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Abstract

Hyperspectral unmixing is to decompose the mixed pixels into pure spectral signatures (endmembers) and their proportions
(abundances). Recently, deep learning based methods have been applied to enhance the representation ability of unmixing models
by extracting joint spatial-spectral characteristics of the hyperspectral data. However, most deep learning based unmixing methods
usually conduct global smoothing by convolutions on the whole hyperspectral imagery, which may ignore the variations within
the imagery and result in over-smoothing. In this paper, we propose a deep network for hyperspectral unmixing based on a new
Global-Local smoothing Autoencoder (GLA). GLA is an unsupervised model which aims at exploring the local homogeneity and
the global self-similarity of hyperspectral imagery. The proposed GLA network mainly include two modules: a Local Continuous
conditional random field Smoothing (LCS) module and a Global Recurrent Smoothing (GRS) module. In LCS, we propose a
conditional random field based smoothing strategy to describe the joint spatial-spectral information within a local homogeneity
region, which also reduces the risk of abundance maps boundary blurry. In GRS, we follow the self-similarity assumption for
hyperspectral imagery, and develop a recurrent neural network structure to exploit potential long-distance dependency relationships
among pixels. The GLA is compared with several state-of-the-art unmixing metheds on both real and synthetic data, and the
abundance estimation results indicate that our method is promising. We will publish the code of GLA if the paper has the honor
to be accepted.

Index terms— Hyperspectral unmixing, autoencoder, deep learning, global and local.

I. INTRODUCTION

HYPERSPECTRAL images usually contain hundreds or even thousands of bands. Different bands can reflect various
quality characteristics of objects. Therefore, hyperspectral imagery has inherent advantages on internal structure and

chemical composition information of objects. However, due to the mutual restriction between spatial and spectral resolution, a
single pixel in hyperspectral imagery is usually composed of multiple materials spectra, which is called mixed pixel. The task
of unmixing is to decompose the mixed pixels into endmembers and their abundances. The unmixing methods can be classified
into geometrical [1]–[3], statistical [4], Nonnegative Matrix Factorization (NMF) [5], [6], deep learning [7], [8] and sparse
regression [9], [10] methods. Note that, this is not a strict classification, and some methods may belong to several categories
at the same time, for example, NMF-QMV [11] belongs to both geometric and NMF methods, SSLUEP [12] belongs to
both statistical and sparse regression methods. Because the unmixing model is ill-posed, in reference [3], Chia-Hsiang Lin
proposed an idea of identifying the maximum volume ellipsoid and mapping such ellipsoid into a Euclidean ball. Furthermore,
this method is a suitable approach for the lack of the pure pixels. Moreover, some researches also show that spatial-spectral
methods may contribute to approaching the real solutions of the unmixing problem [13], [14]. And literatures [6], [15], [16]
attempt to solve the ill-posed problem by incorporating the spatial correlation between pixels to the unmixing model as prior
information.

One of the popular approaches to integrate the spatial context information is adding it into the loss function. For example,
literature [17] combined spatial information with the sparse unmixing model by adding a total variation term. Different from
that, literature [6] introduced the total variation regularizer into the statistical methods and improved the unmixing efficiency.
Instead of adding an additional spatial regularization term to the spectral-based method, in literatures [18], [19], the spatial and
spectral information were combined in the same term by double reweighted method to reduce the regularization coefficient. In
literature [20], the spectral and spatial features were unmixed jointly by a cofactorization model. In order to smooth the context
information while preserving the edge sharpening, the discontinuity preserving strategy was introduced [21]. In addition to
adding regularization terms to the loss function, there are also some methods which divided the input images spatially before
solving. For example, in literatures [22]–[27], the super-pixel segmentation was applied to combine the group spatial information
with the unmixing models. Considering that the geometric structure of materials in the real scene was not regular, literatures
[22]–[24] divided the whole image into irregular sub-blocks, and unmixed each sub-block by NMF [28]. In literatures [25],
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[26], Singular Value Decomposition Subset Select and clustering were used after the super-pixel segmentation. In literature
[27], the low-rank property of the super-pixel corresponding abundance matrix was added to the loss function.

In recent years, deep learning methods have been introduced into hyperspectral unmixing tasks, most of which were based
on auto-encoder (AE) [29]–[34]. In AE, the multi-layer encoder is usually applied to obtain the abundance matrix, and the
softmax activation function is used to meet the abundances sum to one constraint (ASC) and nonnegative constraint (ANC)
[35]. Assuming the unmixing model is linear, then a single linear decoding layer will be used to reconstruct the image, and the
full connection weight can be considered as the endmember matrix. Aiming at the ill-posedness of the unmixing problem, some
prior knowledge is added to the AE model. For example, according to the assumption that abundance matrices of different
endmembers are independent, the orthogonal prior information of abundance vectors was applied to AE in [34]. In literature
[36], an abundance adaptive smoothing (AAS) term which explored spatial context information was added to the loss function.

To further extract the joint spatial-spectral information, another popular deep learning model, convolution neural network
(CNN), is introduced to hyperspectral unmixing [37]–[39]. These methods attempted to discover the spatial correlation in the
hyperspectral data and automatically extract the effective relevant information from the imagery. In literature [40], Khajehrayeni
and Ghassemian combined CNN and AE, and developed a convolutional auto-encoder (CAE) to extract spatial related features
for the unmixing task. In literature [41], the 3D convolution was applied to further enhance the estimation performance of
endmembers and abundances.

However, recently proposed deep learning based unmixing methods may not take full account on the complexity of real
remote sensing scenarios. One of the major challenges for deep learning based unmixing methods is that they usually only
conduct unified smoothing on the hyperspectral imagery, which have ignored the variations inside the imagery and may result
in over-smoothing. In real scenarios, hyperspectral imagery usually has the characteristics of local homogeneity [17] and the
global self-similarity [42]. The local homogeneity refers to the continuous distribution of the spectral values in the local
neighborhood. In literature [42], Dong Le et al. proposed the abundance constraints of global and local self-similarity, and
defined global self-similarity of pixels as the correlation of all pixels that exists among the whole image. Therefore, different
from the definition in literature [43], we refer to self-similarity as similar spectral vectors with similar abundance vectors.

In this paper, we propose a fully unsupervised unmixing method based on a Global-Local smoothing Autoencoder (GLA)
for hyperspectral unmixing. The motivation of GLA is to explore the local homogeneity and the global self-similarity of
hyperspectral imagery, and describe these characteristics via a powerful deep learning model. The proposed GLA network
mainly include two novel components: a Local Continuous conditional random field Smoothing (LCS) module and a Global
Recurrent Smoothing (GRS) module.

LCS targets at local smoothing, which tries to exploit the adaptive weights for pixels around the edge or inside a region.
Inspired by the local smoothing ability of continuous Conditional Random Field (CRF) [44], [45], we construct the LCS
module based on CRF. However, parameters in CRF vary for different tasks, and users have to manually decide the CRF
parameters for hyperspectral unmixing. In LCS, we integrate the CRF into the network, and automatically optimize the CRF
parameters through the network. Furthermore, different from full connection form in literature [44], we improve it to local
connections so as to describe the local joint spatial-spectral information. LCS algorithm can achieve the adaptive smoothing
weights adjustment for different positions around a pixel.

GRS tries to refine the abundance map via global smoothing, which is motivated by the global self-similarity of hyperspectral
data. In GRS, we construct the global smoothing module via a Recurrent Neural Network (RNN) [46] which incorporate the
potential information of all pixels. The GRS module is composed of different directions, each of which conducts convolution
and update formula. By this means GRS is able to make full use of the abundance self-similarity between similar spectral
vectors.

The contributions of this paper are summarized as follows:
• We propose a new deep learning model, global-local smoothing autoencoder, for hyperspectral unmixing, which can utilize

the potential joint spatial-spectral information among pixels.
• A novel LCS module is developed to smooth local homogeneity regions, where the smoothing parameters are adaptively

determined and the hyperparameters are optimized by the network.
• A GRS module is designed to extract the global self-similarity information, where a RNN structure is embedded to exploit

the pixels relationship from the spectral feature space.

II. METHODOLOGY

Depending on the spectral reflection, refraction, and the geometry of the scenario, the unmixing model adopted can be linear
or nonlinear. Due to the advantages of simplicity, high efficiency and clear physical meaning, linear unmixing has become
a popular research. Therefore, this method is based on linear unmixing model. In this section, we first introduce the linear
unmixing model. Then, the overall framework of the model is introduced in section B. In section C and D, the GRS and LCS
module are introduced, respectively. Finally, we give the total loss function of the model in section E.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 3

Fig. 1. Network architecture

A. Linear unmixing model

Let xi ∈ Rl×1 denotes the spectral vector of the i-th pixel in the hyperspectral image, then in the linear model, the i-th
pixel can be represented as:

xi = M× hi + ξi (1)

where M ∈ Rl×p is the endmember matrix of the image, ξi ∈ Rl×1 is the noise vector, hi ∈ Rp×1 is the abundance vector
corresponding to the i-th pixel, p is the number of endmembers in the image, and l is the number of bands.

Assuming that there are n pixels in the image, eq. (1) can be rewritten in a matrix form as follows:

X = M×H + Ξ (2)

where the image data X=[x1,x2, . . . ,xn] ∈ Rl×n, fractional abundance matrix H=[h1,h2, . . . ,hn] ∈ Rp×n, noise matrix
Ξ=[ξ1, ξ2, . . . , ξn] ∈ Rl×n.

Besides, each endmember vector should satisfy the endmember nonnegative constraint (ENC), the abundance vector should
satisfy ANC and ASC, that is:

ENC : M > 0

ANC : H > 0

ASC : 1Tp H = 1Tn

(3)

B. The overall structure

In this section, we describe the overall structure of the proposed GLA (illustrated in Fig. 1).
In the encoder, the first layer is the input layer. The second layer is composed of a 1×1 convolution with b l2c feature maps

and the tanh activation function, which limits the output to [-1,1] and makes the model easier to converge. The third layer is
composed of a 1×1 convolution with b l4c feature maps and the tanh activation function. And the forth layer is composed of
1×1 convolution with p feature maps and the LeakyRuLu activation function, which makes the output nearly nonnegative.

Next comes the spatial information extraction layer. This layer is composed of the LCS and GRS modules. The local and
global features of the input image could be extracted through these two modules, respectively. After fusion of their outputs, in
order to satisfy the sum-to-one constraint at each pixel, the softmax function is applied to the output feature maps. The new
feature maps can be considered as abundances where the ANC and ASC are enforced at each pixel. The input pixel xi will
get a corresponding abundance vector hi=fe (xi), where fe(·) is the encoding function.

The decoder consists of only one layer of 1×1 convolution with l feature maps without considering bias, i.e. x̂i = fd (hi)
= W × fe (xi) = W × hi, where W is the weight of the convolution kernel and fd(·) is the decoding function, x̂i is the
reconstruction result of the image. Therefore, based on the linear structure of the decoder, the proposed method can be used
for linear unmixing model.

Moreover, the proposed GLA does not require real endmembers or a known spectral library, so it is an unsupervised method.
And different from treating the vertices of simplex as endmembers by projection, GLA generates endmembers directly through
neural network so that it does not need to satisfy the pure-pixel assumption.

C. GRS module

According to the above description of the proposed network, the feature maps obtained from the first three convolutions are
passed to GRS and LCS to extract the global and local spatial information, respectively. In this section, we first introduce the
proposed GRS.
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Fig. 2. Structure of GRS module. (a) is the overall structure of GRS module, (b) (c) is the illustration of the smoothing process,
the dark gray areas in (c) indicate the extent of smoothing.

Considering the self-similarity of hyperspectral images, the long-distance correlation between pixels is introduced in GRS.
In literature [47], the hyperspectral images are regarded as sequential data to take full advantage of the spectral correlation.
Therefore, GRS is designed based on RNN, which is used to extract global sequence features. First, GRS integrates the
information within the cross range of each pixel, which is obtained by replacement formula in four directions of the image.
Second, the operation is repeated to get the global information.

The structure of the GRS module is shown in Fig. 2(a). The first layer is the input layer. The height n1 and width n2
of the input feature map for GRS module are consistent with those of hyperspectral image. In the second layer, the input
S ∈ Rn1×n2×p is convoluted by four different 1×1 convolution kernels. Therefore, every point Suv in S gets four activation
values atop

uv , abottom
uv , aleft

uv , aright
uv , where (u, v) is the spatial location. The obtained four feature maps will be used as the

inputs of the third layer to extract the information of four directions, respectively.
In the third layer, the information in the four directions will be extracted through the different replacement formulas. For

each direction, the activation value of each pixel is replaced by the linear combination of the current activation value and the
activation value of the previous pixel. For example, from top to bottom, the replacement formula is:

atop
uv = max{Wtopatop

u−1,v + atop
uv,0} (4)

where Wtop ∈ Rp×p is the weight matrix in the top-down replacement formula.
In the forth layer, the feature map of 4p channels is obtained by concatenating the feature maps of four directions. The

fifth layer is a 1×1 convolution to reduce the channels of the feature map from 4p to p. At the training process, we use batch
normalization to reduce the internal covariance shift in the hidden layer and use LeakyReLu activation function to avoid the
problem of neuron death.

After the top-bottom and bottom-top replacement formulas of the third layer, each pixel can obtain the information of its
column. Similarly, the information of the row in which a pixel is located can be obtained by the left-right and right-left
replacement formulas. As shown in Fig. 2(b), in the feature map obtained by the first five layers, each pixel can extract the
information within its four directions. Then the output of fifth layer is smoothed again from the sixth layer to the ninth layer by
repeating the process from the second layer to the fifth layer. But in this time, as shown in Fig. 2(c), this operation smooths the
pixels already containing the cross information so that each pixel in the output of GRS module can obtain the information of
all pixels. Finally, in order to integrate with the output of LCS module, the output of GRS module is reshaped as S

′ ∈ Rp×n.
After GRS module, each pixel in S

′
can obtain the information of all pixels, i.e. the i-th pixel S

′

i=gi(x1,x2, ...,xn), where
gi(·) represents the relationship between S

′

i and all pixels.
The pseudocode of GRS is shown in Algorithm 1.
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Algorithm 1: The pseudocode of GRS
Input: feature map S.
Output: feature map for extracting global information S

′
.

1 Initialization:
2 channels of the input p, direc={top, bottom, left, right}, number of times to extract cross information TG.
3 global smoothing process:
4 Set C0(S) = S
5 while t < TG do
6 for η in direc do
7 Calculate the convolutional layer Cηt (S) = conv(Ct(S), p, p)

8 Concatenate the outputs of previous layer to get Ct(S)← [C top
t (S), Cbottom

t (S), C left
t (S), C right

t (S)]
9 Ct+1(S) = conv(LeakyReLu(BN(Ct(S))), 4p, p)

10 t = t+ 1

11 Reshape the output of last convolution layer CTG
(S) as S

′ ∈ Rp×n
12 Return S

′
.

D. LCS module

In this paper, we propose a LCS module to extract local features. It has the following three characteristics. First, in LCS,
the fully connected CRF is transformed into local connections to extract the local information. Second, an adaptive weight
method based on CRF is proposed to prevent the edge of abundance maps from blurring. Third, a larger local neighborhood
is applied in LCS to obtain more precise context information.

When CRF is applied to the unmixing task, the conditional probability formula P (D|Ŝ) is usually defined as follows:

P (D|Ŝ) =
1

Z(Ŝ)
exp(−Ω(D, Ŝ)) (5)

where the normalization term Z(Ŝ) and the term in exponent Ω(D, Ŝ) are defined as:

Z(Ŝ) =

∫
exp(−Ω(D, Ŝ)) dD (6)

Ω(D, Ŝ) =

n∑
i=1

Φ(di, ŝi) +
∑
i,j

ϕ (di,dj) (7)

Ŝ=[ŝ1, ŝ2, · · · , ŝn] ∈ Rp×n is the reshaped feature map and ŝi is the feature corresponds to the abundance vector hi,
D=[d1,d2, · · · ,dn]∈ Rp×n is the feature map adjusted by LCS and di is the feature that contains local spatial information
corresponds to hi, function Φ is to limit that abundance of each pixel does not change much before and after adjustment,
function ϕ is to limit that similar abundance remains similar after adjustment. In general, we define:

Φ(di, ŝi) = ||di − ŝi||2 (8)

ϕ (di,dj) = exp

(
−||ŝi − ŝj ||

2

2θ

)
||di − dj ||2 (9)

where θ is a hyperparameter.
Define kij=exp(− ||ŝi−ŝj ||2

2θ ), then we have ϕ(di,dj)=kij ||di−dj ||2. Suppose that the approximate distribution of P (D|Ŝ)

is Q(D|Ŝ) =
∏n
i=1Q(di|Ŝ), then the KL divergence of P (D|Ŝ) and Q(D|Ŝ) is

KL
(
P (D|Ŝ)‖Q(D|Ŝ)

)
= EP (D|Ŝ)

(
logP (D|Ŝ)− logQ(D|Ŝ)

)
= Edi

(
ED\di

(logP (D|Ŝ))
)
− E

 n∑
j=1

logQ(dj |Ŝ)


= Edi

(
ED\di

(logP (D|Ŝ))
)
− E

(
logQ(di|Ŝ)

)
+ const

(10)
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where E(·) is the expectation function, D\di denotes the i-th column di of matrix D is removed, const is a constant independent
of D and Ŝ. By minimizing KL

(
P (D|Ŝ)‖Q(D|Ŝ)

)
, we can get the result:

logQ(di|Ŝ) = ED\di

(
logP (D|Ŝ)

)
+ const (11)

If Eq.(5), Eq.(7), Eq.(8) and Eq.(9) is brought into Eq.(11), then

logQ(di|Ŝ) = −

1 + 2
∑
j 6=i

kij

 ||di||2
+ 2dTi

ŝi + 2
∑
j 6=i

kijEdj

+ const

(12)

The iterative formula can be obtained by maximizing the likelihood function Q(di|Ŝ). And in LCS module, we use locally
connected continuous CRF to extract homogeneous information:

dti =
ŝi + 2

∑
j 6=i,j∈N (i) kijEdj

1 + 2
∑
j 6=i,j∈N (i) kij

=
ŝi + 2

∑
j 6=i,j∈N (i) kijd

t−1
j

1 + 2
∑
j 6=i,j∈N (i) kij

(13)

where N (i) is the neighborhood position set of the i-th pixel and dti is the t-th iteration of the adjusted vector corresponding
to the i-th pixel.

Fig. 3. Structure of LCS module

According to Eq. (13), the process of updating dti is shown in Fig. 3.
• Local smoothing, which computes the weighted sum of neighboring pixels, e.g.,

∑
j 6=i,j∈N (i) kijd

t−1
j for dti.

• Addition, which combines the pixel information with its neighborhood, i.e., ŝi + 2
∑
j 6=i,j∈N (i) kijd

t−1
j .

• Average, which divides 1 + 2
∑
j 6=i,j∈N (i) kij to obtain the weighted average results.

In order to express Eq. (13) by a matrix form, we define the smoothing matrix K, where the element of the i-th row and
j-th column is kij . The initialization matrix K is defined as:

Kinit =



0 1
3 0

1
2 0

. . .
... 1

3

. . . 1
4

. . . 1
3

1
2

... 0
... 1

2

1
3

. . . 1
4

. . . 1
3

...
. . . 0 1

2
0 1

3 0


n×n

(14)

where
... denotes the middle w − 1 zeros and w is the width of the input image. Then the iterative formula is:

Dt =
[
dt1,d

t
2, · · · ,dtn

]
=

Ŝ + 2KDt−1

1n + 2K1n
(15)

where 1n=[1, 1, . . . , 1]T∈Rn, the fraction represents the element-wise division. In order to maintain the local smoothness of
LCS module, the loss of LCS module is ||K�G||2F, where � is the Hadamard product, G=Kinit>0, “>” is the element-wise
Boolean operation. The pseudocode of LCS is shown in Algorithm 2.
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Algorithm 2: The pseudocode of LCS

Input: feature map Ŝ.
Output: feature map for extracting local information DTL .

1 Initialization:
2 pixel number n, maximum iteration number TL, smoothing factor K0 = Kinit, D0 = [d01,d

0
2, · · · ,d0n].

3 local smoothing process:
4 while t < TL do
5 t = t+ 1;
6 for i = 1, ..., n do

7 Set dti =
ŝi+2

∑
j 6=i,j∈N(i) k

t−1
ij dt−1

j

1+2
∑

j 6=i,j∈N(i) kij

8 Set Dt = [dt1,d
t
2, · · · ,dtn]

9 Return DTL = [dTL
1 ,dTL

2 , · · · ,dTL
n ].

E. Loss function

Based on the previous description of each module, the total loss Ltotal in GLA can be written as the following three parts

Ltotal = Lrec + Lsparse + Lspatial (16)

It is proved in [48] that the spectral angle distance (SAD) could get better estimation results when used as reconstruction
loss function. So the first term Lrec is defined as:

Lrec =
1

n

n∑
i=1

arccos

(
〈xi, x̂i〉
‖xi‖2‖x̂i‖2

)
(17)

In the second term, we use l1/2-regularization to enforce the sparsity constraint. Then

Lsparse = α‖H‖1/2 = α

n∑
i=1

p∑
r=1

|hri|1/2 (18)

where α is a hyperparameter.
And for the third term, firstly, based on the assumption of image self-similarity, the abundance vector of i-th pixel hi should

be a function of the spectral vector of all pixels, i.e.

hi = fi(x1,x2, ...,xn) (19)

where fi(·) represents the relationship between hi and all spectra X. After GRS module, the i-th feature vector S
′

i of the
output S

′
can be written as gi(x1,x2, ...,xn), so we can define

fi(x1,x2, ...,xn) ≈ softmax(S
′

i + dTL
i ) (20)

Secondly, due to the local homogeneous smoothing of LCS module, we assume the i-th abundance hi can be approximately
represented as

hi =
∑

j∈N (i)

bijhj (21)

where bij is the coefficient corresponding to hj .
In order to satisfy self-similarity and homogeneity simultaneously, Eq.(19), Eq.(20) and Eq.(21) are combined to obtain the

spatial loss function
Lspatial = β‖H−HB‖2F + γ(||K�G||2F + ||B�G||2F)

+ τ‖1Tn (B�G)− 1Tn‖2F
(22)

where H is the fractional abundance matrix, the i-th row and j-th column in B is bij , smoothing matrix K is defined in LCS
module, G=Kinit>0, “>” is the element-wise Boolean operation. B is initialized like Kinit, β, γ, τ are the hyperparameters,
the last term in Lspatial enforces the sum of the coefficients to be one.
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III. EXPERIMENTS AND DISCUSSION

We use MSE criterion to measure the quality of abundance estimations, and the proposed method GLA is compared with the
geometry-based, NMF-based and deep-learning-based methods. The comparison methods include: NMF-L1/2 [49], NMF-anls
[50], NMF-QMV [11], MVES [51], HyperCSI [52], HISUN [3], CNNAEU [39], AAS [36].

MSE =
1

n

n∑
i=1

∥∥∥hi − h̃i∥∥∥2 (23)

where h̃i is the reference abundance fraction of the i-th pixel, hi is the estimated abundance fraction of the i-th pixel.
The numbers of endmember p is obtained by HySime algorithm before network training. [53] The weight of the convolution

kernel in decoder is initialized by the endmember matrix from VCA [54], and the initial iteration D0 in LCS module is defined
by abundance matrix from FCLS [55]. Futhermore, using Adam optimizer and attenuation learning rate to ensure the stability
of training results. Setting the network parameters TL=10, TG=2 and α=1e-5, β=1e-6, γ=1e-5, τ=5, the learning rates of
encoder and decoder are 1e-2 and 1e-3, respectively, and the learning rate is reduced by 90% every 200 iterations.

A. Real and synthetic data

The experiments were carried out on three real data sets and three synthetic data sets. The description of each dataset is as
follows:

1) real data:
• Samson is a common real data set, with 95×95 pixels, and each pixel has 156 channels covering the wavelengths from

401 nm to 889 nm. The image has three endmembers: soil, tree and water.
• Jasper Ridge is a real image contains 100×100 pixels, each pixel has 224 channels ranging from 380 nm to 2500 nm.

Affected by water vapor and atmosphere, 198 channels are left after removing channels 1-3, 108-112, 154-166 and
220-224. The image has four endmembers: road, soil, tree and water.

• Cuprite is a real hyperspectral image containing 150×150 pixels, each pixel has 224 channels ranging from 400 nm to 2500
nm. After removing the noisy channels and water absorption channels, 183 channels are remained. The estimated number
of endmembers is nine, and the reference endmembers in USGS library are Chalcedony, Montmorillonite, Buddingtonite,
Muscovite, Hematite, Kaolinite, Alunite, Pyrope and Andradite.

2) synthetic data:
• Data1 generation process:

Given the number of endmembers z contained in the image and the corresponding spectral vector, the 100×100 image
is divided into 100 square regions with 10 sides. Each region contains only one pure spectrum, and the mixed pixels are
generated by using the 11×11 spatial filter. Pixels with abundances greater than 0.8 are removed and replaced with a
mixture of two endmembers. Then 30db Gaussian noises are added. The spectral vector of pure materials is selected from
the United States Geological Survey (USGS) library splib07a. When z is set as 3-10, the generated data sets are named
data1-edm3, data1-edm4,..., data1-edm10 accordingly.
10 endmembers with 224 channels are selected, which are: Acmite, Actinolite, Elbaite, Grass dry, Pyroxmangite, Serpen-
tine, Halloysite, Dumortierite, Opal, Quartz.

• Data2 generation process:
Given the number of endmembers and endmember matrix in advance, the matrix with the same size of the image is divided
into several small square regions according to the specified interval, and the abundance matrix is generated by assigning
values to the matrix according to certain rules, as shown in Fig.4. After the image is generated, the 30db Gaussian white

(a) (b) (c) (d)

Fig. 4. data2-edm3 (a) simulated image (b)abundance of endmember1 (c) abundance of endmember2 (d) abundance of
endmember3
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(a) reference (b) NMF-L1/2 (c) NMF-anls (d) NMF-QMV (e) CNNAEU (f) AAS (g) GLA

Fig. 5. The abundance estimation of Samson data set is compared with six methods. The first column is the reference abundance.

noises are added to get the synthetic image data. Similarly, suppose that the synthetic data contains 3-10 endmembers,
and the generated data is named data2-edm3, data2-edm4, ..., data2-edm10.

• Data3 generation process:
In Data3, three randomly selected endmembers are used to generate 100 × 100 × 224 simulation data according to the
Dirichlet distribution, and add 20db, 30db and 40db noise, respectively. If the abundance of a single endmember in a
pixel is greater than 0.7, the pixel is replaced by a mixture of two endmembers (the abundance of both endmembers in
the pixel is 0.5).

B. Experimental results of abundance matrix

TABLE I: Mean MSE and standard deviation of Samson and Jasper Ridge data sets. The best result is bold.

NMF-L1/2 NMF-anls NMF-QMV CNNAEU AAS GLA

mean std mean std mean std mean std mean std mean std

Samson 0.3460 0.0433 0.2791 0.0269 0.2253 0 0.0613 0.0338 0.0360 0.0011 0.0279 0.0019

Jasper Ridge 0.3510 0.0263 0.1590 0.0289 0.0635 0 0.1187 0.0172 0.0678 0.0157 0.0386 0.0028

TABLE II: Endmember and abundance results of Samson and Jasper Ridge data set. The best result is bold.

MVES HyperCSI HISUN GLA

edm abd edm abd edm abd edm abd

Samson 0.1831±0 0.3230±0 0.1564±0 0.2002±0 0.1915±0 0.2789±0 0.0795±0.0056 0.0279±0.0019

Jasper Ridge 0.2431±0 0.2945±0 0.2461±0 0.1036±0 0.2227±0 0.1387±0 0.1037±0.0135 0.0386±0.0028

Table I and II show the MSE and standard deviation of Samson and Jasper Ridge datasets obtained by the NMF, geometric
and deep learning methods. For Samson dataset, it can be observed that GLA obtains a competitive result with 0.0279 MSE
and a low standard deviation of 0.0019. For Jasper Ridge dataset, GLA has a MSE of 0.0386 and a low standard deviation.
Fig.5 and Fig.6 illustrate the abundance visualization of Samson dataset and Jasper Ridge dataset, respectively. The first column
is the ground truth, and the other six columns correspond to the abundance maps estimated by different methods. It can be
seen that the GLA has a competitive abundance estimation.

Table III shows MSE and standard deviation of abundance vectors in data1-edm3, data1-edm4, ..., data1-edm10 dataset.
In more than half of the cases, GLA method obtains better abundance estimations and all standard deviations are less than
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(a) reference (b) NMF-L1/2 (c) NMF-anls (d) NMF-QMV (e) CNNAEU (f) AAS (g) GLA

Fig. 6. The abundance estimation of Jasper Ridge data set is compared with six methods. The first column is the reference
abundance.

(a) reference (b) NMF-L1/2 (c) NMF-anls (d) NMF-QMV (e) CNNAEU (f) AAS (g) GLA

Fig. 7. The abundance estimation of data1-edm3 data set is compared with six methods. The first column is the reference
abundance.
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(a) reference (b) NMF-L1/2 (c) NMF-anls (d) NMF-QMV (e) CNNAEU (f) AAS (g) GLA

Fig. 8. The abundance estimation of data2-edm5 set is compared with six methods. The first column is the reference abundance.

(a) NMF-L1/2 (b) NMF-anls (c) NMF-QMV (d) MVES (e) HyperCSI (f) HISUN (g) CNNAEU (h) AAS (i) GLA

Fig. 9. Nine methods are used to extract and compare endmembers from Samson data set, and each method is run 10 times.

0.0028. And when the number of endmembers is 3, 4, 8, the NMF-QMV method performs better. Fig.7 shows the abundance
map when the number of endmembers is 3 and most of the methods have good estimation results.

Table IV shows the MSE and standard deviation of abundance vectors in data2-edm3, data2-edm4, ..., data2-edm10 dataset.
In most cases, NMF-QMV achieves better results. Only when the number of endmembers is 5 or 8, GLA performs better.
Fig.8 shows the abundance map when the endmember number is 5. It can be seen that NMF-QMV, AAS and GLA all have
good estimation results especially for the abundance estimation of the third endmember.

Geometry-based, NMF-based and deep-learning-based unmixing methods are compared on Data3 dataset. Table V shows
the abundance estimation results of MVES, HyperCSI, HISUN, NMF-QMV, AAS, CNNAEU and GLA methods. The results
indicate that HISUN have a good estimation when SNR is 20db and 30db, as compared to the other geometric methods. Most
methods have good abundance estimations when SNR is 40db. GLA obtains the competitive MSE results when SNR is 20db
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(a) NMF-L1/2 (b) NMF-anls (c) NMF-QMV (d) MVES (e) HyperCSI (f) HISUN (g) CNNAEU (h) AAS (i) GLA

Fig. 10. Nine methods are used to extract and compare endmembers from Jasper Ridge data set, and each method is run 10
times.

(a) NMF-L1/2 (b) NMF-anls (c) NMF-QMV (d) CNNAEU (e) AAS (f) GLA

Fig. 11. Six methods are used to extract and compare endmembers from data1-edm3 data set, and each method is run 10 times.

TABLE III: Mean MSE and standard deviation of Data1 data set with 3-10 endmembers. The best result is bold.

NMF-L1/2 NMF-anls NMF-QMV CNNAEU AAS GLA

mean std mean std mean std mean std mean std mean std

edm3 0.0423 0.0076 0.0836 0.0466 0.0022 0 0.0451 0.0109 0.0077 0.0010 0.0066 0.0017

edm4 0.0453 0.0093 0.0868 0.0343 0.0048 0 0.0919 0.0030 0.0083 0.0012 0.0053 0.0003

edm5 0.1247 0.0416 0.0843 0.0305 0.0158 0 0.1639 0.0567 0.0146 0.0015 0.0080 0.0004

edm6 0.1310 0.0459 0.0814 0.0560 0.0127 0 0.1623 0.038 0.0218 0.0013 0.0078 0.0003

edm7 0.2195 0.0338 0.1637 0.0562 0.0232 0 0.3126 0.0137 0.0331 0.0021 0.0213 0.0005

edm8 0.1801 0.0225 0.1903 0.0268 0.0387 0 0.2985 0.0334 0.0890 0.0040 0.0511 0.0028

edm9 0.2549 0.0137 0.1722 0.0206 0.0645 0 0.3097 0.0778 0.0930 0.0003 0.0626 0.0027

edm10 0.2622 0.0241 0.1495 0.0386 0.0627 0 0.3136 0.0401 0.0775 0.0016 0.0621 0.0028
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(a) NMF-L1/2 (b) NMF-anls (c) NMF-QMV (d) CNNAEU (e) AAS (f) GLA

Fig. 12. Six methods are used to extract and compare endmembers from data2-edm5 data set, and each method is run 10 times.

TABLE IV: Mean MSE and standard deviation of Data2 data set with 3-10 endmembers. The best result is bold.

NMF-L1/2 NMF-anls NMF-QMV CNNAEU AAS GLA

mean std mean std mean std mean std mean std mean std

edm3 0.1073 0.0503 0.0538 0.0326 0.0011 0 0.1543 0.0191 0.0026 0.0001 0.0045 0.0004

edm4 0.0078 0.0069 0.0240 0.0106 0.0022 0 0.0569 0.0123 0.0029 0.0002 0.0032 0.0002

edm5 0.1041 0.0248 0.0636 0.0110 0.0119 0 0.0811 0.0082 0.0067 0.0003 0.0051 0.0010

edm6 0.0369 0.0083 0.0438 0.0233 0.0031 0 0.0582 0.0044 0.0066 0.0008 0.0039 0.0001

edm7 0.0793 0.0082 0.0588 0.0159 0.0131 0 0.0753 0.0023 0.0271 0.0009 0.0224 0.0029

edm8 0.0591 0.0115 0.0687 0.0033 0.0184 0 0.0827 0.0269 0.0450 0.0017 0.0170 0.0030

edm9 0.0705 0.0049 0.0751 0.0096 0.0254 0 0.0626 0.0054 0.0387 0.0013 0.0261 0.0006

edm10 0.0821 0.0042 0.0856 0.0043 0.0479 0 0.0880 0.0013 0.0543 0.0003 0.0540 0.0034

and 30db, and the MSE is 0.0129 and 0.1125, respectively. When SNR is 40db, HyperCSI achieves a good estimation.

C. Endmember experimental results

Fig.9 shows the endmembers extracted by all methods and their reference endmembers for Samson data. The blue curves
represent the endmember extraction results of 10 runs, and the red curve is the reference endmember. As can be seen from
Fig.9, CNNAEU, AAS, and GLA are closed to the ground truth. Table VI shows the SAD of Samson dataset. It can be
observed that CNNAEU, AAS and GLA have similar estimation results and obtain good results on water endmember, tree
endmember and soil endmember, respectively. Table VIII shows the endmember results on Cuprite data set. It can be seen
that HISUN has good estimation on Chalcedony, Buddingtonite and Pyrope endmembers, NMF-QMV has good performance
on Montmorillonite, Hematite and Andradite endmembers, and the proposed GLA obtains competitive SAD results in the
estimation of the Muscovite, Kaolinite and Alunite endmembers. Besides, HyperCSI has good estimations for Chalcedony and
Hematite endmembers of Cuprite data set.

Fig.10 shows the endmembers extraction for Jasper Ridge dataset. It can be seen that most methods have good estimations.
Table VII shows the SAD and standard deviation of endmember vectors. It can be seen that GLA obtains a competitive SAD
result of 0.1056 on water endmember.
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TABLE V: Endmember and abundance results of Data3. The best result is bold.

SNR=20db SNR=30db SNR=40db

edm(mean±std) abd(mean±std) edm(mean±std) abd(mean±std) edm(mean±std) abd(mean±std)

MVES 0.3124±0 0.1293±0 0.3899±0 0.1328±0 0.0760±0 0.1425±0

HyperCSI 0.3887±0 0.0999±0 0.2796±0 0.0430±0 0.0202±0 0.0297±0

HISUN 0.2004±0 0.0459±0 0.2408±0 0.0438±0 0.0391±0 0.0407±0

NMF-QMV 0.2050±0 0.0805±0 0.2736±0 0.0479±0 0.0454±0 0.0463±0

AAS 0.0639±0.0002 0.0140±0.0002 0.1262±0.0049 0.0511±0.0022 0.0608±0.0024 0.0476±0.0052

CNNAEU 0.2642±0.0702 0.1677±0.0367 0.2315±0.0349 0.2859±0.0453 0.0908±0.0232 0.1983±0.0613

GLA 0.0667±0.0011 0.0129±0.0008 0.1125±0.0105 0.0423±0.0104 0.0357±0.0064 0.0448±0.0030

TABLE VI: Mean SAD and standard deviation of Samson data set. The best result is bold.

NMF-L1/2 NMF-anls NMF-QMV CNNAEU AAS GLA

mean std mean std mean std mean std mean std mean std

soil 0.6744 0.4102 0.3274 0.1329 0.0337 0 0.0445 0.0177 0.0220 0.0004 0.0215 0.0050

water 0.4055 0.0933 0.3388 0.2893 0.5338 0 0.1203 0.0510 0.1582 0.0016 0.1580 0.0103

tree 0.0828 0.0057 0.0563 0.0052 0.0730 0 0.0690 0.0112 0.0578 0.0002 0.0590 0.0016

TABLE VII: Mean SAD and standard deviation of Jasper Ridge data set. The best result is bold.

NMF-L1/2 NMF-anls NMF-QMV CNNAEU AAS GLA

mean std mean std mean std mean std mean std mean std

water 0.2329 0.1714 0.5180 0.2684 0.1697 0.0039 0.3478 0.3676 0.1582 0.0001 0.1056 0.0011

road 0.7929 0.3960 0.2612 0.0293 0.0493 0.0006 0.3039 0.0398 0.0496 0.0017 0.0539 0.0119

tree 0.1706 0.0092 0.2978 0.0452 0.2709 0.0021 0.1956 0.0124 0.0322 0.0001 0.1005 0.0020

soil 0.3327 0.0393 0.2532 0.0057 0.4158 0.0006 0.3622 0.0217 0.0620 0.0003 0.1548 0.0389

TABLE VIII: Endmember results of Cuprite. The best result is bold.

Chalcedony Montmorillonite Buddingtonite Muscovite Hematite Kaolinite Alunite Pyrope Andradite

HISUN 0.0866 0.0708 0.0560 0.0741 0.1367 0.1596 0.1147 0.0566 0.1044

NMF-QMV 0.1661 0.0518 0.1082 0.0984 0.1126 0.1272 0.1456 0.1218 0.0750

GLA 0.1484 0.0694 0.0634 0.0740 0.1715 0.0859 0.1034 0.1021 0.1032

MVES 0.3441 0.1429 0.2518 0.0802 0.3832 0.4128 0.1751 0.8239 0.8345

HyperCSI 0.0923 0.0772 0.1044 0.1165 0.1550 0.2370 0.1276 0.3250 0.1546

TABLE IX: Mean SAD and standard deviation of Data1 with three endmembers. The best result is bold.

NMF-L1/2 NMF-anls NMF-QMV CNNAEU AAS GLA

mean std mean std mean std mean std mean std mean std

1st endmember 0.0745 0.0304 0.1196 0.0814 0.0058 0 0.0390 0.0080 0.0273 0.0073 0.0151 0.0010

2nd endmember 0.1064 0.0310 0.0272 0.0095 0.0388 0 0.1736 0.0596 0.0851 0.0255 0.0345 0.0042

3rd endmember 0.2181 0.0948 0.0306 0.0193 0.0237 0 0.0851 0.0231 0.0395 0.0076 0.0273 0.0012
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TABLE X: Mean SAD and standard deviation of Data2 with five endmembers. The best result is bold.

NMF-L1/2 NMF-anls NMF-QMV CNNAEU AAS GLA

mean std mean std mean std mean std mean std mean std

1st endmember 0.2020 0.3214 0.2942 0.3450 0.1192 0.3401 0.2145 0.3082 0.1213 0.3392 0.1218 0.3390

2nd endmember 0.1945 0.0866 0.1896 0.0493 0.0391 0.0061 0.3563 0.1607 0.0273 0.0055 0.0260 0.0109

3rd endmember 0.1678 0.0289 0.0464 0.0252 0.1100 0.0098 0.3212 0.0601 0.0492 0.0157 0.0199 0.0024

4th endmember 0.1003 0.0371 0.0322 0.0336 0.0711 0.0046 0.3466 0.2847 0.0304 0.0061 0.0481 0.0078

5th endmember 0.4650 0.2927 0.3574 0.0772 0.1632 0.3420 0.5578 0.1432 0.0617 0.0625 0.0476 0.0664

(a) MVES (b) HyperCSI (c) HISUN (d) NMF-QMV (e) AAS (f) CNNAEU (g) GLA

Fig. 13. Seven methods are used to extract and compare endmembers from data3 when SNR is 30db, and each method is run
10 times.

Fig.11 shows the endmembers extraction for data1-edm3 data. All the methods have good estimations for first two endmem-
bers. Table IX shows the SAD and standard deviation of Data1 with three endmembers. It can be observed that NMF-QMV and
GLA have similar SAD results with low standard deviation on the third endmember. Fig.12 shows the endmembers extraction
for data2-edm5 data. It can be seen that GLA has low fluctuations in the estimation of the fifth endmember. Table X shows
the SAD and standard deviation of Data2 with five endmembers. It can be observed that GLA has competitive results in the
estimation of the second, third and fifth endmember. Fig.13 shows the estimated endmember vectors on Data3 when SNR is
30db. It can be seen that all the methods have a good endmember estimation for the first endmember. And GLA obtains a
competitive SAD result in the estimation of the first and second endmembers.

D. Ablation experiment

In order to test whether both LCS and GRS modules improve the results, ablation experiments on abundance estimation are
shown in this section. To test the effectiveness of the LCS module, the GRS module is removed to the GLA as a comparison.
Similarly, to test the effectiveness of the GRS module, only GRS module is used in the GLA method. Finally, in order to
examine whether the combination of the two modules is better than the experiment of adding only one module, the GLA
method is compared with the above two experimental results.

TABLE XI: Mean MSE and standard deviation of Samson and Jasper Ridge data set in Ablation Experiment. The best result is bold.

AAS LCS GRS GLA

mean std mean std mean std mean std

Samson 0.0360 0.0011 0.0315 0.0009 0.0372 0.0036 0.0279 0.0019

Jasper Ridge 0.0678 0.0157 0.0519 0.0052 0.0636 0.0033 0.0386 0.0028

Table XI shows the MSE and standard deviation of ablation experiment in the Samson data set. The first column is the
results of AAS. The second and third columns are the experimental results of removing only LCS module and GRS module,
respectively. The last column is the result of GLA. It can be seen that, compared with AAS, the MSE of only having LCS
module is reduced, but not as much as the proposed method.
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TABLE XII: Mean MSE and standard deviation of Data1 data set with 3-10 endmembers in Ablation Experiment. The best result is bold.

AAS LCS GRS GLA

mean std mean std mean std mean std

edm3 0.0077 0.0010 0.0078 0.0008 0.0140 0.0010 0.0066 0.0017

edm4 0.0083 0.0012 0.0089 0.0005 0.0147 0.0005 0.0053 0.0003

edm5 0.0146 0.0015 0.0131 0.0005 0.0231 0.0007 0.0080 0.0004

edm6 0.0218 0.0013 0.0125 0.0017 0.0241 0.0007 0.0078 0.0003

edm7 0.0331 0.0021 0.0387 0.0119 0.0538 0.0054 0.0213 0.0005

edm8 0.0890 0.0040 0.0660 0.0070 0.1030 0.0098 0.0511 0.0028

edm9 0.0931 0.0003 0.0822 0.0013 0.1182 0.0058 0.0626 0.0027

edm10 0.0775 0.0016 0.0657 0.0038 0.1012 0.0004 0.0621 0.0028

TABLE XIII: Mean MSE and standard deviation of Data2 data set with 3-10 endmembers in Ablation Experiment. The best result is bold.

AAS LCS GRS GLA

mean std mean std mean std mean std

edm3 0.0026 0.0001 0.0046 0.0001 0.0047 0.0003 0.0045 0.0004

edm4 0.0029 0.0002 0.0021 0.0002 0.0025 0.0004 0.0032 0.0002

edm5 0.0067 0.0004 0.0048 0.0010 0.0184 0.0026 0.0051 0.0011

edm6 0.0066 0.0008 0.0025 0 0.0068 0.0009 0.0039 0.0001

edm7 0.0271 0.0009 0.0159 0.0015 0.0247 0.0010 0.0224 0.0029

edm8 0.0452 0.0017 0.0144 0.0006 0.0226 0.0029 0.0170 0.0030

edm9 0.0387 0.0013 0.0227 0.0003 0.0358 0.0025 0.0261 0.0006

edm10 0.0543 0.0003 0.0906 0.0138 0.0629 0.0039 0.0540 0.0034

Table XI shows the ablation experiment in Jasper Ridge data set. It can be seen that adding only LCS module or GRS
module can improve the effect of abundance extraction, but the smallest MSE is still obtained by the proposed method.

Table XII shows the MSE and standard deviation of the ablation experiment on data1-edm3, data1-edm4, ..., data1-edm10
datasets. It can be seen that the MSE decreases after adding LCS module, except for data1-edm3, data1-edm4 and data1-edm7.
The MSE becomes larger when any module of GLA is removed. Furthermore, the proposed method performs best on all data.

As for the ablation experiment on data2-edm3, data2-edm4, ..., data2-edm10 datasets in Table XIII, there is an unexpected
discovery. Except for the data2-edm3 data set, the estimation result of GLA is better than that of the original method. However,
only adding LCS module is not only better than AAS method, but also better than the proposed method.

This phenomenon can be explained from the way of the data generation. In the process of data2 generation, the abundance
map is defined in advance, which divides the whole abundance map into several sub-blocks, and each sub-block is independent
with each other. Thus the pixel is closely related to the adjacent pixels, but has little similarities with the distant pixels. This
may lead to the accuracy of the abundance estimation using only LCS module combined with local information higher than
GLA.

In the process of data1 generation, the whole hyperspectral image is divided into different sub-regions. Given the endmembers
of each sub-region, the hyperspectral image is filtered to form mixed pixels. At this time, different sub-regions are related to
each other. And because the endmembers of sub-regions are randomly determined, the spatial correlation of data1 is stronger
than that of data2. It is better for the networks to extract local information and global information than to estimate abundance
by any one of them.

IV. CONCLUSION

In this paper, a hyperspectral unmixing model with joint spatial-spectral information is proposed to explore the local
homogeneity and global self-similarity of the hyperspectral imagery. Firstly, based on the conditional probability model,
the LCS module is developed to smooth local homogeneity by generating adaptive weights. Secondly, considering the self-
similarity of the hyperspectral imagery, GRS module is designed to extract the long-distance relationship between all pixels.
In the experimental section, we compare the proposed method with five different methods on real and synthetic datasets,
respectively. The experimental results show that the proposed method has competitive performance in abundance estimation.

In the future, we will try to consider the estimation of endmember vector fluctuation in the proposed method to deal with
the endmember variability task.
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