Un-
der these particular conditions, remote sensing building images only show roofs with fixed
shapes. Therefore, a lack of precise context information may lead to ambiguous boundaries.
Next, due to the diversity of remote sensing image shooting conditions [14,15], remote
sensing building images usually present many distinct characteristics, such as multiscale
objects and diversified styles. However, in a real application, these remote sensing building
characteristics are usually intertwined, dramatically increasing the difficulty of building
segmentation. SSNet was originally designed to extract objects in natural scenes with
simple backgrounds. However, it often can not achieve the expected results in complex
remote sensing images. This is mainly due to the following two aspects:

• Buildings in remote sensing images usually present regular spatial structures, which is
not considered by SSNet and other weakly supervised semantic segmentation methods.

• Remote sensing images captured by different sensors usually present distinct domain
shifts due to the various imaging conditions and sensor parameters.

In this work, we design a new framework based on mining the cross-domain structure
affinity (CDSA) to overcome the aforementioned challenges. CDSA aims to learn cross-
domain structure feature relationships to further train a powerful segmentation network
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(as shown in Figure 1b). Specifically, powered by weak supervision and domain adaptation,
we propose to learn cross-domain structure affinity to enhance building segmentation.
Such a learning method is unified in a two-branch framework that is composed of spatial
structure adaptation (SSA) and the structure affinity module (SAM). More specifically, SSA
transfers the domain-invariant spatial structure features and structure affinity to the target
domain through adversarial learning. Based on this, SAM is designed to cross-domain
learn the structure affinity of buildings and efficiently leverages the learned affinity matrix
to refine the boundaries of buildings obtained by the SSA. In addition, through end-to-end
optimization of the SSA and SAM, the SSA can continuously provide pseudosupervised
information for the SAM; in turn, the SAM can learn a more accurate affinity matrix to
optimize the predicted results from the SSA.

In this paper, our main contributions of CDSA are summarized as follows:

• We propose a new weakly supervised building segmentation network, CDSA, by
mining the cross-domain structure affinity from multi-source remote sensing images.

• We develop a new SAM branch to learn the structure affinity of the buildings from source
domain, and a new SSA branch to infuse the structure affinity to the target domain.

• We design an end-to-end network structure to simultaneously optimize the SAM
and SSA so as to realize the interaction of pseudosupervised information and struc-
ture affinity.

2. Related Work

Related work can be divided into the following two aspects: building segmentation for
remote sensing and weakly supervised learning. They will be discussed in the following
two sections.

2.1. Building Segmentation for Remote Sensing

In the past few years, extensive investigations have been presented for building seg-
mentation based on convolutional neural networks. Initially, some building segmentation
methods are derived from FCN [16], which is a pioneer in pixel-level classification. For
example, MC–CFCN [5] added multi-constraints to the fully convolutional architecture
to optimize the parameters of the intermediate layers, thereby enhancing the multi-scale
feature representation ability of the model. RiFCN [17] proposed a bidirectional network
architecture that embeds high-level features into low-level features to achieve more accurate
object boundary segmentation. After that, with the continuous development of segmen-
tation models, researchers have designed more high-performance algorithms for remote
sensing building segmentation. To capture more adequate building features, GRRNet [18]
fused high-resolution aerial images and LiDAR point clouds for building extraction, which
utilized the modified residual learning network to learn multi-level features from the
fusion data. BRRNet [19] designed a prediction module based on an encoder-decoder
structure, which can extract more global features by introducing atrous convolution of
different dilation rates. In addition, some researchers have tried to improve the segmen-
tation performance with refined building boundaries. MFCNN [20] was regarded as a
multi-feature convolutional neural network, which introduced morphological filtering for
building boundary optimization. A novel FCN was proposed for building segmentation,
in which a boundary learning task is embedded to help maintain the boundaries of build-
ings [21]. E-D-Net [22] integrated edge information and refinement results to improve the
accuracy of building segmentation. The optimization of the above segmentation network
usually requires calculating the loss between the predicted segmentation mask and the
pixel-level ground truth. The loss often applied in the segmentation task is the cross-entropy
loss, as follows [23]:

LBCE(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)) (1)
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where y is ground truth and ŷ is the predicted value by the prediction model. Nevertheless,
collecting large amounts of pixel-level data from remote sensing building data sets is
very difficult.

2.2. Weakly Supervised Learning

Weakly supervised learning can be treated as the process of mapping input data
and corresponding weak labels to a set of stronger labels. Owing to the difficulties in
obtaining pixel-level labels, segmentation methods based on weakly supervised learning
have received extensive attention in both natural scenes and remote sensing.

In recent weakly supervised segmentation models, image-level labels are the most
widely adopted data type as weakly annotated. Some works focus on generating better
CAMs from image-level annotations to obtain better pixel-level pseudo-labels. In natural
scenes, researchers use saliency maps [24], iterative generation of seeds [25], and mining
of cross-image semantics [26] to obtain high-performance CAMs. In addition, SEAM [27]
proposed to incorporate self-attention with equivariant regularization to improve the
consistency prediction capability of the network, where self-attention implementation by
inter-pixel feature similarity:

f
(
xi, xj

)
=

θ(xi)
Tθ
(
xj
)

‖θ(xi)‖ ·
∥∥θ
(
xj
)∥∥ (2)

where xi denotes the feature of pixel i and θ is a convolution calculation. Nowadays, some
segmentation methods based on weakly supervised learning are also widely used for ex-
tracting ground entities from remote sensing images. For example, U-CAM [28] supervised
with image-level labels achieves good performance in segmenting cropland in Landsat
composite imagery. Hierarchical conditional generative adversarial nets and conditional
random fields were combined to achieve weakly supervised segmentation of synthetic
aperture radar images [29]. A novel weakly supervised network was proposed to extract
roads from very high-resolution images [30]. Zhang et al. [31] integrated class-specific
multiscale salient features implement residential area segmentation under weak super-
vision. Although the aforementioned methods have achieved significant improvement
under weakly supervised learning, they ignored the structure information of objects, which
would not be applicable to the building segmentation from remote sensing.

In this paper, our main contribution is to mine structure affinity for refined building
segmentation by integrating two branches, i.e., the SSA and the SAM.

3. Methodology

In this section, the detailed framework of CDSA is described. First, we present the
overall architecture of the proposed network in Section 3.1. Next, we elaborate on the
implementation details of the key components SSA and SAM in Sections 3.2 and 3.3. Finally,
we describe the design of the training of CDSA in Section 3.4.

3.1. Overall Architecture of CDSA

Figure 2 illustrates the overall framework of the CDSA. Our weakly supervised
building segmentation method is trained in two stages. In the first stage, CDSA is trained by
a source domain with pixel-level annotated and an image-level labeled target domain. In the
second stage, in addition to the aforementioned supervision information, the segmentation
results predicted by the first stage are used as pixel-level pseudolabels to supervise the
target domain (as shown by the purple dotted line in Figure 2). Both the first stage and
second stage consist of SSA and SAM.

Specifically, as shown in Figure 2, the components of CDSA are mainly divided
into the backbone, segmentation network, pixel-level domain discriminator and SAM.
Among these, the segmentation network and pixel-level domain discriminator constitute
the SSA. The backbone as a feature extractor is designed based on the most advanced
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CNNs. In this paper, we remove the last fully connected layer of DenseNet [32] and utilize
the remaining convolutional layers to learn the multilevel structure information of the
input images. For the first and second stages, we use FCN [16] and DeepLabV3 [33] as
segmentation networks to learn multiscale semantic information respectively. To increase
the computational efficiency, we resize the input image of the feature extractor to 256× 256.

Figure 2. Illustration of the CDSA architecture. To tackle the challenges of domain shifts and
ambiguous boundaries in remote sensing building images, (a) SSA extracts domain-invariant features
and simultaneously infuses the structure affinity of the source domain into the target domain by
aligning the spatial structure feature distribution. (b) SAM learns the affinity matrix by mining
structure affinity from the ground truth in the source domain and predicted results in the target
domain. Then, the learned affinity matrix is applied to refine the initial predicted results obtained
by SSA.

3.2. Spatial Structure Adaptation

In the cross-domain building segmentation task, the source domain images have
pixel-level annotated ground truth while the target domain has only image-level annota-
tions. Clearly, how to obtain the most information from the source domain to understand
the spatial structure features of buildings is still an open problem. Unfortunately, due
to the various imaging conditions and sensor parameters, the texture, color and other
characteristics of the building are diverse in different domains. Recently, domain adap-
tation [34,35] has been applied to map domain-invariant structure features to the target
domain by adversarial learning. This strategy effectively reduces the impact of domain
shift. However, these existing methods are still limited because they do not adequately
consider the inter-pixel structure relationships on the cross-domain images. Therefore, the
cross-domain transmission of inter-pixel structure affinity needs to be further studied.

In this paper, the SSA is proposed to generate the initial predicted probability maps
by a weakly supervised domain adaptation approach. Meanwhile, the structure affinity
is infused into the target domain via an iterative update weight of SSA and SAM (intro-
duced in Section 3.3). Specifically, the segmentation network first learns the discriminative
structure features of buildings in the input images. To determine whether the object exists
in target domain images, a classification loss is defined using the image-level labels so
that the segmentation network can focus on the objects. Then, the pixel-level domain
discriminator is designed to distinguish which domain the feature comes from and further
utilizes adversarial learning to align the spatial structure distribution of two domains.
Besides, the predicted probability maps obtained by SSA are exploited to optimize the
SAM, a process that implicitly propagates structure affinity relationships from the source
domain into the target domain.



Remote Sens. 2022, 14, 1227 6 of 19

3.2.1. Weakly Supervised Segmentation

In the pixel-level labeled source domain S, we define the training data as Is = {Xn
s , Yn

s }
Ns
n=1,

where Xn
s ∈ RH×W×3 is the n-th training image, and Yn

s is the pixel-level ground truth. Each
element ysi of Ys is 0 or 1, representing that the i-th pixel belongs to the background or building.
Similarly, the training data of target domain T are denoted as It = {Xn

t , yn
t }

Nt
n=1, in which yn

t is
either 1 or 0, which is 1 if the training image contains the building; otherwise, it is 0. We apply
the segmentation network to generate segmentation predictions As, At ∈ RH′×W ′×C on both
domains, where H′, W ′ are the spatial dimensions of the input image after passing through the
segmentation network and C is composed of building and background probability maps. In
the source domain, we optimize the segmentation network by the loss Lseg between the
predicted results and ground truth, which is defined as follows [23]:

Lseg = − 1
Ns

Ns

∑
n=1

[
∑

i
yn

si log an
i + (1− yn

si) log(1− an
i )

]
(3)

where ai ∈ [0.0, 1.0] indicates the predicted probability value that the i-th pixel is the
building. In addition, image-level labels of the target domain are employed to predict
whether the object exists in the training image so that the segmentation network can
recognize it. In other words, we first input Xt to extract the features and then utilize the
segmentation network to obtain the corresponding At. Finally, we input At into a global
average pooling layer to obtain the predicted values for the corresponding categories:

pc = σ

[
log

1
H′W ′ ∑

h′∈H′
∑

w′∈W ′
exp A(h′ ,w′ ,c)

t

]
(4)

where pc ∈ [0.0, 1.0] represents the predicted probability that the c-th category appears in
the image and σ[·] is a sigmoid function. Therefore, we use the predicted probability value
p and the image label yt to calculate the category-wise binary cross-entropy loss:

Lc = −
1

Nt

Nt

∑
n=1

[yn
t log pn + (1− yn

t ) log(1− pn)] (5)

where p denotes the predicted probability of the building. We compute Lc between
the predicted values and the image-level labels and propagate it backward to make the
segmentation network predict the correct semantic categories. For example, when the
source model is used to predict images of the target domain, the segmentation network
can correctly identify the categories in a particular target image. The above procedures are
described in the gray box of Figure 2.

3.2.2. Pixel-Level Domain Adaptation

To decrease the domain shift from the source and target domains, we propose to apply
the pixel-level domain discriminator (PDD) to perform spatial structure feature alignment.
In particular, the PDD is composed of three convolutional layers and a deconvolutional
layer, and a sigmoid function, as shown in the dotted box of Figure 2. Specifically, the
PDD receives As, At from the segmentation network and outputs a 2D-channel score map,
where each pixel value represents the confidence score of the domain category. The loss of
the PDD is defined as follows [36]:

LPDD = − ∑
OPDD

s ∈S
∑

h′∈H′
∑

w′∈W ′
log
(

σ
(

OPDD
s

))
− ∑

OPDD
t ∈T

∑
h′∈H′

∑
w′∈W ′

log
(

1− σ
(

OPDD
t

)) (6)
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where OPDD
s and OPDD

t with size of H′ ×W ′ are the output results of the PDD. Meanwhile,
through the adversarial learning of the SSA, the segmentation network can learn domain-
invariant spatial structure features. The loss is defined as [36]:

LPDDadv = − ∑
OPDD

s ∈S
∑

h′∈H′
∑

w′∈W ′
log
(

1− σ
(

OPDD
s

))
− ∑

OPDD
t ∈T

∑
h′∈H′

∑
w′∈W ′

log
(

σ
(

OPDD
t

)) (7)

Finally, the optimized objectives are written as follows [36]:

D∗ = min
θPDD
LPDD (8)

G∗ = min
θSN
Lseg + λcLc + λdLPDDadv (9)

where θPDD and θSN are the parameters of the PDD and segmentation network, respectively.
λc and λd are the hyperparameters that control the importance of optimization functions.
In the training process, we follow the training strategy of the GAN [37] that alternately
updates the weights of the segmentation network and pixel-level domain discriminator.

3.3. The Structure Affinity Module

Although the SSA can provide additional spatial structure distribution for the target
domain, it is still difficult to extract the regular edges of buildings. To take advantage of
context information from existing data, the affinity matrix is introduced to describe the
relationship between the pixel pairs. The affinity matrix can implicitly convey context
information that is beneficial for the refinement of object edges. Specifically, we design the
SAM (as shown in the lower pink box of Figure 2) to learn the structure affinity between the
pixels in the input images. Then, the predicted affinity score is converted into an affinity
matrix, and the matrix is applied to optimize the predicted probability maps obtained by
SSA. Hence, the process improves the quality of the segmentation results by refining the
edges of buildings.

The architecture of the SAM is shown in Figure 3b. To learn the structure affinity
relationships under different receptive fields, we first use 1× 1 convolution to reduce the
dimensionality of the last three layers of the feature extractor. Next, due to the different
sizes of the last three layers, we adopt upsampling to align the size of the feature maps
and then concat them. Finally, we use 1× 1 convolution to obtain the affinity feature maps
to calculate affinity scores. The structure affinity of the pixel pairs on the output feature
map f a f f is calculated to obtain the affinity matrix M. The feature maps of different layers
of the backbone contain structure information in multiple fields of view and contacting
them can make the affinity of the calculation more accurate. In other words, for an affinity
feature map f a f f ∈ RH′′×W ′′×D, where H′′, W ′′ are the spatial dimension of the image after
affinity feature extraction and D is the number of channels, we calculate the relationship
between each pixel pair, so that the affinity matrix M contains H′′W ′′ × H′′W ′′ connections.
Theoretically, it is better to calculate the affinity of all pixel pairs on f a f f . Because the object
of remote sensing images is usually small, we only need to consider the context of a local
region in practice. Hence, we calculate the structure affinity between the pixel pairs with a
radius of r in this paper. Finally, the affinity score between pixels i and j is defined as [38]:

Mij = exp
{
−
∥∥∥ f a f f

i − f a f f
j

∥∥∥
1

}
(10)

where ||.||1 is the L1 norm and f a f f
i indicates the feature of the i-th pixel on the f a f f . By

training SAM, we can calculate the structure affinity between the pixels in a given image.
And SAM can further refine the object via the propagation of structure context relationships
(introduced in Section 3.3.3).
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Figure 3. (a) Pixel pairs sampled within a radius of r are used to supervise the SAM. The affinity
label is set to 1 if the pixel pair is from the same class, otherwise, the label is set to 0. Regions with
low confidence (white region) are not involved in supervision. (b) Overall architecture of the affinity
learning and spreading process in SAM. ’UP’ denotes the upsampling operation.

However, when calculating the affinity of paired pixels by Equation (10), we need
to provide supervised information for SAM. Under fully supervised conditions, ground
truth can be used to provide accurate structure affinity labels for SAM so that an affinity
matrix can perfectly convey the context relationship between the pixels. Nevertheless, as
the target domain is only annotated at the image level, it cannot directly provide affinity
labels for SAM training. For this purpose, the predicted probability map of the target
domain obtained by SSA is introduced to provide pseudosupervised information for SAM
in our method. However, At contains some low-confidence regions that do not participate
in supervised training. After training the SSA, the structure affinity is infused into the
target domain. Therefore, we propose to further integrate the structure context information
from the source domain for training SAM.

3.3.1. Affinity Learning of Weakly Supervised Pseudolabel

Different from the pixel-level ground truth, the structure information of At is inaccu-
rate and cannot be directly used as the basis of supervision. Therefore, when assigning
labels, we need to ignore the regions with relatively low confidence in At. That is, some
regions in the predicted probability maps that cannot fully be confirmed as belonging
to the foreground or background will not participate in the loss function calculation of
SAM. To highlight the foreground and background regions, we assign different exponential
powers to the background channel of At, and the remaining part is the discarded area
with low confidence. For a pair of pixels in a high-confidence area, as shown in Figure 3a,
if the pixels belong to the same category, the affinity label is set to M∗ = 1; otherwise,
M∗ = 0. Therefore, except for the areas with low confidence that do not participate in the
training, the pixel pair set Q formed within the radius r is divided into two parts: pixel
pairs belonging to the same category and pixel pairs belonging to different categories.
Specifically, Q can be defined as [38]:

Q+ =
{
(i, j) | (i, j) ∈ Q, M∗ij = 1

}
Q− =

{
(i, j) | (i, j) ∈ Q, M∗ij = 0

} (11)

Q+ is a set of pixel pairs belonging to the same category, and its subset is divided into a
foreground pixel pair set and a background pixel pair set. On the other hand, Q− is a set of
pixel pairs belonging to different categories. Then, the loss of a subset of Q is described
as [38]:

L+fg = − 1∣∣∣Q+
fg

∣∣∣ ∑
(i,j)∈Q+

fg

log Mij

L+bg = − 1∣∣∣Q+
bg

∣∣∣ ∑
(i,j)∈Q+

bg

log Mij

L− = − 1
|Q−| ∑

(i,j)∈Q−
log
(
1−Mij

)
(12)
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where |.| denotes the number of elements. Finally, in the weakly supervised condition, the
loss of training SAM to learn structure affinity is defined as [38]:

LWS
SAM = L+fg + L

+
bg + 2L− (13)

Thus the trained SAM decides the class consistency between two adjacent pixels.
That is, for pixels at the edges of the object, foreground affinity scores are higher than
background. To show a better understanding, we visualize the affinity learning results in
the ablation experiments.

3.3.2. Mining Cross-Domain Affinity

When mining the structure affinity of the source domain, there is a significant dif-
ference in the acquisition of the affinity labels. This is mainly because the source domain
contains real pixel-level annotations to provide accurate context information for the net-
work, so that every pixel of the source domain participates in the loss calculation. Similar to
learning structure affinity on the target domain, for the source images, the feature extractor
extracts multi-level features and calculate the association relationship of the pixel pairs
by Equation (10). We note that prior to calculating the loss, we need to downsample the
ground truth to the size of 64× 64 (consistent with the f a f f size). The difference is that we
can directly understand the relationship between pixel pairs from the ground truth that is
described as:

M∗ij =
{

1, if (ysi = ysj)
0, else

(14)

According to Equations (11)–(13), the loss of structure affinity learning in the source domain,
LS−D

SAM, is defined to be the same as the LWS
SAM.

Based on the aforementioned description, we mine the cross-domain structure affinity
of remote sensing buildings. On the one hand, meaningful affinity is learned of the target
domain to fit the existing pseudolabel supervision. On the other hand, the learned affinity
of the source domain provides more complementary information. The total loss of SAM is
shown as Equation (15).

Ltotal
SAM = LWS

SAM + LS−D
SAM (15)

3.3.3. Affinity Spread

After training the CDSA, SSA infuses the structure affinity of the source domain into
the target domain. Therefore, SAM can provide a more accurate affinity matrix for SSA. As
shown in Figure 3b, the backbone extracts features of input images, and then the features
flow to SSA and SAM to generate the predicted probability maps and affinity feature
maps, respectively. Finally, the paired structure affinity calculated by Equation (10) is
transformed into a matrix to spread affinity information on the predicted probability maps.
This process is realized using a random walk strategy [39]. Specifically, this process of
spreading information is shown in Figure 4, which is described by:

K = E−1M◦α, where Eii = ∑
j

Mα
ij (16)

where ◦ is the Hadamard power of the affinity matrix and α is the hyperparameter. The
diagonal matrix E represents the row normalization of M. Structure affinity spread is
achieved by multiplying the transition matrix K with At. The optimized A∗t is given by:

vec(A∗t ) = Kv · vec(At) (17)

where v refers to the number of iterations and vec(·) denotes the vectorisation of a matrix.
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Figure 4. The process of affinity spread.

3.4. Training Design of CDSA

Since we learn the affinity information of pixel pairs on the feature map of size 64× 64,
the size of the final affinity matrix is 4096× 4096. When using the affinity matrix to optimize
the predicted probability maps, we need to ensure the size consistency, so the size of SSA
output is 64× 64. Due to the small receptive field, semantic information is inevitably lost.
Therefore, to facilitate network learning of multiscale semantic information, we design
a multiscale fusion training strategy. For the source domain images, the SSA can obtain
predicted results of different sizes and then calculate the loss with ground truth, shown as
in Figure 5.

Figure 5. Our multi-scale fusion strategy. The segmentation loss is used to learn semantic information
in different receptive fields on the source domain.

Figure 6 illustrates the entire training procedure for the target data. In training phase,
the SSA and SAM are simultaneously optimized to generate predicted probability maps
and affinity matrices, respectively. On the one hand, the SSA can learn spatial structure
domain-invariant features to generate better At. On the other hand, the SSA can infuse
the structure affinity into the target domain and the SAM can further provide a more
accurate affinity matrix to refine At. In this process, we obtain precise structure affinity
by minimizing Ltotal

SAM. Finally, the optimized segmentation results A∗t are used as the
pixel-level pseudolabels for the second stage. The entire process of the CDSA network is
briefly summarized in Algorithm 1.



Remote Sens. 2022, 14, 1227 11 of 19

Figure 6. The overview training framework for target domain data.

Algorithm 1 The pseudocode for CDSA.

Input: Source domain data: Is = {Xn
s , Yn

s }
Ns
n=1 and Target domain data: It = {Xn

t , yn
t }

Nt
n=1

and pretraining weight w and hyperparameter;
Output: Trained network and predicted segmentation masks;

1: Initialize the pre-training weight w for network;
2: while i < I do
3: Generate At, As from the SSA through Equations (8) and (9);
4: Learning structure affinity of cross-domain:
5: Generate the affinity feature map f a f f

t on the target domain;
6: Calculate the affinity matrix Mt on f a f f

t based on Equation (10);
7: Select high-confidence regions of At to assign labels for Mt;
8: Generate the affinity feature map f a f f

s on the source domain;
9: Calculate affinity matrix Ms on f a f f

s based on Equation (10);
10: Assign labels for Ms based Equation (14);
11: Calculate Ltotal

SAM;
12: Update weights w of network;
13: end while
14: Calculate the transition matrix K = E−1M◦α in the target domain;
15: Optimization At with K by vec(A∗t ) = Kv · vec(At);
16: The optimized A∗t in the target domain as pseudosupervision information to train the

second stage;

4. Experiments

In this section, we present the validity of our CDSA. We simply describe the data sets,
evaluation metrics, and experimental setup. Then, ablation experiments are designed to
evaluate the effects of the key component of the CDSA. Finally, we analyze quantitative
comparison results with some exiting methods and present a series of qualitative results.

4.1. Data Sets
4.1.1. Inria

Inria[40] are data extracted from aerial image buildings, including aerial orthographic
color images and corresponding binarized building outlines in the images. Its spatial
resolution is 0.3 m. To facilitate training, we crop each image to a size of 500× 500. We split
the training set into 1–5 images (2500 images with 500× 500 px) used for testing and 6–36
images (15,500 images with 500× 500 px) used for training.

4.1.2. WHU

WHU[41] is collected from the New Zealand Land Information Service website, which
is the aerial image data set with a ground resolution of 0.3 m. The ground truth contains
two semantic categories: building and background. The area contains 22,000 individual
buildings, which are split into 8189 images of 512× 512 size. We choose 4736, 1036, and
2417 images for training, validation, and testing.
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4.1.3. ISPRS

ISPRS [42] is obtained from the International Society for Photogrammetry and Re-
mote Sensing (ISPRS) Commission II/4. We divide the ground truth into two categories
(including building and background) and crop the patches with a size of 250× 250. From
the Potsdam data set, we choose 10,960, 9864 images for training and testing. From the
Vaihingen data set, we select 1253 images as the training set and 1184 images as the test set.

4.2. Evaluation Metrics

In this study, we evaluate the performance of the proposed method in terms of both
quantitative and qualitative aspects respectively. In qualitative analysis, we compare the
results by visualizing the segmentation maps. We select two comprehensive quantitative
metrics for evaluating the quality of our CDSA including intersection over union (IoU) and
overall accuracy (OA).

IoU calculates the ratio of intersection and union of the two sets of the true and
predicted values. It is defined as:

IoU
(

Pk, Pgt
)
=

∣∣∣∣Pk ∩ Pgt

Pk ∪ Pgt

∣∣∣∣ (18)

where Pk is the predicted value and Pgt is the ground truth.
OA is the ratio of pixels with correct marking and the total pixels. Concretely,

OA =
TP + TN

TP + TN + FP + FN
(19)

where TP, TN, FP and FN are the result of pixel segmentation, which represent the number
of elements in the true positive, true negative, false positive, and false negative pixel sets,
respectively.

4.3. Implementation Details

We use DenseNet-169 [32] pretrained on ImageNet [43] as the feature extractor of the
proposed method because it can achieve the desired performance with fewer parameters
than other architectures. Our network is based on the PyTorch framework and is trained
on two NVIDIA GeForce RTX 2080 Ti GPUs. We employ the Adam optimizer [44] to train
the network with a learning rate of 1 × 10−4 and momentum of 0.9. During training, the
preprocessing of the image randomly crops a block of 9/10 the original image size, resizes
it to 256× 256, and sets the batch size to 8. For training SSA, we fix λc to 1 and λd to 0.0001.
To reduce the number of network calculations, we choose to learn the affinity of pixel pairs
in the range of r = 4 in the experiment. In addition, in Equations (14) and (15), we fix α to 8
and v to 6. During testing, the input image is resized to 256× 256. Finally, the predicted
segmentation result is adjusted to the input image size with upsampling methods.

4.4. Ablation Studies

To better evaluate the effects of the CDSA, ablation experiments are designed to
analyze the contributions of the key component on the WHU data set.

4.4.1. Influence of the Pixel-Level Domain Discriminator

We first reveal the contributions of the pixel-level domain discriminator by integrating
it into the SSNet framework. The SSA reduces the difference in spatial structure distribution
between the source and target domains by adversarial learning. As shown in Table 1, the
performance in terms of IoU is increased from 55.03% to 56.17%, and OA is increased from
93.36% to 93.42%, proving that the participation of the pixel-level domain discriminator
effectively improves the segmentation accuracy in the target domain.
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Table 1. A Ablation Experiments On WHU Data Set (%).

SSA
Baseline X X X X X

Pixel-level Domain Discriminator X X X

SAM
Weakly Supervised X

Cross-domain Supervised X X

Image-level labels of target domain X X X X

The first stage
IoU 51.75 52.93 54.26 55.03 56.51

OA 92.42 93.30 93.28 93.43 93.56

The second stage
IoU 55.03 56.17 56.64 57.19 57.87

OA 93.36 93.42 93.51 93.67 93.84

4.4.2. Influence of SAM under Weakly Supervised Learning

As shown in Table 1, structure affinity learned under weak supervision can effectively
improve segmentation performance by improving the IoU score from 55.03% to 56.64% and
the OA score from 93.36% to 93.51%. The main reason is that SAM has the ability to learn
the contexts of buildings with information based on the structure affinity of target domains.
By using the learned structure affinity to refine objects, more accurate segmentation objects
can be obtained.

4.4.3. Influence of SAM under Cross-Domain Supervised

Based on the structure affinity under weakly supervised learning, we further study the
contribution of cross-domain supervision to SAM. As shown in Table 1, we not only add a
pixel-level domain discriminator to reduce domain differences and simultaneously infuse
structure affinity of the source domain into the target domain, but also mine cross-domain
structure affinity to provide complete supervision for SAM. In addition, collaboration
between the SAM under cross-domain supervision and SSA leads to further improvements,
with IoU increasing by 1.23% and OA increasing by 0.33%. This shows that on the basis
of spatial structure feature alignment, cross-domain mining of structure affinity helps to
improve the segmentation performance.

To more clearly understanding the structure affinity of pixels, we analyze the visual-
ization results for the affinity performance in Figure 7. It is observed from the Figure 7b
that the same pixels in the interior of the building indicate that they belong to the same
structure. The border between the foreground and the background is more highlighted,
indicating that the two have a low affinity score. Therefore, structure affinity can show the
relationship between the pixels well. We use this relationship to spread context structure
information in a segmentation map to refine the sides and corners of rectangular buildings.
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(a)

(b)

(c)

(d)

(e)

Figure 7. Performance visual analysis of structure affinity on WHU and Vaihingen data sets. Among
them, the first two columns are the visual comparison results on the WHU data set, and the latter
two columns are the visual comparison results on the Vaihingen data set. (a) Input the target domain
images. (b) The visualization results for the affinity in a certain direction. Affinity presents a good
performance in describing the class consistency between pixels. (c) Segmentation result of baseline,
in which a decent object localization map is obtained but building edges are poorly segmented. (d)
CDSA utilizes the structure affinity of pixels for refining the buildings. (e) Ground Truth.

4.5. Comparisons with State of the Arts

Here, we compare with existing domain adaptation, weakly and fully supervised
methods.

4.5.1. Comparison with Weakly Supervised

For the foreground building category, we first show our comparison results on the
WHU data set. As shown in Table 2, compared with WILDCAT [45], SEAM [27], and
ICD [46], our method achieves 33.09%, 32.39%, and 33.55% improvements in the IoU score,
respectively. In addition, we also show the comparison results in terms of IoU and OA on
the Vaihingen data set in Table 3. It is observed that CDSA is significantly better than the
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other weakly supervised methods. Due to the dense buildings and relatively similar targets
and backgrounds in the remote sensing scene, CAMs can only highlight local targets in the
image and possibly even the background. Only selecting CAMs to obtain pseudolabels
for segmentation training will often introduce noise to network training. Baseline SSNet
introduces existing pixel-level annotation data to achieve good performance. Due to the
mining of structure affinity and the alignment of spatial structures, our CDSA can make
great progress.

Table 2. Performence Comparisons (IoU AND OA) among Different Methods on the WHU Data Set (%).

Methods Sourec Domain Target Domain IoU OA

Weakly supervised Methods

WILDCAT [45] - WHU 24.78 82.64
SEAM [27] - WHU 25.48 69.23

ICD [46] - WHU 24.32 48.89
SSNet [13] Inria WHU 55.03 93.36

CDSA(Ours) Inria WHU 57.87 93.84

Domain adaptation Methods

NoAdapt Inria WHU 35.60 86.10
FCAN [47] Inria WHU 40.79 91.74

CDSA(Ours) Inria WHU 57.87 93.84

NoAdapt WHU Inria 27.84 81.34
FCAN [47] WHU Inria 35.05 87.41

CDSA(Ours) WHU Inria 39.82 91.23

Fully supervised Methods FCN [16] - WHU 73.29 96.52
DeeplabV3 [33] - WHU 75.89 96.86

Table 3. Performence Comparisons (IoU AND OA) among Different Methods on the Vaihingen Data
Set (%).

Methods Source Domain Target Domain IoU OA

Weakly supervised Methods

WILDCAT [45] - Vaihingen 44.92 78.08
SEAM [27] - Vaihingen 30.49 75.38

ICD [46] - Vaihingen 39.48 69.10
SSNet [13] Postdam Vaihingen 75.73 93.18

CDSA(Ours) Postdam Vaihingen 79.57 94.52

Domain adaptation Methods

NoAdapt Postdam Vaihingen 21.92 65.91
FCAN [47] Postdam Vaihingen 45.00 67.19

CDSA(Ours) Postdam Vaihingen 79.57 94.52

NoAdapt Vaihingen Postdam 28.75 67.39
FCAN [47] Vaihingen Postdam 35.96 76.06

CDSA(Ours) Vaihingen Postdam 69.94 90.58

Fully supervised Methods FCN [16] - Vaihingen 79.20 94.06
DeeplabV3 [33] - Vaihingen 80.31 94.57

4.5.2. Compared with Domain Adaptation

Table 2 illustrates the comparison results of domain adaptation as measured with IoU
and OA scores on the Inria-WHU data sets. NoAdapt indicates that the model trained in the
source domain without any domain adaptation is applied directly for testing in the target
domain. We can observe that CDSA significantly outperforms other methods in terms of
IoU and OA values on Inria→WHU and WHU→Inria data sets. In addition, as shown in
Table 3, our method also achieves significant improvements on the Postdam-Vaihingen
data sets. The major reasons for this are as follows:

• SSA can map the spatial structure domain-invariant features to the target domain and
use image-level labels of the target domain to roughly locate objects.

• SAM can mine the structure context between the pixels to refine the edges of buildings.
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4.5.3. Comparison with Fully Supervised

An examination of the results presented in Tables 2 and 3 shows that our method
further narrows the gap with the fully supervised segmentation network. FCN [16] and
DeepLabV3 [33] can achieve excellent segmentation performance that relies on manually
annotated pixel-level labels. However, compared with fully supervised methods, we can
obtain quite competitive results by mining the cross-domain structure affinity under weakly
supervised conditions. Therefore, our proposed CDSA network is also promising.

4.6. Qualitative Results

In Figures 8 and 9, we further present the qualitative comparison results to confirm
the effectiveness of our CDSA network on the WHU and Vaihingen data sets. In Figure 8,
due to the low resolution of the data set, most of the objects in the remote sensing images
are densely arranged and occupy a small image area. Methods that rely on a single
dataset to obtain a localization map for segmentation (e.g., SEAM, ICD, WILDCAT) are
only able to roughly localize the location of an object. However, the disadvantage of
these methods is they do not accurately identify the narrow background between densely
arranged dense buildings, resulting in buildings without clear boundaries (as shown
Figure 8 green boxes). With the introduction of existing datasets to guide the segmentation
task, SSNet, while improving in identifying narrow backgrounds, still has shortcomings
for segmenting the edges of some buildings. Meanwhile, as shown in Figure 9 red boxes,
some weakly supervised and domain adaptation methods still had the issue of irregular
building boundaries. In brief, although CDSA is not accurate enough in predicting the
borderlines compared to fully supervised networks, it obtains an advantage over other
weakly supervised methods on the two data sets by refining the segmentation results. As
shown in Figure 8, some failure segmentation results also are shown, i.e., CDSA cannot
accurately locate small objects that are closely arranged in the image. We still need a new
solution to address the aforementioned challenging.

Figure 8. Comparison of qualitative analysis results on the WHU data set (Source domain: Inria
data set).
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Figure 9. Qualitative analysis results on the ISPRS data set (Source domain: Postdam data set, Target
domain: Vaihingen data set).

5. Conclusions

When the remote sensing images are in low resolution and quality, obtaining refined
labels are difficult. We propose a weakly supervised segmentation network based on mining
cross-domain structure affinity, named CDSA, for refining buildings in remote sensing
images. The proposed network mainly contains two branches, namely SSA and SAM. SSA
adopts a domain adaptive approach to map domain-invariant spatial structure features to
the target domain and also infuses structure affinity of source domain to the target domain.
To improve the segmentation performance for regular structure buildings, SAM is designed
to learn the structure affinity from the cross-domain and further optimize the building
boundary. We analyze the architecture of CDSA in detail, and then conduct a large number
of experiments at the two public data sets: Inria-WHU and Postdam-Vaihingen data sets.
For detail, our method achieved IoU and OA scores of 57.87% and 93.84%, respectively,
tested on the WHU data set. And CDSA can obtain IoU and OA scores of 79.57% and
94.52%, respectively, tested on the Vaihingen data set. The quantitative comparisons clearly
indicate that CDSA performs better than other advanced methods in refining the edges of
buildings. In the future, we will also conduct experiments on other types of remote sensing
images to prove that the proposed network can be applied to a wider range of data sets.
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