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Abstract

Analyzing image of traffic scenes plays a major role in intelligent transportation

systems. Regions of interest, including traffic signs, vehicles or some other man-

made objects, largely attract drivers’ attention. With different prior knowledge,

conventional approaches generally define and build dedicated detectors to each class

of such regions. In contrast, this paper focuses on explaining what regions in traffic

images can be of interest, which is a critical problem yet neglected before. Instead

of pre-defining the detectors, a computational model based on an unsupervised way

is proposed. The core idea is to simulate an image with multiple bands from the

given traffic image by stacking the spatial information. Our study shows that the

distribution of such data can be captured by a simplex in a linear subspace, and each

data point can be represented by a linear reconstruction over the set of vertices of

the simplex. An effective method to identify the simplex vertices is proposed. These

simplex vertices actually comprise the core elements in the regions of interest, as
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physically they correspond to regions with saturated colors. Comparisons of the

proposed approach and conventional methods on computational complexity and

practical extensive experiments are implemented. The results validate and show the

efficacy of the proposed approach.

Key words: Image of traffic scene (ITS); Regions of interest; Simplex vertex;

Matrix factorization.

1 Introduction

Recently, intelligent transportation system attracts more and more attention

for its wide applications. Generally, the entire ITS processing chain contain-

s four parts, including segmentation [1–3], detection [4], recognition [5] and

tracking [6]. Various methods have been proposed for different areas like sign

detection and recognition [7–9], driver distraction detection [10,11] and occu-

pant pose inference [12,13].

Among the different methods, thresholding approaches [1,2] are usually em-

ployed for segmentation purpose, in which visual experience always plays an

important role. For the purpose of detection and classification, different dedi-

cated descriptors, like edges [6], Histogram of Oriented Gradients (HOG) [9],

Local Binary Pattern (LBP) [14] and their extensive forms, are carefully de-

signed and applied. Canny edge detection or the similar methods are always

applied as the only feature in [15], where Ruta et al. reported an 100% de-

tection rate, but it is ”the case for one of sign types” [16]. Haar-like features

are introduced to be used with edges and also achieves effective results [17].

Some local features also attracted attentions. HOG is one of the represen-
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tative feature which is based on creating histograms of gradient orientations

on patches of the image, In [9] and [18], HOG is respectively combined with

boosting methods and support vector machine (SVM) to accomplish detec-

tion and recognition tasks. Vehicles and pedestrians are also crucial targets as

they convey traffic information. Negri et al. aimed at detecting pedestrians in

surveillance video sequences [19], by designing a family of oriented histogram

descriptors and a cascade of boosted classifiers. Duric et al. used Darboux

motion model to estimate relative vehicle motions in traffic scenes [20]. Jia

et al. discussed the detection of vehicles in front-view static images with fre-

quent occlusions [21], they constructed Bayesian problem’s formulations and

designed Markov chain to detect vehicles.

However, two crucial problems still remain unsolved despite the above devel-

opments. First, an essential problem in ITS processing — ”what are regions of

interests (also denoted as ROIs)” — is neglected. Researchers paid much atten-

tion to classifying various features of interesting regions by applying training

methods. These features are specifically designed and they exploit the spatial

or texture information, but no deep researches or mathematical descriptions

on the universal characteristics of ROIs are provided. The other problem is the

neglect of color information application in ITS. Note that, although various

segmentation methods could accomplish the task via color thresholding, they

have not been deeply exploited. For instance, in order to use those different

features, gray images are usually first obtained by removing colors of ITS [22].

Therefore, besides spatial information, how to use the color information in

ITS should also be taken into consideration.

To solve the problems, two main issues will be discussed in the paper: Math-

ematical description and definition of ROI; Physical explanation of the defi-

nition. In the paper, we will first give a mathematical definition of ROI. To
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Fig. 1. Proposed processing chain for ITS with some critical steps, including image
sampling, vertex extracting and matrix factorization. The factorized basis matrix
and weight matrix has their definite physical meanings.

confirm its rationality, a computational model is then provided as illustrated

in Fig. 1, with its core idea is to exploit the geometrical characteristic of ITS.

In Fig. 1, the original ITS with colors red, green and blue is transformed into

a 3-D image with its color number is larger than 3. In such circumstance, each

color plane will be named as ”band” or ”spectrum” instead of ”color” because

their broader meanings. In the following discussion, the image with multiple

bands will be named IMB for short. In the paper, one can see that, such data

can be mathematically captured by a simplex in a proper linear subspace, and

each data point can be represented by a linear reconstruction over the set of

simplex vertices. Exploiting the characteristics, we will discuss the essence of

ROI and its physical meaning.

The rest of the paper is organized as follows: In Section 2, the definition of ROI

is provided. In Section 3, a novel processing chain for handling ITS is discussed.

We propose an IMB simulating approach to obtain IMB. An effective vertex

extracting algorithms is also proposed to obtain simplex vertices. In Section
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4, experiments on the popular databases are implemented. Finally, the paper

comes to the conclusion in Section 5.

2 Statement on regions of interest in ITS

Compared with images of other scenes, ITS has specifical characteristics for

its vast man-made scenes. Since vehicles usually move on the roads, different

objects in the ITS like traffic signs, buildings on either side of the roads, and

even the other cars or pedestrians ahead of the camera could be important

for drivers. Among them, traffic signs and lights are the most representative

objects that inform drivers about the road conditions and restrictions. They

are designed to be outstanding from the backgrounds for visual convenience.

Therefore, these ROIs have relatively simpler but saturated colors. Generally,

three characteristics of the ROIs in ITS could be summarized as follows:

i. An ITS may have several ROIs, and each region is inside connected.

ii. Only one color exists inside each region and it does not change much

between the pixels in the region.

iii. The pixel colors in each region always have the same or similar values as

the extremal values in one band of the ITS. For instance, if we have a

ROI of blue traffic sign, then it has similar value as the extremal value of

ITS in the blue band (sometimes they are the same).

To mathematically describe the ROIs, we first give the maximum and mini-

mum values of band k in the ITS FI×J×K as follows:

1′ : max bandk = max{f(x, y, k), x ⊆ {1, 2, . . . , I}, y ⊆ {1, 2, . . . , J}, k ⊆

{1, 2, . . . , K}}

2′ : min bandk = min{f(x, y, k), x ⊆ {1, 2, . . . , I}, y ⊆ {1, 2, . . . , J}, k ⊆
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{1, 2, . . . , K}}

where I, J and K respectively denote the image width, height and band num-

ber, and f(x, y, k) denotes the pixel value of ITS in location (x, y) and band

k. Essentially, ROIs of ITS are the sets of coordinates and usually com-

prised by several subsets. For an ITS, its ROIs could be represented as:

C : {C1, C2, ..., Ci, ..., CM}, where M is the number of ROIs, and Ci is one

of the ROIs which could be described in Definition 1.

Definition 1 (ROI in ITS) Given a coordinate set Ci in ITS FI×J×K, it

is one ROI of ITS if for any element (x0, y0) ∈ Ci and two small thresholds

δ1 > 0, δ2 > 0, there exists a small m-neighborhood area set Ωm ⊂ Ci and

a band k ∈ {1, 2, ..., K}. For every pixel (xt, yt) ∈ Ωm, the following four

equations hold simultaneously:

|x0 − xt| < m (1)

|y0 − yt| < m (2)

|f(x0, y0, k)− f(xt, yt, k)| < δ1 (3)

min{|max bandk − f(xt, yt, k)|, |min bandk − f(xt, yt, k)|} < δ2 (4)

Note that the definition is concluded from the process of traffic sign and signal

designing, so it is more likely a descriptive concept, and it needs confirmation

from other point of view. In the next section, a novel approach to study the

intrinsic relationship between these ROIs of ITS and simplex vertices will be

proposed.

3 Methodology

In this section, a novel approach for handling ITS will be discussed. The

approach will be further used to confirm the rationality of the above definition
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of ROI from the geometrical view. To begin with, we first give pre-knowledge

on simplex as they will be exploited in the paper. The relationship between

simplex and ITS is also discussed.

3.1 Pre-knowledge of simplex and ITS

Simplex is a widely applied fundamental concept [23,24]. For a simplex CS with

vertices M = [m1,m2, ...,mk], each element r ∈ CS could be reconstructed

by:

r = Mα + n (5)

where n is the noise, α = [α1, α2, ..., αk]
T . In practical application, the weight

vector α is usually nonnegative and sum-to-one, which means {α ⊂ Rk :

1Tα = 1, 0 ≼ α}, where 1 is a k× 1 vector of ones.

If we add the sum-to-one limitation to the pixels in original ITS, then the

original RGB-color module could be normalized using the following equations:

NR =
R

R +G+B
;NG =

G

R +G+B
;NB =

B

R +G+B
(6)

where R,G, and B are the pixel values of bands red, green and blue, respective-

ly. NR, NG and NB stand for the projected value of three bands, respectively.

This new color module, which is usually named normalized RGB (N-RGB)

color module, has been widely applied in traffic image processing. The values

in the N-RGB color module satisfy the sum-to-one restriction because for each

pixel, equation NR +NG +NB = 1 always holds.

Fig. 2 illustrates the scattered points of ITS in RGB and N-RGB color space.

Compared with points in the original RGB color space as shown in Figs. 2(b)

and (c), the scattered data points that have been projected to the N-RGB
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Fig. 2. Scattered points of ITS in RGB and N-RGB color module. (a) and (d) are
the ITS in RGB and N-RGB color module, respectively. Figures (b), (c) and (e),
(f) are the scattered points of figures (a) and (d), respectively.

space form a more standard simplex (Figs. 2(e) and (f)). Meanwhile, vertices

are crucial elements for a simplex because every data point inside the simplex

could be linearly represented by the vertices. This characteristic of simplex

will be deeply exploited to explain the rationality of the definition on ITS. In

the next section, we focus on finding the vertices in a proper subspace and

exploring the relationship between them and ROI.

3.2 Three problems in designing methodology

To explore the intrinsic relationship between data simplex and ROIs, three

problems should be taken into consideration and solved.

a. The first problem is how to increase the number of spectral dimension of

ITS. For the original ITS with three colors, we could obtain only 3 vertices,

and it is not enough for the complicated traffic scenes. Therefore, the first

problem is how to increase the dimension of the data set and obtain more

available vertices to represent the simplex of ITS. For the purpose, the

adjacent pixels of the original ITS will be sampled and stacked as the data

in spectral dimension of ITS.
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b. The second problem is how to reduce redundancy and confirm the proper

projected subspace. The sampling process introduces redundancy, which

makes some points be outside of simple. Hence, how to remove the redun-

dant information and obtain a simplex with clear boundaries is another

crucial problem.

c. The third problem is how to extract vertices of the data simplex. In the

paper, an extracting method based on the maximum volume is proposed.

It is an effective method in vertex extracting and will be discussed in the

following section.

3.3 Simulating image with multiple bands

The possible approach for the first question is to gain the band number of

ITS. In this section, an available process for simulating image with multiple

bands (IMB) is proposed, and it is based on sampling spatial information in

the original ITS.

An example for simulating IMB with 12 bands is illustrated in Fig. 3. For a

given ITS FI×J×K , where I, J , and K are respectively the width, height and

band number, we use a sliding window with the size w×h to go through it in

both horizontal and vertical directions. Three steps are then involved in the

simulating process.

1) Sampling: We sample pixels using the above window. Different patches

will be obtained and each patch has the size 2×2×3 because ITS usually

has three color planes. Therefore, each patch contains three subpatches

and each subpatch has the size 2× 2.

2) Vectorization: For each color (i.e. for each plane) of the sampled patch,

the 2× 2 pixels are regrouped as a 4× 1 vector. The regrouping approach
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Fig. 3. Process for simulating image with multiple bands. This is an example for
simulating IMB with 12 bands, as the window size is 2 × 2 and the step size is 2.

is just a simple vectorization process. For every patch, we could obtain

three vectors as shown in Fig. 3.

3) Stacking: For each patch, we simply stack the above three vectors and

obtain a vector with size 12×1. We thus obtain one pixel in the simulated

data (as denoted as the yellow square in the right bottom image). Since

the sampling process is implemented through the whole image, amount of

patches and vectors are obtained. They will be further stacked, and we

finally obtain the new data—IMB.

In the process, two main parameters affect the size of the obtained IMB: one

is the sliding window size w×h, the other is the sliding step size s. The spatial

resolution of the simulated IMB will be the same with the original ITS if the

step size is 1. On the contrary, the spatial resolution of IMB will degrade if

the step size is larger than 1. The band number of IMB relies on the size

of sliding window and it is three times of sliding window width and height,
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namely w×h×3. This process is a simple yet effective approach for increasing

the dimension of the original ITS, and the simulated IMB would be used in

the subsequent processing.

Fig. 4. Simulated IMB result and its spectra. (a) Original ITS. (b) Simulated IMB
with 3-D structure and four points in the IMB. (c) The similar spectral curves of
points 1 and 2. (d) The different spectral curves of points 3 and 4.

Fig. 5. Examples of scattered points of IMB before and after using SVD. (a)-(b)
show the scattered points of band 1 with respect to band 51 before and after using
SVD, respectively.

Fig. 4 illustrates an simulated IMB and its spectral curves. An IMB with 75

bands is obtained by implementing the proposed simulating process. Fig. 4(a)

is the original ITS. The left figure in Fig. 4(b) is the simulated IMB with de-
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graded spatial resolution because the step size is set to s = 2. It is shown with

false color for visual convenience. Obviously, the gained bands are essentially

the vectorization of pixels in a sliding window in different color planes of ITS.

Besides the increasing bands, the following critical characteristics could also

be concluded from the simulated results: 1. Objects with similar colors have

similar spectral curve trends. In practical application, spectral curves of points

1 and 2 (white color in the original ITS) have similar shapes as displayed in

Figs. 4(b) and (c). 2. Objects with different colors usually contain different

spectral information. As shown in Figs. 4(b) and (d), the curves of two points

in the background (points 3 and 4) have significant differences because of the

different neighboring pixels in ITS.

3.4 SVD and dimension identification

The simulating process could effectively help to obtain a new image with more

band numbers. However, if the window size is too large, then the IMB will have

too many bands. Besides, the window size is usually set to be larger than step

size. Although this could avoid abandoning some useful information, it may

introduce redundancy because some pixels may be used too many times. For

instance, In Fig. 5(a), although the scattered points in band 1 and 51 of IMB

(originally the red and blue bands in ITS, respectively) also approximately

form the simplex, some data points are outside the simplex, which could be

regarded as the redundancy of the data. Therefore, before finding a proper

subspace where simplex could perfectly captures the data sets, we should

reduce the redundancy. In the paper, singular value decomposition (SVD)

[25,26] will be applied to accomplish the task.

For a given matrix AL×N , SVD finds three matrices UL×L, ΛL×N and VN×N
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which satisfy A = UΛVT where VT is the transpose of V. The columns of U

are the eigenvectors of the matrix AAT and the columns of V are the eigen-

vectors of the matrix ATA. If the eigenvalues of AAT are λ1, ..., λr (r is the

rank of AAT ) and λ1 ≥ λ2 ≥ ...,≥ λr, then the matrix Λ are composed by

setting Λii =
√
λi for 1 ≤ i ≤ r, and zero otherwise. Usually, Λii is named

as the singular value. Λii is ranked from large to small, only the largest sev-

eral singular values could reconstruct the original data with negligible error.

Projecting the data to the space that spanned by the eigenvectors which cor-

responds to the several largest singular values, we could obtain the projected

data that represents the essential structure of the original data. Meanwhile,

the number of the largest singular values could be regarded as the vertex num-

ber of simplex. Therefore, in the proposed method, SVD could be applied as

a preprocessing step to denoise data and project the original data to a proper

space. The whole steps are shown as in the Algorithm, where the threshold δ

is an experimental parameter and it has effects on the reducing dimension. In

the practical application, 0.999 is good for ITS.

Algorithm 1 Algorithm for denoising and reducing redundance using SVD.

(1) Transform the simulated 3-D IMB into a 2-D data AL×N , where L is the
spectral number and N is the pixel number.

(2) Implement SVD (the function svd in software MATLAB) on the data
AAT , we obtain matrices UL×L, ΛL×N and VN×N that satisfy U× Λ×
V = AAT .

(3) Initialize p = 1, and increase p until the condition
∑p

i=1
Λii∑r

i=1
Λii

> δ is first

meet, then p is the vertex number. Herein, δ is a proper threshold.
(4) Implement SVD (the function svds in MATLAB) on the data A with p

largest values, then the parameter of function svds is set to p and we
obtain Up, Sp and Vp that satisfy Up×Sp×Vp ≈ A. The approximately
equal symbol is adopted because we have neglected small eigenvalues via
the function svds. Finally, we could calculate the projected matrix Ap of
original data A by using Ap = UT

p ×A.

Results of the denoised IMB via SVD are illustrated in Figs. 5(c) and (d).

The 3-D image and its scattered figures of band 1 (originally red band) with
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respect to bands 51 (originally blue band) are displayed. Compared with Figs.

5(a) and (b), most interference points in the original data are eliminated.

Meanwhile, we see that the points in the red triangle of Fig. 5(d) become

much denser than those in Fig. 5(b), which implies that we have effectively

denoised IMB while preserving the simplex property by applying SVD. Next,

we focus on how to extract vertices from the simplex.

3.5 Extracting simplex vertices with maximum volume

A simplex vertex extracting method based on maximizing volume is proposed

by synthesizing the methods N-FINDR [27] and vertex component analysis

(VCA) [28], which respectively face the problem of computational amount

and insistent results. As shown in Fig. 6, the scattered points form a simple

convex set, and it could be captured by different simplexes (the green dash

line and the red solid line). The different simplexes have different areas or

volumes. Obviously, the simplex with the maximum volume (red solid line) is

the better one because it suits the data set and the data points are all inside

the simplex. To obtain such simplex, we first give the formula for calculating

the volume of simplex. For a simplex with vertices M = [m1,m2, ...,mp], then

the volume of the simplex could be mathematically written as:

V (M) =
1

(p− 1)!
|det([M

1T
])| (7)

where p! is factorial operation, 1 is a column vector with all its values are 1.

|det(·)| calculate the absolute value of determinant.

The extracting method for vertices is proposed with its core principle as illus-

trated in Fig. 7. In this 2-D convex set Cs, each point ri ∈ Cs is first projected
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Fig. 6. Illustration of maximum volume for convex set. The triangle with red solid
lines is more appropriate compared with the green dashed lines, as the former has
larger volume while surrounding the data set.

onto a randomly initialized hyperplane f1 with vi = rTi ∗ f1, where vi is the

projected data. Therefore, we could obtain a vector that comprised by these

data v = v1, v2, ..., vN , where N is the total number of the set Cs. Hence, the

point mA ∈ Cs, with the maximum value in the projected v that could be

calculated by < mT
A, f1 >= max(v(j), j = 1, ..., N), is exactly the first vertex

in the figure. After that, with the equation f2 = I−BB+, we obtain the second

hyperplane f2 that is orthogonal to the subspace spanned by f1. Herein, I is a

vector with all its values are one. B is the space spanned by f1 and B+ is the

pseudo inverse of B. Projecting the original convex set points to f2, and we

obtain the second vertex mB that is corresponding to the maximum projected

value. Similarly, the process is iterated until all the vertices are obtained. And

we could obtain all the vertices of the data simplex and they form the basis

matrix M.

Fig. 7. Two-dimensional example for extracting vertices of data simplex.
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An imperceptible problem in the above extracting step is the uncertainty

of the extracting results, which is caused by the random initialization of f1.

To obtain a relatively more stable result, we repeat the searching process and

obtain different simplexes with different volumes. As discussed above, the best

simplex contains the maximum volume. Thus, the simplex with the maximum

volume is exactly the result we expect.

Each fractional weight vector α in equation (5) could be calculated after obtain

the vertex vectors. Assume that each column of the matrix H is comprised

by the weight vector, then the above factorization could be written as A =

M × H, where A is the observation data (the IMB in our problem) and

each column of M is a vertex vector. As the data set and basis matrix have

been obtained, this problem could be simplified into a least squares problem.

Different algorithms could be used for it. Least square method (LSM) [24], a

widely used method, will be applied in our approach. Mathematically, it could

be calculated as H = M+A, where M+ is the pseudo inverse. Note that, each

row of H represents the distribution of the object corresponding to a specifical

vertex. It could be reshaped into a 2-D map for visual analysis, as shown in

the right bottom of Fig. 2. Such map could be quite useful in other image

processing areas, and it will be further discussed in the experiments.

The pseudocode for the entire processing chain is shown in Algorithm 2. In

the algorithm, operations A(:, k) and A(k, :) respectively represent the k-

th column and k-th row elements of matrix A. v(k) is stands for the k-th

element of vector v. Operation B = {B,C} is used to store C into B, and

B{k} represents the k-th element (matrix or set) of B.
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Algorithm 2 Proposed processing chain for ITS.

(1) Initialization: given an ITS FI×J×K , sampling window size w × h, step
size s, maximum iteration times maxiter, threshold δ, Indexall = ∅ and
matrix set Mall = ∅ (They are used to respectively store iteration number
and the calculated basis matrix in the iteration).

(2) Transform the ITS in RGB color module into a new version in N-RGB
color module.

(3) Implement the image simulating process with the sampling parameters
w, h and s. Obtain the IMB GW×H×L where L is the band number and
L = w × h× 3.

(4) Vectorizing each band of G into a row vector that has the size 1 × N
where N = W ×H, and we could obtain the 2-D data AL×N .

(5) Obtain the subspace dimension p and projected data Ap by Ap = UT
pA

as stated in the Section 3.4.
(6) for kk = 1 to maxiter

(a) Randomly initialize the p× p auxiliary matrix B;
(b) for ii = 1 to p

(i) Implementing the equation: f = ((I−BB+))/∥(I−BB+)∥F , we
obtain the vector f that is orthonormal to the subspace spanned
by B. ∥ · ∥F is the Frobenius norm. B+ could be calculated with
the function pinv in the MATLAB.

(ii) Project the data Ap into the vector f by v = fTAp.
(iii) Calculate the extreme point of v and update the matrix B.

k = argmaxj=1,...,N |v(j)| (8)

B(:, ii) = Ap(:, k) (9)

(iv) Update the expected vertex matrix:

M(:, ii) = Ap(:, k) (10)

index(:, ii) = k; (11)

(c) end for
(d) Store the indices of simplex and calculate the volume of simplex (Vos)

spanned by M via implementing equation (7)

Indexall = {Indexall, index} (12)

Mall = {Mall,M} (13)

V os(kk) = V (Mall(kk)) (14)

(7) end for
(8) Obtain the simplex with maximum volume.

ind = argminj=1,...maxiter(V os(j)),
Mfinal = UpAp(:, Indexall{ind}).

(9) Calculate the weight matrix H via the LSM, namely, the equation H =
(MT

finalMfinal)
−1MT

finalA.
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3.6 Complexity analysis

The computational complexity of the proposed method contains two main

parts, SVD and vertex extraction. In the former part, the decomposition of

AAT costs 2NL2+L3 flops, and the projection Ap = UT
p ×A costs 2NLp flop-

s. In the latter part, vertex extraction step costs 2Np2 flops (the computation

of fTAp) in each iteration, and the calculation for weight matrix H cost about

2NLp flops. The whole computational complexity is 2NL2 + L3 + 4NLp +

2Np2 ×maxiter. Note that, the relation N ≫ L > p holds, so the computa-

tional cost could be simplified as Comp1 ≈ 2NL2 +4NLp+2Np2 ×maxiter.

3.7 Relationship between the vertices and ROIs

In this section, analyses on the relationship of the simplex vertices in ITS and

its ROIs will be provided. For simplicity, we take an ITS FI×J×K with two

bands (namely, K = 2) as an example. Under the circumstance, its vertex

extracting process is exactly the same as shown in Fig. 7.

For this image with two bands, we have its maximum values of two bands

which could be denoted as max bandx and max bandy in x and y directions,

respectively. (mAx,mAy) and (mBx,mBy) are used to represent the coordinates

of points mA and mB. Meanwhile, f(mAx) and f(mBy) respectively denote the

pixel value in x coordinate of vertex mA and pixel value of vertex mB in y

coordinate. As shown in Fig. 7, vertices mA and mB respectively have the

maximum values in x and y directions, namely, the following two equations

hold:

f(mAx) = max bandx; f(mBy) = max bandy

Note that when applying SVD to project the IMB data into a proper space

18



and obtain dimension number of data in the extracting process, we also have

accomplished image denoising step. Thus, the data points with maximum

values would not be emerged ’alone’, because the pixel would be regarded as

the noise and eliminated if it has few adjacent pixels. Therefore, in terms of

the extracted vertex mA, there exists a small m-nearest neighborhood area

Ω1, and for every pixel (x1, y1) ∈ Ω1, it has the similar pixel value as the mA,

thereby leading the following equations:

|mAx − x1| < m (15)

|mAy − y1| < m (16)

|f(mAx,mAy)− f(x1, y1)| < δ1 (17)

where δ1 denotes a small value. Note that the inequality (21) is just a special

form of (8), so after combining the equation (17) with the above three equa-

tions (21)-(23), we will see that these four expressions completely satisfy the

definition of ROI as in Definition 3. Hence, we could come to the critical con-

clusion that the extracted vertex mA is just in the ROIs of ITS. Obviously, the

same conclusion on the vertex mB could also be obtained and demonstrated in

the similar way. This conclusion is easily comprehended in the intuitive sense.

For a simplex, the most important elements are its vertices or the data points

near the vertices as they always attract people’s attention at first glance. So

they could be regarded as the interesting points in data simplex. Experiments

on the real data will confirm the efficacy of the proposed methods.

4 Experiments

In this section, we report results of experiments, aiming at discussing the

relationship between the simplex vertices and the ROIs in practice. Compar-
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isons between the proposed method and some conventional color thresholding

methods will also be implemented.

Two publicly available ITS databases will be used as shown in Fig. 8: 1) The

German Traffic Sign Detection Benchmark (GTSDB) 1 ; 2) KUL Belgium

Traffic Signs data set (KUL Data set) 2 [29]. Experiments will be implemented

on those data sets.

Fig. 8. Examples of two data sets. (a)-(b) are respectively images of GTSDB and
KUL data sets.

4.1 Experiments on the GTSDB data set

In the experiments on GTSDB data set, parameters are empirically set to

w × h = 3 × 3 and s = 3. Fig. 9 illustrates the results using the proposed

method. Green crosses in Fig. 9(a) mark the location of the vertices. Spectral

curves of the vertices are shown in Fig. 9(b). Figs. 9(c)-(f) illustrate the weight

maps.

The vertices are usually located in the ROIs of ITS. In Fig. 9(a), points 1

and 3 are respectively located in the blue traffic sign and red car. Point 2 is

located in the green grasses and point 4 is located in the edges of the white

car. Generally, most of the data points in the ROIs that convey crucial traffic

1 url: http://benchmark.ini.rub.de/
2 url: http://www.esat.kuleuven.be/psi/visics/software-and-datasets
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Fig. 9. Extracted vertices using the proposed method. (a) is the original ITS and
the green crosses mark the location of the vertices. (b) show the spectral curves of
the vertices. (c)-(f) illustrate the weight maps.

information have similar saturated colors. Therefore, the obtained vertices

of data simplex are usually located in the ROIs with dominant color. The

conclusion that the simplex vertices of ITS are the elements in ROIs could be

then obtained, as it is theoretically proved in section 3.7. Fig. 9(b) shows the

curves of the vertex vectors. Curves 1 to 3 respectively represent the colors

red, green and blue in the original ITS. Curve of vertex 4 represent a mixed

color, so it has a more irregular shapes compared with the other three curves.

It informs us that the different objects have different curve shapes.

Each row vector of H could be transformed into the same spatial size of IMB.

Therefore, weight matrix H stands for distribution of the corresponding ver-

tex and it will facilitate the subsequent image processing. Fig.s 9(c)-(f) shows

all the weight maps with false color for visual convenience. The ”red” pixel
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represents the larger weight of the corresponding vertex, while the ”blue” pix-

el represents the less components of the corresponding vertex. Figs. 9(c) and

(e) respectively show the red traffic signs and car, which are visually promi-

nent. The green belts along the road are outstanding in Fig. 9(d), and the

scene in Fig. 9(f) represents the edges of the original ITS. Weight maps not

only provide us with information on components of the basis, but also have

apparent physical meaning. The scene corresponding to the vertices will be

outstanding in the map. Using simple thresholding method, we could easily

obtain a segmenting result. This characteristic would be quite helpful for the

subsequent segmentation and detection. In the next section, we will quanti-

tatively compare the proposed method and some conventional methods based

on assessing the segmentation results.

4.2 Comparison experiments with other different methods

Since ROIs have relatively higher pixel values than backgrounds in the maps,

one natural application of the weight map is ROI segmentation. Using simple

thresholding method, we could segment the ROIs from the image. To quanti-

tatively assess the proposed method, we will compare the segmenting results

of the proposed method and methods in different color space, including RGB

[30], HSV [31], and Ohta [32]. Besides, some popular automatic image seg-

mentation methods including K-means [33], Mean-shift [34] and Chan-Vese

[35] are also used to evaluate the performance because of the their close rela-

tionships. Before experiments, traffic signs of images from the databases are

manually labeled. Although the proposed method could obtain ROIs with d-

ifferent colors simultaneously, we only compare the segmenting results of the

blue traffic signs for fairness. Therefore, all the class numbers in the auto-

matic segmentation methods are set to 2. The metric error rate (ER) is used
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to quantitatively assess the segmentation results of different methods. ER is

defined as:

ER =
BT + TB

TN
(18)

where BT represents the number of background pixels identified as target pix-

els, TB represents the number of target pixels identified as background pixels,

and TN denotes the total number of pixels of the input image. Obviously, its

reference value is 0.

Fig. 10. Illustration of comparison results using different methods. (a) Original
ITS. (b) Labeled image. (c)-(f) Segmentation results using the proposed methods,
methods in Ohta, HSV and RGB color space. (g)-(i) Segmentation results using the
methods Chan-Vese, K-means and Mean-shift

Fig. 10 shows the results using the above different methods as an example.

Compared with the results in Figs. 10(f)-(i), the results of Figs. 10(c)-(e)

are much better because they are much closer to the labeled image in Fig.

10(b). It implies that the proposed method and methods in HSV and Ohta

obtains behave much better than other methods. ER of the different methods
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are presented in tabular form in Table 1. The metric in bold type are the

best of all. Again, the proposed method obtains the lowest error rate, while

the conventional segmentation methods including Chan-Vese, K-means and

Mean-shift are not approximate for handling ITS. Nevertheless, it should be

clear that the segmentation experiment is just one nature application of the

proposed method, the more critical destination of the method is to provide us

a novel view on the relations between ROIs and the data simplex vertices.

Table 1
Calculated ER using different methods.

Our method Ohta HSV RGB Chan-Vese K-means Mean-shift
ER 0.0006 0.0009 0.0011 0.0021 0.3807 0.4816 0.4067

5 Conclusion and prospective work

In the paper, a novel unsupervised approach to discovering the ROIs of ITS

based on exploring spectral domain is proposed. In the approach, an IMB is

transformed from the original ITS, and it forms a convex set which could be

captured by a simplex. To obtain the best simplex with maximum volume, an

effective vertex extracting method is designed. Then the linear combination

model in equation (5) and the LSM are applied to calculate the weight matrix

H. In addition, mathematical definition of ROIs is provided based on its char-

acteristics. By comparing the definition and the vertex extracting method,

we conclude that the simplex vertices are in the ROIs of ITS, which is also

demonstrated by the experiments on different databases. Therefore, the pro-

posed approach provides us a novel view on ROIs of ITS, as it exploits the

spectral information and geometrical characteristics of ITS data.

One natural application of the proposed method derives from the physical

meaning of the weight matrix H, as it provides important information on the
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object distributions. Each row of H could be transformed into a 2-D image

with the same spatial size as the IMB, then different objects corresponding

to the vertices will be salient in different maps. Hence, these maps facilitate

to extracting crucial traffic information and are important for the subsequent

image segmentation or object detection, which also demonstrates the efficacy

of the proposed method.
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