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Abstract

Automatic target detection is an important application in the hyperspectral image processing field. It is currently

known that any test pixels in hyperspectral images can be represented within a spectral dictionary using appropriate

sparse coefficients. Based on this assumption, some sparsity-based algorithms are developed for hyperspectral detec-

tion. This kind of sparse learning method attempts to find the sparse representation from a spectral library, i.e., a

dictionary data set from which useful information is extracted. Among these algorithms, the iteratively reweighted

least squares (IRLS) strategy is believed to be a simple and useful tool for sparse representation. However, when

dealing with the hyperspectral data, the dictionary for sparse learning is usually high-dimensional which dramatically

increases the scale and complexity of sparse learning. In such cases, most sparsity-based algorithms including the

IRLS strategy lost their efficacy. To deal with this situation, we propose a discriminative IRLS algorithm, called

inner-product based discriminative IRLS detector (IDIRLSD), which decreases the scale and complexity problem by

discriminatively seeking a sub-dictionary that retains the most critical information. Also IDIRLSD applies a convex

minimization for approximately solving the sparse recovery problem. A weighted ℓ1 minimization is relaxed and

solved by IRLS strategy. The proposed algorithm applies an inner-product based function for constructing the small-

scale weighted ℓ1 minimization with respect to the sub-dictionary. The solution provided by IDIRLSD is then applied

to label the test pixel as target or background. Experimental results from both synthetic and real hyperspectral data

demonstrate the improved efficacy of the proposed algorithm.

Index Terms

Hyperspectral target detection, sparsity-based algorithm, sub-dictionary construction, weighted ℓ1 minimization,

iteratively reweighted least squares.
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I. INTRODUCTION

The hyperspectral imaging (HSI) sensors produce a three-dimensional (3D) data structure called data cube with

two spatial dimensions and one spectral dimension [1],[2]. The two-dimensional spatial images are obtained in

hundreds of narrow spectral bands by the sensor. The spectrum of each HSI pixel can be viewed as a vector with

each of its elements represents the radiance or reflectance value at each spectral band [2],[3]. As each material

is characterized by a unique deterministic spectrum, the spectrum of pixel serves as a distinguished feature for

discrimination [3]. Many distance measures can be applied to decide whether a given pixel belongs to a kind of

material. Because of the high spectral resolution, HSI is more suitable for full pixel detection than the multispectral

image [2],[4]. Based on the spectral characteristics of HSI, the target detection for hyperspectral images is a binary

classification problem [5]. The spectral information is then used by detection algorithms to label the test pixels as

target or background [7].

Several detection algorithms have been developed. Most of them are based on statistical methods. Spectral

matched filter (SMF) [8] and constrained energy minimization (CEM) [9],[10] are two well known and widely used

algorithms. SMF uses the covariance matrix of the data and CEM uses the similar matrix, so both of them are

based on the second-order statistics. However, these algorithms are not stable to deal with complex scenes in which

targets of interest are irregularly distributed. In addition, they are sensitive to noise [10].

Recently, sparse signal representation, or sparse recovery [11],[24] has proven to be an extremely powerful tool

in many areas including HSI target detection [5],[6]. This success is mainly due to the fact that most natural signals

have sparse representations with respect to fixed bases or dictionaries [12]. As this kind of method emphasizes a

limited number of spectra in constructing a test pixel, it is usually known as sparse representation or recovery. The

sparsity-based algorithms use the spectrum of each test pixel instead of the whole scene for classification, which has

an advance of processing irregular distributed target over second-order statistics based algorithms. Sparsity-based

method is currently applied in target detection with greedy algorithms (GAs) [11], like orthogonal matching pursuit

(OMP) [16] and subspace pursuit (SP) [13]. These greedy algorithms search exhaustively in each iteration to find a

sub-optimal approximation, by picking the vector that best correlates with the present residual. But these algorithms

may not get the ideal performance since the local search can add to a loss of accuracy.

In this paper, we focus on an alternative method, called convex relaxation technique [14],[15]. This method

concentrates on relax the ℓ0 norm [11] and replaces it by a more tractable approximation [11],[17] such as the

ℓp norms. For example, in dealing with the relaxed minimization (ℓ1 or weighted ℓ1 minimization), the iteratively

reweighted least squares (IRLS) strategy [24] applies the weighted squared ℓ2 norm to adaptively approximate the

ℓ1 norm. This strategy is believed to be an effective algorithm in sparse learning [18]. However, all minimization

solvers for HSI processing all face a scale problem which is generated from the high-dimensional information

(combined with spectral and spatial information) of HSI sensors provide [19]. Since the IRLS strategy searches for

a global optimal solution to the relaxed problem within a huge spectral dictionary, the massive amount of data cast

as a challenge for its programming [11]. In order to improve the efficacy of the IRLS strategy for sparse detection
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in hyperspectral images, this paper proposes an algorithm that concentrates on discriminatively seeking for an

appropriate sub-dictionary which provides a more effective searching process. The conventional IRLS algorithm is

developed in order to generate accurate sparse reconstruction with the sub-dictionary. The algorithm we proposed

have several advantages which are briefly summarized below.

1. We expound and prove the feasibility of constructing a low-dimensional sub-dictionary to replace the high-

dimensional spectral dictionary with respect to given test pixels. A nonlinear inner-product function is proposed

for discrimination within the dictionary which generates a sub-dictionary. The discrimination process aims to seek

for least but most relevant atoms in the spectra dictionary, and finally uses these atoms to construct a smaller

training sample. This approach contributes in cutting the searching effort and calculation when solving the sparse

representation problem.

2. Most currently applied sparsity-based algorithms for hyperspectral image fall in the greedy algorithms. The

proposed algorithm considers an alternative way for seeking for the sparse representation, called convex relaxation.

The algorithm of iteratively reweighted least squares is applied to solve the relaxed problem. The experimental results

demonstrate that the proposed algorithm outperforms the greedy algorithms for hyperspectral target detection.

3. It has been assumed that weighted ℓ1 algorithm outperforms unweighted ℓ1 algorithm in sparse recovery

problem once the weights are properly set [17]. But seldom work is concerned with the weights selection of

weighted ℓ1 algorithm. The proposed algorithm applies IRLS to solve the relaxed weighted ℓ1 problem, denoted

as weighted ℓ1 IRLS. Performance with respect to the weight selection of proposed algorithm gives support to the

efficacy of weighted ℓ1 algorithm.

The rest of this paper is organized as follows. In Section II, we briefly introduce the HSI target detection technique

based on sparse representation. In Section III, the inner-product based discriminative IRLS detector (IDIRLSD) is

proposed. In Section IV, Some experimental results are given and Section V draws some conclusions.

II. A BRIEF INTRODUCTION OF HSI TARGET DETECTION BASED ON SPARSE REPRESENTATION

The spectral dictionary is set as a large matrix with its each column is an M -dimensional vector representing the

prior knowledge of spectral signature of one particular material, with M being the number of spectral bands. If N

kinds of spectral signatures are included as columns in it, the spectral dictionary A is a M × N matrix [5],[20].

Usually in practice we get M ≪ N . Denote x as a hyperspectral pixel observation, whose spectral signature is

available in the spectral library A. With respect to the location of spectral signature of x, the matrix A can be

separated as A = [Ab At], where Ab presents spectral signatures of those background materials and At presents

the spectral signature of the target material.

Recent studies have shown that it is possible to reconstruct a test pixel x with highly incomplete sets of linear

measurements within an appropriate dictionary A [11],[17],[20],[22]. In the sparse recovery problem, the sparse

coefficients s satisfies As = x. Also the sparsity of vector s should be minimized, which is defined as the number

of nonzero entries in s, i.e. the ℓ0 norm of vector s:

∥s∥0 = #{i : si ̸= 0}. (1)
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Basically, the representation satisfies s from As = x can be obtained by solving the following sparse reconstruction

problem

(P0) : ŝ = argmin
s

∥s∥0 subject to As = x. (2)

When we find the sparse solution s to the proposed problem, the class [5] of x can be determined by

D(x) = ∥x − Absb∥2 − ∥x − Atst∥2, (3)

where sb and st respectively represent the recovered sparse coefficients corresponding to the background sub-

dictionary Ab and target sub-dictionary At. If D(x) > δ, where δ is a given threshold, then x is labeled as a target

pixel; otherwise, it is labeled as a background pixel.

III. PROPOSED ALGORITHM

Our method is basically twofold. Firstly, in order to tackle the difficulty of solving the basic P0 problem, we

apply a relaxed model. Secondly, in order to reduce the undesired computational cost brought by the dimensionality

of dictionary matrix, we provide a method to construct a sub-dictionary in each iteration of our algorithm, which

is suitably designed by improving from the conventional IRLS algorithm.

To start with, the sparsity-based algorithms for target detection necessarily consider the sparse representation

model:

(P0) : ŝ = argmin
s

∥s∥0 subject to As = x. (4)

However, a tough issue arises as seeking the optimal solution of (P0) is NP-hard. Recent methods all give approx-

imate solvers [11]. A natural way of regularize it is replace ℓ0 minimization with its best convex approximant—

ℓ1 minimization [22]:

(P1) : ŝ = argmin
s

∥s∥1 subject to As = x, (5)

or weighted ℓ1 minimization [11],[17]:

(WP1) : ŝ = argmin
s

∥Ws∥1 subject to As = x. (6)

W is a diagonal matrix with w1, ..., wN as weights on the diagonal and zeros elsewhere.

Their minimization problem, known as (P1) and (WP1), both are convex problems, which can be solved efficiently

using modern techniques [11]. But it has been proposed that the two ℓ1 relaxations (P1) and (WP1) will obtain

different solutions in general, which suggests that the weights of (WP1) may have an important influence on the

solution that (WP1) obtain. If their values can be set properly, the sparse recovery of convex relaxation can be

improved [17]. Thus, the proposed algorithm aims to construct the proper weights base on this assumption to

enhance the sparse representation.

In addition, in order to solve the weighted ℓ1 minimization, we apply the weighted IRLS strategy, which makes a

relaxation for the construction As = x with ℓ2 norm and uses Lagrange parameter to covert weighted ℓ1 minimization

into an unconstraint version:

(WPλ
1 ) : ŝ = argmin

s
λ∥Ws∥1 +

1

2
∥x − As∥22. (7)
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In the IRLS algorithm, set S = diag(|si|) and we get:

∥s∥1 = sT S−1s. (8)

Thus the ℓ1 norm is approximately computed as a weighted version of the squared ℓ2 norm [11]. Given a current

approximate solution sk−1, IRLS attempts to solve following minimization:

(Mk) : ŝ = argmin
s

λsT WS−1
k−1s +

1

2
∥x − As∥22. (9)

The solution of this problem can be obtained using standard linear algebra. However, the above-discussed spectral

dictionary A is still a high-dimensional data set, which makes the solving of WPλ
1 and Mk less of efficiency.

Thus, another aim of the proposed algorithm is to construct a low-dimensional sub-dictionary to make the problem

become small-scale.

A. Analysis of Sub-dictionary Construction

The reason for constructing a sub-dictionary for sparse reconstruction is twofold. Firstly, the spectral library we

used as dictionary can be represented by a matrix with each column residing a single spectrum that representing a

pure material. The matrix usually contains considerable number of spectra which necessarily cause the number of

columns larger than the number of rows within the matrix. Mathematically, this will cause similar and redundancy

in the incident matrix and therefore make the sparse reconstruction process harder and time-consuming. Secondly, it

is proved the difficulty of general sparse reconstruction task and the main reason for this difficulty goes to the effort

needed for searching the ”useful” columns that will be used for constructing the given pixel. Thus a direct strategy

to simplify this process can be narrowing down the potential columns, in other words, using a sub-dictionary that

contains less spectra that are more likely useful for construction of given spectrum. Meanwhile, a straightforward

measure on the size of the sub-dictionary can be full-rank, which mathematically enough for construction of any

vectors. As a result, the reconstruction within the sub-dictionary is no longer a sparse reconstruction problem, which

simplifies the original problem.

In practice, the proposed algorithm applies a nonlinear inner-product based function for discriminatively seeking

for a sub-dictionary. Suppose the sub-dictionary is denoted as AΛ0 ∈ RM×K0 and Λ0 is the index set of K0 columns

of the dictionary A that are selected to construct the sub-dictionary. Then the sparse recovery coefficients within

the sub-dictionary is solved by solving a sub problem. The recovery coefficients for the locations corresponding to

the unselected columns of A will be set as zero. Denote the smaller scale problem WPλ
1 as a sub problem: WPλ

1 ,

then the proposed low-dimensional problem becomes:

(SWPλ
1 ) : ŝΛ0 = argmin

sΛ0

λ∥WsΛ0∥1 +
1

2
∥x − AΛ0sΛ0∥22. (10)

W is a diagonal matrix with wj , j = 1, ...,K0 as weights on the diagonal and zeros elsewhere. sΛ0 is the solution

to the sub WPλ
1 problem, a K0-dimensional vector.
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In order to construct and solve the problem we proposed, we first expound and prove the feasibility of sub-

dictionary construction. Then the proposed inner-product based function is applied to make discriminative construc-

tion of the sub-dictionary. At last, we develop the famous IRLS (iteratively reweighted least squares) strategy to

solve the sparse recovery problem on a smaller scale.

The dictionary of training samples A as mentioned before, can be extremely large which usually contains hundred

of spectra. Each spectrum is taken as a column of matrix A. The hyperspectral images have a fixed range of bands

and hundreds of spectral signatures are needed for reconstructing the background and target pixel. Thus the rows and

columns in the matrix A ∈ RM×N can be described as M ≪ N . If it is possible to construct a sub-dictionary with

the columns of matrix A, the selected columns must already eligible for representing the M -dimensional test pixel.

For this consideration, we attempt to find the upper-bound of the sparsity of the sparest coefficients. Since once

this upper-bound is found, we can approximate the number of columns that should be used in the representation,

which will provide a measure of the size of our sub-dictionary.

Suppose the rank of matrix A equals with n, then we rewrite A as:

A = [a1 a2...aN ], (11)

where ai is the ith column of A, i = 1, ..., N. Since rank(A) = n, there are at most n columns that are linear

independent. By the definition given by the linear algebra, the vectors:

a1 a2...aN

constitute a n-dimensional linear space V.

Now we turn to consider the sparsity of the sparsest solution s. If this sparsity has an upper bound, we can get a

prior knowledge of the size of the sub-dictionary we need. Since the sparser the solution is, the less columns of A

are used in reconstruction of x. The spark of a given matrix A has been used to provide criterion for uniqueness of

sparse solutions, i.e., once a solution s meets this criterion it is the only possible sparest solution to the construction

problem As = x. In algebra, the spark of a given matrix A is the smallest number of columns from A that are

linearly dependent [11]. Existed researches have been conducted to find the aforementioned criterion using the

spark of matrix and proposed that the sparsest possible solution s to As = x must be less than spark(A)/2. For

detailed proof of this criterion readers are directed to [11]. Mathematically, this is a sound and favorable criterion

since it provides the supremum (the least upper bound). However, the computational cost brought by obtaining the

spark is undesired compared to the rank, as it calls for a combinatorial search over all possible subsets of columns

from the matrix. In addition, it will become especially hard to implement sparse learning with hyperspectral data

which necessarily calls for a dictionary matrix with high dimensionality.

In practice, it is more favorable to identify a criterion that comes with a general upper bound that easier to obtain.

Our idea of finding this upper bound rooted in basic linear algebra theory. For the linear equation As = x, the

function of coefficients s can be simply described as identify the usage of each column entry within the dictionary

matrix A. So it is natural to come up with a set of columns that constitutes a basis which is capable of representing
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any given vector x by linear combination. Therefore one can tell the least numbers of columns for reconstruction

a vector should be less than the number of columns in a basis, which in other words, the rank of the matrix.

Combine this criterion with aforementioned supremum criterion, we obtain the following result.

Theorem 1: In the construction As = x, the sparsity of the sparsest recovery solution s must be smaller than

(A)/2 and must be no larger than rank(A).

Proof:

Since the supremum has been proved in [11], we give the proof for another upper bound of rank(A).

The recovery formation using A and s can be rewritten as:

As = [a1 a2...aN ] [s1 s2...sN ]T = x, (12)

as x ∈ V. Since rank(A) = n, assume the sparsity of the sparsest recovery solution s equals to k, which satisfies

k > n, the sparse recovery can be presented as:

[ã1 ã2 ... ãk][s̃1 s̃2 ... s̃k]
T = x. (13)

Meanwhile, there are at most n columns of A, i.e., a basis of the linear space V, that are linear independent, marked

as:

[â1 â2...ân]. (14)

Any vector within the space V can be linearly represented by the basis, the columns used in sparse recovery can

be presented as:

ãi = [â1 â2...ân][ŝ1i ŝ2i ...ŝni ]
T , (15)

i = 1, ..., k. Then the sparse recovery can be rewritten as:

Σk
i=1[â1 â2...ân][ŝ1i ŝ2i ...ŝni ]

T s̃i = Σn
j=1âj s̄j , (16)

where s̄j = s̃1ŝj1 + s̃2ŝj2 + ... + s̃kŝjk , j = 1, ..., n. Thus we get a sparser recovery with sparsity equals with

n < k. So the sparsity of the sparest recovery solution should not be k, the proof is completed.

Among the numbers of solutions to construction problem As = x, we may verify whether the solution we get

is sparse enough by applying this rank criteria which has been applied in practice in proposed algorithm. To be

explicit, we can apply this criteria ∥s∥0 ≤ rank(A) as a constrain for the numbers of columns we used and thus

provide a desired size of the sub-dictionary. In next part, we will introduce our method to generate the sub-dictionary

and a sub WPλ
1 minimization problem via our criterion.

B. Construct the Sub WPλ
1 via Inner-product based Function

In this part we introduce our method to generate the sub-dictionary and the construction of the aforementioned

sub WPλ
1 problem. In the proposed algorithm, two aspects of the construction of the sub WPλ

1 problem should be
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concerned— the construction of the sub-dictionary AΛ0 and the construction of weight matrix W. The proposed

algorithm solve this two problems using an inner-product based nonlinear function:

F (x, y) = 1− arccos
< x, y >

∥x∥2∥y∥2
. (17)

In a broad sense, the function is a distance measure of vector x and y. In a geometric sense, it describes the relation

of vectors by their intersection angles. Once x and y are normalized, the function can be rewritten as

F (x, y) = 1− arccos < x, y > . (18)

The inner-product based function is based on the idea of measure a similar between two high-dimensional vectors.

The larger the function value F is, the larger the similar between two vectors is.

To deal with the sparse recovery problem (2), each column of dictionary A in construction can be discriminated

by the measurement F (ai, x). To be explicit, once the value of the function is large enough, the column ai is

believed to be eligible as a candidate for the sub-dictionary.

Consider the construction of weight matrix for the sub WPλ
1 problem. We developed the idea introduced by Candes

et al. [17], who proposed a solver for reweighted ℓ1 minimization which update the weights in each iteration using

the reciprocal of the last solution. The reweighted ℓ1 minimization is proved to be progressive for enhancing the

sparse representation. As different weights allow for different penalize for each location, if one location of the

coefficients, marked as si, is known to be a considerable large nonzero entry, then the corresponding weight for

this location should be smaller.

Note that since we aim to develop IRLS [11] to solve the weighted ℓ1 minimization, our model is different than

that of [17]. But we incorporate their idea into the construction of weights in our weighted ℓ1 model. When solving

the sub WPλ
1 problem, the weights for each location is not uniformly distributed in the proposed algorithm. As

the inner-product function we proposed provides a measure of the weights of different recovery coefficients in the

sparse representation, the function value is applied for constructing the weight matrix for the sub WPλ
1 problem.

The above-described Λ0 is still the index set of K0 columns of the dictionary A used for construction of the

sub-dictionary. Let Λ0(j) be its jth member. The function value F (ai, x) = 1− arccos < ai, x > is marked as σi,

i = 1, ...N . Then the function value of F (aΛ0(j), x) is marked as σΛ0(j), j = 1, ...K0. We compute the weights on

the diagonal of W successively as:

wj = 1/(σΛ0(j) + ε), (19)

j = 1, ...,K0, where ε is a parameter whose value provides different degrees of penalization.

C. Inner-product Based Discriminative IRLS Detector

Based on the analysis above, the proposed algorithm inner-product based discriminative IRLS detector (IDIRLSD)

is mainly consists of two parts: discriminatively constructing the sub WPλ
1 problem with inner-product based function

and solving the sub WPλ
1 problem using IRLS strategy. Thus the inner-product based discriminative IRLS detector

(IDIRLSD) is obtained as follows:
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Algorithm Outline: IDIRLSD

(1) Normalize each column of dictionary A: a1, a2...aN and the given pixel x. A = [a1 a2...aN ] as we

discussed above.

(2) Compute the function: σi = F (ai, x) = 1− arccos < ai, x >, i = 1, ...N successively. Then descending

sort the sequence: ∆ = [σ1...σN ], and get the index set Λ0={K0 indices corresponding to the K0 largest

numbers in ∆}. Let Λ0(j) (j = 1, ...,K0) denotes the jth index in Λ0.

(3) The sub-dictionary is then constructed as AΛ0 , and the corresponding low-dimensional weights matrix W

is set as wj = 1/(σΛ0(j) + ε). (j = 1, ...,K0).

(4) Solve the relaxed smaller-scale minimization

(SWPλ
1 ) : ŝΛ0 = argmin

sΛ0

λ∥WsΛ0∥1 +
1

2
∥x − AΛ0sΛ0∥22.

Initialization: Initialize k=0, and set

the initial approximation s0 = 1, where 1 stands for a vector with all its entries being 1.

the initial iterative weight matrix S0 = I, where I stands for an identity matrix.

Main Iteration: Increment k by 1, and apply these steps:

Regularized Least Squares: Solve the linear system

(2λWS−1
k−1 + AT

Λ0
AΛ0)sΛ0 = AT

Λ0
x

iteratively, producing result skΛ0
.

Iterative Weight Matrix Update: Update the diagonal weight matrix S using skΛ0
: Sk(j, j) =

|skΛ0
(j)|+ ξ .

Stopping Rule: If ∥skΛ0
− sk−1

Λ0
∥2 is smaller than some predetermined threshold, stop. Otherwise,

apply another iteration.

Output: The desired result is skΛ0
, marked as ŝΛ0 .

Let ŝΛ0(j) denotes the jth element of ŝΛ0 , then the sparse recovery coefficients s = {si}Ni=1 is obtained as:

si =

 ŝΛ0(j) , ∃ j = 1, ...,K0, i = Λ0(j),

0 , else.

(5) Rewrite the sparse coefficients s as [sb st], corresponding with locations of target and background sub-

dictionaries. Apply (3) for determining whether the given pixel is a target pixel.

Note that the proposed IDIRLSD is a derived version of IRLS algorithm. Usually, IRLS algorithms solve a

weighted ℓ1 minimization using a reweighted strategy [11]. In the case of IDIRLSD described above, The reweight

matrix S is updated within each iteration while the outside weight matrix W for the weighted l1 minimization is

fixed as described in [11].
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The number of iterations IDIRLSD needed is equals to the image pixel numbers, which is the same with the

conventional IRLS [18],[24] or ℓ1 minimization [11]. However, the improvement of IDIRLSD, compared with these

conventional convex relaxation based algorithms, is twofold: it reduces the scale of the minimization problem within

each iteration and it applies a novel way for constructing the weighted ℓ1 minimization model which will enhance

the accuracy of sparse recovery. The efficacy of the proposed IDIRLSD algorithm will be demonstrated with several

experiments based on hyperpsectral data in next section.

IV. EXPERIMENTAL RESULTS

In this section, we use two synthetic hyperspectral images and two real hyperspectral images for target detection

experiments. The proposed algorithm IDIRSLD is compared with six algorithms including two statistical meth-

ods: spectral matched filter(SMF) [8], constrained energy minimization (CEM) [9],[10] and four sparsity-based

algorithms: orthogonal matching pursuit(OMP) [16], subspace pursuit (SP) [13], unweighted ℓ1 minimization [11]

and conventional IRLS [11]. OMP and SP fall in the general class of greedy algorithms [11] while unweighted

ℓ1 minimization and IRLS are compared as classical convex relaxation methods [11],[24]. For those two statistics

based algorithms, the CEM is implemented following the description in [10]. In the implementation of SMF, we

used the regularization method introduced by [8], which adjusted background covariance matrix to make its inverse

more stable.

In order to use sparsity-based algorithms to conduct synthetic and real data experiments, the first task is to obtain

the dictionary matrix [5]. In hyperspectral target detection, the spectral dictionary A is constructed with two parts:

the background sub-dictionary Ab and the target sub-dictionary At. For the background library, we used the United

States Geological Survey (USGS) digital library [23]. The reflectance value of 498 materials for 189 spectral bands

distributed in the interval 0.4-2.5 µm. After adding the spectrum of the target pixel, which is considered as a

prior knowledge used as At, the whole spectral library is A189×499. For preparation, each column of the spectral

dictionary is normalized as well as the test sample pixels. The main reason for this preparation is for the purpose

of avoiding the scale difference that may exist between the dictionary and the test spectral pixels.

To apply the proposed algorithm, inner-product based discriminative IRLS detector (IDIRLSD), several parameters

are particularly concerned. The sparsity parameter K0 is set to rank(A)/α, where α is first set to 2, then rises

within a range that guarantees satisfactory result. In our experiments, different values of α within the range of

2 to 10 get great performance. Also, the weight parameter ξ for IRLS iteration is a small quantities within the

range of 0 to 1. The Lagrange parameter λ is set to 0.095, based on the observation of Elad et al [24]. In order to

demonstrate the advanced efficacy of weighted ℓ1 IRLS over the unweighted one, we compared the performances of

the different set of parameter ε for wi = 1/(σΛ0(j) + ε) in the real image experiment 2. Since the ℓ1 minimization

[22] is believed to be a useful tool in solving the sparse recovery problem, we also include it for comparison.

The problem (P1) was cast as a linear programming (LP) problem in the experiments and solved using modern

interior-point methods as described in [11]. Two other sparsity-based greedy algorithms OMP [16] and SP [13]

are also implemented for comparison. Note that the sparsity parameters within all the mentioned sparsity-based
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algorithms are adjusted with respect of each experiment data to get the best performance of its own. Usually the

Lagrange parameter λ is the most importance parameter to adjust the sparsity level of the result within sparsity-based

algorithms. However for the proposed IDIRLSD algorithm, a constraint on the size of the sub-matrix is applied to

avoid the underdetermined problem. As a result, the reconstruction within the sub-dictionary is no longer a sparse

reconstruction problem. In this case the sparsity conducted as K0 = rank(A)/α will be a determinant factor for

the level of sparsity. In practice, the sparsity K0 has been adjusted together with the Lagrange parameter λ in

order to get the best performance. In our observation the best performance can always be achieved with Lagrange

parameter equals to 0.095 in our experiments which agrees with [24]. In addition, in order to suggest the advantage

of the proposed algorithm IDIRLSD over the original IRLS algorithm, we also compare these two algorithms in

the real image experiment 2. The IRLS algorithm is implemented as reweighted ℓ1 minimization as described in

[11]. In the proposed algorithm IDIRLSD and other sparsity-based algorithms, once a sparse representation vector

is obtained, we apply (3) to compare the recovery level of using Ab and At respectively which lead to a binary

classification.

The results of these algorithms are compared both visually and quantitatively by the receiver operating charac-

teristics (ROC) curves [25]. The ROC curve is applied for quantitative analysis of the detection results. ROC curve

is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold

is varied. The true pixel information is provided by ground truth (the real distribution of target and background).

As the threshold varying in the whole possible region, the ROC curve is generated by plotting PD (probability of

detection) as a function of PFA (probability of false alarms). PD is calculated by the ratio of the number of target

pixels that are labeled as targets and the total number of true target pixels. PFA is calculated by the ratio of the

number of background pixels that are labeled as targets and the total number of pixels. ROC analysis provides tools

to compare classifiers quantitatively, i.e., the lager the area embraced by the plot, the better the classifier performs.

A. Synthetic Image Experiment 1

We design synthetic hyperspectral with the synthetic image designed method introduced by Chang et al. [26]. In

the synthetic image, five mineral pure pixels are used for target detection, respectively are named as copiapite (Co),

actinolite (Ac), barite (Ba), chrysocolla (Ch) and axinite (Ax). The background of the image was simulated by

the mean spectrum of an entire real image collected by the airborne visible/infrared imaging spectrometer (AVIRIS)

sensor, shown in Fig. 1. The mean spectrum of the entire real image denoted by M was calculated. Fig. 2 shows

the normalized spectra of Co, Ac, Ba, Ch, Ax and M . We used these six kinds of spectra to design a 189-band

synthetic image with size of 200× 200 called synthetic image 1, where target was simulated by spectra of Co, and

the background was simulated by M . Fig. 3 shows the first band of the synthetic image 1 and the ground truth of

targets in the synthetic image 1. In the synthetic image 1, there are twenty five target panels arranged in a 5 × 5

matrix. In column 1 and column 2, from top to bottom, there are five 4× 4 and 2× 2 pure-pixel panels simulated

by spectra of Co, Ac, Ba, Ch and Ax, respectively. Five 2× 2 mix-pixel panels are located in column 3, and five

1× 1 sub-pixel panels are located in column 4 and column 5, respectively. An additive white Gaussian noise was
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Fig. 1. The first band image of a real AVIRIS hyperspectral image.

Fig. 2. Spectra of Co, Ac, Ba, Ch, Ax and M .

added to the synthetic image 1 to achieve a 60 dB signal-to-noise ratio (SNR).

The synthetic image 1 was used to detect the mineral target: Co. For the two statistical methods, spectrum of Co

as shown in Fig. 2 were used as the prior knowledge of spectral signatures of detected target in the CEM. Fig. 4

shows ROC curves of these algorithms, the performances except that of unweighted ℓ1 minimization are generally

satisfactory. The proposed algorithm IDIRLSD and statistical algorithms (SMF and CEM) get the best results since

(a) (b)

Fig. 3. (a) The first band image of the synthetic image 1. (b) The ground truth of targets of the synthetic image 1.
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Fig. 4. ROC curves of different algorithms for the synthetic image 1.

(a) (b)

Fig. 5. (a) The first band image of the synthetic image 2. (b) The ground truth of targets of the synthetic image 2.

their ROC curves are always 1 when the false alarm rate just passes 10−3. The ROC curves suggest a strong

competitiveness of sparsity-based algorithms against classic statistical algorithms. However, the ℓ1 minimization is

also proved for its loss of accuracy. Finally, the good performances of algorithms are also due to the high SNR,

which suggests there is almost no noise.

B. Synthetic Image Experiment 2

The synthetic image 2 is similar to the synthetic image 1. The difference was that a stronger additive white

Gaussian noise was added to the synthetic image 2 to achieve a 20 dB SNR. Fig. 5 shows the first band image

of the synthetic image 2 and the ground truth of targets of the synthetic image 2. Fig. 6 shows ROC curves of

different algorithms. Fig. 6 shows the ROC curves of the IDIRLSD, SMF and CEM are still much higher than

the other algorithms and IDIRLSD has the best performance overall. Finally, under strong noise environment the

IDIRLSD has a good performance.
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Fig. 6. ROC curves of different algorithms for the synthetic image 2.

Fig. 7. The prior knowledge of spectral signatures of the two kinds of airplanes in the AVIRIS images.

C. Real Image Experiment 1

In this section, we used the real hyperspectral image data to compare the proposed IDIRLSD algorithm with other

algorithms. For real images, every pixel on the targets is considered as a target pixel. The real hyperspectral image

was collected by the AVIRIS sensor. The scene was a part of the airport in San Diego, America. The AVIRIS sensor

collects the spectral data in 224 bands, and the spectral range is 0.4-2.5 µm. We have removed the water absorption

and low SNR bands, and 189 available bands were left. There are two kinds of airplanes in the image. The first

kind of three airplanes locate at the upper left corner of the image, and the second kind of three airplanes locate

at the lower right corner of the image. Fig. 7 shows the prior knowledge of spectral signatures (normalized) of the

two kinds of airplanes. In order to detect the first kind of planes as targets, we used the image named AVIRIS-I.

The first band image of the real image AVIRIS-I is shown in Fig. 8 with size of 120×120. In order to compare

the different detection results of different algorithms efficiently, we transformed the detection results of different

algorithms to binary images with a predefined threshold 0.5, as shown in Fig. 9(a)-(f). From the binary images

we can see that IDIRLSD could detect the target more effectively. Almost all of the target pixels are detected.
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Fig. 8. The first band image of the real image AVIRIS-I.

The ROC curves of different algorithms for the AVIRIS-I image are shown in Fig. 10. It can be found that in

the same false alarm rate, the probability of detection of the IDIRLSD is always higher than those of the other

experimental algorithms. Thus, the proposed IDIRLSD performs better than the other experimental algorithms. It is

noticeable that other sparsity-based algorithms unweighted ℓ1 minimization, OMP and SP also suggest a advantage

over conventional statistics based CEM and SMF especially in the low false alarm rate region which is important

since it suggests the ability of the detection algorithm to find the target with more similar distractions. Meanwhile

a step phenomenon can be observed in almost each curve in Fig. 10. which is mainly caused by the relatively less

pixel number in the AVIRIS-I.

D. Real Image Experiment 2

In this section, the second kind of planes is detected in the real image AVIRIS-II. The first band of image

AVIRIS-II is already shown in Fig. 1 with size of 90×200. The detection within image AVIRIS-II is more difficult

since the scene is more complex and contains more background pixels whose signatures are similar with that of

the target. The detection results of different algorithms are shown in Fig. 11(a)-(f). The ROC curves of different

algorithms are shown in Fig. 12 (the upper-right part has been zoomed in order for better illustration). In this

case, Fig. 11 showed that the classical second-order statistical algorithms SMF and CEM performed not so well as

they did in synthetic images. Some target pixels were missed and more non-target pixels were detected mistakenly.

The sparsity-based algorithms relatively have a better performance, in the Fig. 11, we can see proposed algorithm

IDIRLSD detects pixels of target more completely. Also, the ROC curves shown in Fig. 12 denote that when the

false alarm rate is smaller than 10−3, the ROC curves of OMP, SP and unweighted ℓ1 are almost overlapped and

the possibility of detection of IDIRLSD is always higher and first curve to reach 1 as false alarm rate increases.

Thus, the IDIRLSD has the best detection result on the whole. The result also suggests the advantage of convex

relaxation methods over greedy based algorithms. As illustrated, the ROC curves of IDIRLSD and unweighted

ℓ1 minimization are higher than those of OMP and SP especially in low false alarm rate regions. This is mainly

because the AVIRIS-II is a relatively large image and with more complex scenes. The greedy algorithms can be
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. (a) The detection result of the IDIRLSD for the AVIRIS-I image. (b) The detection result of the SMF for the AVIRIS-I image. (c) The

detection result of the CEM for the AVIRIS-I image. (d) The detection result of the OMP for the AVIRIS-I image. (e) The detection result of

the SP for the AVIRIS-I image. (f) The detection result of the unweighted ℓ1 for the AVIRIS-I image.

Fig. 10. ROC curves of different algorithms for the AVIRIS-I image.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. (a) The detection result of the IDIRLSD for the AVIRIS-II image. (b) The detection result of the SMF for the AVIRIS-II image. (c)

The detection result of the CEM for the AVIRIS-II image. (d) The detection result of the OMP for the AVIRIS-II image. (e) The detection

result of the SP for the AVIRIS-II image. (f) The detection result of the unweighted ℓ1 for the AVIRIS-II image.

Fig. 12. ROC curves of different algorithms for the AVIRIS-II image.

trapped into local minimum as solutions while convex relaxation based algorithms avoids this problem by directly

search for global minimum.

In addition, we include the conventional IRLS algorithm [18],[24] for comparison. The ROC curves for the IRLS

and IDIRLSD algorithms are illustrated respectively in Fig. 13. From the ROC curves we can find the ROC of

IDIRLSD are always higher. Furthermore, we have compared the time cost when implement these two algorithms

IRLS and IDIRLSD on AVIRIS-II. The implementations are under same Matlab environment and the time cost of

IRLS is 18.5 times that of IDIRLSD. The IDIRLSD has a better performance which suggests a great advantage over

the conventional IRLS algorithm. The reasons for this advantages are twofold: firstly, the discriminative construction
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Fig. 13. ROC curves of IRLS and IDIRLSD algorithms for the AVIRIS-II image.

Fig. 14. ROC curves of different set of parameter ε for the AVIRIS-II image.

of dictionary reduces the scale of sparse recovery problem; secondly, the effective construction of the weights for

weighted ℓ1 minimization enhances the accuracy of sparse recovery.

Finally, in order to demonstrate the advanced efficacy of weighted ℓ1 IRLS over the unweighted one, we compared

the performances of the different set of parameter ε for wi = 1/(σΛ0(j) + ε) and the unweighted condition on

the AVIRIS-II image. The ROC curves with respect to the different sets of parameter ε are shown in Fig. 14 (the

upper-left part has been zoomed in order for better illustration). We can see that different curves start by almost

overlapped with each other, but the curve with larger ε value within the range 0.6 to 1.8 locates at 1 much faster

and the performance is therefore better. Thus, the result suggests that weighted ℓ1 IRLS has better performance

over unweighted one.

April 29, 2014 DRAFT



19

E. Experimental Results Analysis

Two synthetic images and two real images were used to do experiments. For the synthetic image 1, due to the

fact that the background is very simple and there is nearly no noise in the image, all algorithms perform well.

For the synthetic image 2 and the real image AVIRIS-I and AVIRIS-II, the IDIRLSD performs better than other

algorithms, although all methods can detect targets well for the synthetic image 2 and real image AVIRIS-I. Since

the second-order statistics is suitable to describe Gaussian data, however, in the AVIRIS-II image, target pixels of

interest only occupy a few pixels, and the spectra of target pixels do not follow Gaussian distribution. Sparsity-based

algorithms do not have this limitation since they concentrated on finding the sparsest recovery coefficients for each

test pixel. Once the appropriate sparse solution is obtained, the test pixel can be easily separated with respect to

the training dictionary. Also among the sparsity-based algorithms, the proposed algorithm IDIRLSD performs best.

This is due to its efficacy on finding the sparse recovery. Finally, the experimental results demonstrate that weighted

ℓ1 IRLS has better performance over unweighted one.

V. CONCLUSIONS

Most existing detection algorithms fall in the second-order statistic algorithms, which always face the obstacles

in dealing with the irregular distribution of target and additional noise. In this paper, we propose a novel way

of hyperspectral detection using sparsity-based algorithm. Currently sparsity-based detection algorithms are mostly

greedy algorithms and seldom of them solve the large scale problems effectively. This paper provides a novel way

for sparse detection using convex relaxation. Also the proposed algorithm constructs a sub-dictionary to reduce the

problem scale of sparse learning. Experiments on both synthetic and real hyperspectral data show that the proposed

algorithm performs better than the second-order statistics based algorithms, the sparsity-based greedy algorithms

and conventional convex relaxation algorithms for the experimental data in the paper.
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