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Feedback Refined Local-Global Network for

Super-Resolution of Hyperspectral Imagery
Zhenjie Tang, Qing Xu, Zhenwei Shi, Bin Pan

Abstract—With the development of deep learning technology,
multi-spectral image super-resolution methods based on convo-
lutional neural network have recently achieved great progress.
However, the single hyperspectral image super-resolution remains
a challenging problem due to the high-dimensional and complex
spectral characteristics of hyperspectral data, which make it
difficult to simultaneously capture spatial and spectral infor-
mation. To deal with this issue, we propose a novel Feedback
Refined Local-Global Network (FRLGN) for the super-resolution
of hyperspectral image. To be specific, we develop a new Feedback
Structure and a Local-Global Spectral Block to alleviate the
difficulty in spatial and spectral feature extraction. The Feedback
Structure can transfer the high-level information to guide the
generation process of low-level feature, which is achieved by
a recurrent structure with finite unfoldings. Furthermore, in
order to effectively use the high-level information passed back,
a Local-Global Spectral Block is constructed to handle the
feedback connections. The Local-Global Spectral Block utilizes
the feedback high-level information to correct the low-level
feature from local spectral bands and generates powerful high-
level representations among global spectral bands. By incor-
porating the Feedback Structure and Local-Global Spectral
Block, the FRLGN can fully exploit spatial-spectral correlations
among spectral bands and gradually reconstruct high-resolution
hyperspectral images. The source code of FRLGN is available at
https://github.com/tangzhenjie/FRLGN.

Index Terms—Hyperspectral image super-resolution, convolu-
tional neural networks, feedback mechanism.

I. INTRODUCTION

HYPERSPECTRAL imaging sensors collect and process

information across different bands of the entire electro-

magnetic spectrum. Compared with multi-spectral image, the

resulting hyperspectral image (HSI) contains richer spectral

information and has been applied to resource management,

target detection and land cover detection [1]–[4], etc. However,

because of the limitation of imagery system, it is difficult to

acquire an HSI with high spatial resolution. Therefore, how to
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obtain a reliable high-resolution HSI is sill a very challenging

problem.

Recently, HSI super-resolution approaches have been inten-

sively studied in remote sensing [5]. Based on the number

of input images, the HSI super-resolution methods can be

roughly divided into fusion-based HSI super-resolution [6]–

[8] and single HSI super-resolution [9]–[11]. The fusion-based

HSI super-resolution methods improves the spatial resolution

by combining the observed low-resolution HSI with high-

resolution multispectral image or panchromatic. For example,

Wei et al. [12] introduced a variational-based approach to

merge a high-resolution multispectral image with a low-

resolution HSI. By considering the HSI as a 3D tensor, Wan

et al. [13] designed a nonlocal 4-D tensor dictionary learning-

based fusion approach. More recently, deep learning-based

fusion methods have achieved excellent performance with

the powerful representation capability of convolution neural

network. For instance, Wei et al. [14] suggested using the

deep neural network to capture plenty of HSI statistics and

then putting these priors to regularize the super-resolution

procedure of HSIs. Wei et al. [15] recently further designed

a deep recursive residual network to probe the deep statistical

prior information. Most fusion-based methods assume that

the high-resolution auxiliary image is well co-registered with

the low-resolution HSI. In real applications, it is difficult to

obtain these co-registered auxiliary images, which hinders the

progress of such technique.

By contrast, the single HSI super-resolution approaches do

not need any auxiliary information and have better feasibility

in practice, which only reconstruct the high-resolution HSI

from a low-resolution HSI. To explore the spatial-spectral

prior information of HSIs, some single HSI super-resolution

methods based on dictionary learning, sparse representation

and low-rank approximation have been proposed. For in-

stance, Huang et al. [16] designed a noise-insensitive super-

resolution mapping method based on multi-dictionary sparse

representation. Wang et al. [17] introduced a new tensor-

based approach to solve the HSI super-resolution problem by

modeling three intrinsic characteristics of hyperspectral data.

However, the hand-crafted priors can only reflect one aspect of

the hyperspectral data, which make the reconstruction effect

obvious only for the specified HSIs. In recent years, due to

the success of deep learning technology in many fields, it

has been applied to the single hyperspectral super-resolution

task, and achieved satisfying super-resolution results [18].

For example, to alleviate spectral distortion, Hu et al. [19]

designed a spectral difference convectional network. Besides,

Mei et al. [20] constructed a 3D super-resolution network to

http://arxiv.org/abs/2103.04354v2
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extract the prior information. Although the spectral correlation

can be well exploited by 3D convolution operator, the amount

of computation required by the model is very large. To solve

the problem of high computation of 3D convolution, Jiang

et al. [21] introduced a group convolution to explore the

spatial information and the correlation among the spectral

bands. Recently, Wang et al. [22] further designed a recurrent

structure to investigate the spectral correlation among groups.

Nonetheless, because of the high dimension and complex spec-

tral patterns of hyperspectral data, it is hard to simultaneously

explore the joint spatial and spectral information between

continuous bands.

In this paper, in order to alleviate the difficulty of extracting

spatial-spectral information from hyperspectral data, we pro-

pose a novel network for the single HSI super-resolution task,

namely Feedback Refined Local-Global Network (FRLGN).

FRLGN is motivated by the feedback mechanism [23], which

can make the network transmit high-level semantic informa-

tion back to the previous layers and refine these low-level fea-

ture representations. Recently, some researchers have adopted

this feedback mechanism to design the network architecture

for various vision tasks [24]–[26]. For instance, Han et al [27]

designed a two-state recurrent neural network, in which the

information flows between two hidden states are exchanged in

both directions. Taking advantage of the feedback mechanism

to enhance the super-resolution results of HSIs, we designed

a Feedback Structure (FS) and a Local-Global Spectral Block

(LGSB) in FRLGN. To be specific, the Feedback Structure

allows to use the feedback high-level information to correct the

low-level representations through feedback connections. The

FS is achieved by a recurrent structure with finite unfoldings.

Furthermore, we construct a Local-Global Spectral Block to

take full advantage of the feedback high-level information.

The LGSB is composed of local and global spectral feature

extraction layers, which can adjust the local spectral low-level

representation input using the feedback high-level information

and create a powerful high-level global spectral representation.

The FRLGN is essentially a recurrent neural network with a

Local-Global Spectral Block, which is specifically designed

to explore the spatial and spectral prior of hyperspectral data.

Experimental results indicate that LGSB is more suitable

for HSI super-resolution task. Besides, in order to make

the feedback high-level feature contains the high-resolution

HSI information, we aggregate the losses of each iteration

to optimize the network model. On the whole, the principle

of the feedback mechanism is that the information of a

coarse reconstructed HSI facilitates the low-resolution HSI to

generate a better super-resolution HSI.

The main contributions of our work can be summarized as

follows:

• A novel Feedback Refined Local-Global Network is pro-

posed for the single HSI super-resolution task, which can

effectively explore spatial-spectral priors between spectral

bands.

• We construct a new Feedback Structure to correct the

low-level representation using feedback high-level se-

mantic information.

• We design a Local-Global Spectral Block to refine the lo-

cal spectral low-level representations using the feedback

information, and then generate a more powerful global

spectral high-level representation.

II. PROPOSED METHOD

In this section, the detail description of FRLGN is first pre-

sented, and then the proposed Feedback Structure and Local-

Global Spectral Block are introduced. At last, we interpret the

loss function used in FRLGN approach.

A. Network Architecture

As shown in Fig. 1, the FRLGN is unfolded to T iterations,

where the order of each iteration t is from 1 to T . We link

the losses of each iteration together so that the hidden state

in FRLGN can contain the information of the high-resolution

HSI. We describe the specific details of the loss function in

the next Loss Function part. The sub-network in each iteration

t consists of three Blocks: the Embedding Block, the Local-

Global Spectral Block and the Reconstruction Block. Each

iteration shares the weights of each block. For each iteration

t, we also design a global skip connection that transmits an

up-sampled HSI to the final output. Therefore, each iteration

t of the sub-network is used to recover a residual image when

a low-resolution HSI is input.

1) The Embedding Block: Different from the previous

method of treating the HSI as a whole or multiple single-

channel images, we divide the entire input low-resolution HSI

into several groups. With this strategy, we can not only explore

the correlation between adjacent spectral bands of the input

HSI more easily, but also reduce the spectral dimension of the

HSI. Specifically, the input low-resolution HSI ILR is divided

into G groups. More details are discussed in the experiment

section. As shown in Fig. 1, for each group IgLR, we use one

convolution operation to extract its shallow feature F g
EB ,

ILR = [I1LR, I
2

LR, I
g
LR, · · ·, IGLR] (1)

F g
EB = fEB(I

g
LR) (2)

FEB = [F 1

EB, F
2

EB , F
g
EB, · · ·, FG

EB] (3)

where the fEB denotes the operations of Embedding Block,

eg., feature extraction layer for all groups. The [] represents

a cascading function. After that, FEB is used as input to the

Local-Global Spectral Block.

2) The Local-Global Spectral Block: For t-th iteration,

Local-Global Spectral Block receives the the shallow feature

FEB and hidden state from past iteration F t−1

LGSB through a

feedback connection. F t
LGSB denotes the result of LGSB. The

mathematical formula of LGSB is as follows:

F t
LGSB = fLGSB(F

t−1

LGSB, FEB) (4)

where fLGSB denotes the operations of the LGSB. More

details of the LGSB can be found in Local-Global Spectral

Block part.
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Fig. 1. The overview of our proposed Feedback Refined Local-Global Network (FRLGN). The blue arrows are the feedback connections and the Local-Global
Spectral Block (LGSB) represented by the trapezoidal block is specifically designed for the task of super-resolution of hyperspectral images.

3) The Reconstruction Block: The reconstruction block

firstly uses PixelShuffle [28] to upscale the feature F t
LGSB to

high-resolution one, and then a 3 × 3 convolution operation

is applied to create the residual image ItRes. The formula for

reconstruction block is defined as:

ItRes = fRB(F
t
LGSB) (5)

where fRB is the operation of the reconstruction block.

For the t-th iteration, the output super-resolution image ItSR

is obtained by:

ItSR = ItRes + fUP (ILR) (6)

where fUP represents an upsampling operation. The choice

of upsampling method is arbitrary. In this paper, we apply

a Bicubic upsample approach. After T iterations, we will

generate T super-resolution images (I1SR, I
2

SR, · · ·, ITSR).

B. Feedback Structure

In HSI super-resolution task, some researchers [15], [22],

[29] have made an effort to introduce the recurrent structure

to improve super resolution results. However, in their network

frameworks, the information flow from the low-resolution HSI

to final super-resolution HSI is still feed-forward. As can

be seen from Fig. 2(b), the recurrent structure adopted by

these methods can be abstracted into a single-state recurrent

network. These methods improve the feature representation

of the model by running recursively on a specially designed

network structure.

In this work, we design a Feedback Structure to reroute

the output of the HSI super-resolution system to correct the

input in each iteration. Fig. 2(a) illustrates the Feedback

Structure of FRLGN. Specifically, the Local-Global Spectral

Block receives the information of input low-resolution HSI

and feedback high-level information from last iteration, then

generates coarse super-resolution result and high-level seman-

tic guidance information for next iteration. The Feedback

Structure can be characterized by:

ItSR = fFS(ILR, I
t−1

SR ) (7)

where the fFS denotes the function of Feedback Structure.

C. Local-Global Spectral Block

As an ill-posed problem, image super-resolution requires

additional prior knowledge to regularize the reconstruction

process. Traditional super-resolution methods usually make an

effort to construct the regular terms of the super-resolution

model, such as low-rank [30], total variation [31] and sparse

[32], [33]. Whether the designed prior knowledge can char-

acterize the observed HSI data directly determines the perfor-

mance of the super-resolution method. Therefore, for the HSI

super-resolution task, it is also essential to study the inherent

characteristics of hyperspectral data, e.g., the spatial non-

local self-similarity and the high-correlation among spectral

bands [34]. However, the manually designed constraints are

not enough to achieve accurate restoration of HSIs.

In this work, a novel Local-Global Spectral Block is in-

troduced to exploit the spatial-spectral prior with the help of

feedback high-level semantic information from hidden state.

As can be seen in Fig. 3(a), for iteration t, the LGSB inputs

the feedback global spectral high-level information F t−1

LGSB to

correct the G groups local spectral low-level representations,

FEB = [F 1

EB, F
2

EB, F
g
EB , · · ·, FG

EB], and then creates more

effective high-level feature F t
LGSB for the next iteration and

the reconstruction block. The LGSB contains G groups local

spectral feature extraction layers and one global spectral

feature extraction layer. For simplicity, we use Conv(k)
and Deconv(k) to denote a convolution operation and a

deconvolutional operation, where the k represents the size of

convolution kernel.

At the beginning of the LGSB, the downsampled F t−1

LGSB

and each group F g
EB are concatenated and compressed by one
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Fig. 2. (a) The illustration of the Feedback Structure (FS) in the proposed FRLGN network and the blue arrow is the feedback connection. (b) The architecture
of Traditional Recurrent Structure.

Fig. 3. The network architecture of the Local-Global Spectral Block (LGSB): (a) the Local-Global Spectral Block, (b) the Residual Block

Conv(1) operation to refine the input each group feature F g
EB

by feedback information F t−1

LGSB , producing the refined group

feature F t
g .

F t
g = fCom([fDown(F

t−1

LGSB), F
g
EB ]) (8)

where fDown refers to downsample operation using av-

erage pooling with a kernel of 2 and stride of 2.

The [fDown(F
t−1

LGSB), F
g
EB ] refers to the concatenation of

fDown(F
t−1

LGSB) and F g
EB . The fCom denotes the initial com-

pression operation.

After obtaining the refined group feature F t
g , we add a local

spectral feature extraction layer to explore the local spectral

correlation, which consists of two residual blocks as shown in

Fig. 3(b). Let Lt
g be the g-th group local spectral LR feature

map. Lt
g can be obtained by:

Lt
g = fLocal(F

t
g) (9)

where the fLocal denotes local spectral feature extraction layer.

After that, we pass all the local spectral LR feature maps

to the global spectral feature extraction layer, which contains

one upsample Deconv(2) operation and two residual blocks.

Note that we propose a strategy of progressive super-resolution

reconstruction to stabilize the training process. Particularly, in

addition to the reconstruction block, we also add an upsam-

pling operation in the global spectral feature extraction layer.

At last, the global spectral high-level feature F t
LGSB can be

obtained by:

F t
LGSB = fGlobal([L

t
1
, Lt

2
, · · ·, Lt

G]) (10)

where the fGlobal denotes the the global spectral feature

extraction layer.

D. Loss Function

To optimize the FRLGN, we choose the most commonly

used L1 loss function to measure the HSI reconstruction

performance. Finally, the output result of FRLGN is the

weighted average of all intermediate super-resolution results:

ISR =
1

T

T
∑

t=1

ItRes + fUP (ILR) (11)
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The loss function of FRLGN is determined by:

L(Θ) = ‖IHR − ISR‖1 (12)

where the Θ represents the parameters of our proposed

FRLGN and the IHR is the corresponding target high-

resolution HSI. The training procedure of FRLGN is shown

in Algorithm 1.

Algorithm 1: Training Process of FRLGN

input : Low-resolution HSI ILR;

High-resolution HSI IHR;

The number of iterations T ;

The number of local spectral groups in LGSB

G.

output: Super-resolution HSI ISR

repeat
Initialization:

ILR = {I1LR, I
2

LR, · · ·, IGLR};
F 0

LGSB = None;
Shallow feature extraction by the Embedding

Block:

FEB = fEB(ILR);
T intermediate prediction result generation by the

Local-Global Spectral Block and the

Reconstruction Block:

for t = 1 to T do

F t
LGSB = fLGSB(F

t−1

LGSB, FEB);
ItRes = fRB(F

t
LGSB)

end

Final output:

ISR = 1

T

∑T

t=1
ItRes + fUP (ILR)

Update the FRLGN network parameters by

minimizing the loss between the reconstructed

ISR and the corresponding label IHR

until convergence;

III. EXPERIMENTS AND RESULTS

A. Datasets

1) CAVE dataset: The CAVE dataset [35] is a HSI dataset

of real-world materials and objects, which are captured by

a Cooled CCD camera. The hyperspectral camera collects

information from the 400nm-700nm spectral range in 10

nm steps. This dataset consists of 32 HSIs with a size of

512×512×31 pixels, which are further divided into 5 groups,

namely food and drinks, skin and hair, paints, real and fake,

and stuff.

2) Harvard dataset: The Harvard dataset [36] contains 77

HSIs of 1040×1392×31 size from outdoor and indoor scenes.

These HSIs are captured by a commercial hyperspectral cam-

era, which collects the spectral data in 10 nm steps over the

wavelength range of 400 nm to 700 nm.

3) Chikusei dataset: The Chikusei dataset [37] consists of

2517 × 2335 pixels with a spatial resolution of 2.5 m. The

dataset was taken by an airborne hyperspectral imaging sensor

in the agricultural and urban areas of Chikusai, Japan. This

dataset captures 128 spectral bands from the 363 nm to 1018

nm. Since the lack of edge information, we first cut the original

HSI to generate an image of 2304×2048×128 pixels and then

the generated image is further split into a training set and a

test set. In particular, we first extract the top region of the

generated image to create the test set, which consists of four

HSIs with a pixel size of 512× 512× 128 that do not overlap

each other. And the remaining region of the generated image

is used as training data.

B. Implementation Details

Since HSIs are collected by different hyperspectral imaging

sensors, HSI datasets tend to have different numbers of spectral

channels. Therefore, we need to learn a super-resolution HSI

model separately for each HSI dataset. In the next experiments,

80% of samples in the dataset are used to train the super-

resolution models and the remaining samples are utilized for

testing.

During training, 12 randomly selected patches are fed to the

FRLGN network. To obtain low-resolution HSIs, we down-

sample these patches to 32× 32×L pixels based on the scale

factor s. Furthermore,we use the bicubic interpolation function

to down-sample these patches. In our network, the convolution

operators with a kernel 3 adopt a zero-padding strategy to

ensure that the intermediate features have the same spatial size.

We up-sample the resulting features by a factor of 2 using a

deconvolution with a kernel 2 and a stride 2. The ADAM [38]

with an initial learning rate of 2e-4 is used to optimize the

FRLGN network.

At the testing stage, in order to improve testing efficiency,

we use only the 512×512 area in the upper left corner of test

HSIs for evaluation. In this work, the Pytorch library is used

to implement and train our proposed FRLGN network.

C. Evaluation Metrics

In this section, we choose six commonly used quantitative

metrics to evaluate the performance of FRLGN, i.e., cross

correlation (CC) [39], spectral angle mapper (SAM) [40],

root mean squared error (RMSE), the erreur relative globale

adimensionnelle de synthese (ERGAS) [41], peak signal-to-

noise ratio (PSNR) and structure similarity (SSIM) [42]. As

the CC, RMSE, PSNR and SSIM are widely used quantitative

metrics in HSI super-resolution tasks, we omit their detailed

description here. In addition, ERGAS performs a global statis-

tical measure on the reconstructed HSIs, which is calculated

by

ERGAS(IHR, ISR) = 100s

√

√

√

√

1

L

L
∑

l=1

(

RMSEl

µl

)2

(13)

in which RMSEl = (‖I lSR − I lHR‖F/
√
n). Here, n and µl

represent the number of spatial pixels and mean of the lth
band from the ground truth IHR, respectively. The I lSR and

I lHR denote the lth band of ISR and IHR, respectively. SAM is

used to evaluate the preservation of spectral band information

for each spatial location of the HSI. SAM is obtained by

calculating the angle between two spectral vectors from the
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TABLE I
CONVERGENCE ANALYSIS OF T WHEN G=8

T 1 2 3 4 5 6

PSNR(dB) 37.0815 37.5073 37.7574 37.8131 37.8639 37.8905

TABLE II
CONVERGENCE ANALYSIS OF G WHEN T =6

G 1 2 4 8

SAM 3.5977 3.5276 3.4792 3.4332

same spatial position of ISR and IHR. The formula of SAM

is presented as

SAM(x, x̂) = arccos

( 〈x, x̂〉
‖x‖2‖x̂‖2

)

(14)

in which x̂ and x denote the two spectral vectors from ISR

and IHR, respectively. And the 〈·, ·〉 is the dot product of two

vectors, ‖x‖2 represent the l2 regularization operation of a

vector. For PSNR and SSIM, we present the average metric

values of all spectral bands. The best values for CC, SAM,

RMSE, ERGAS, PSNR, SSIM are 1, 0, 0, 0, +∞, and 1,

respectively.

D. Study of T and G

In this part, we discussed the effect of iterations (denoted

as T ) and local spectral groups (denoted as G) in the Local-

Global Spectral Block on the FRLGN performance on the

CAVE dataset. In subsequent experiments, we set the base

number of filters to 256. By fixing G to 8, we first explore

the influence of T on HSI reconstruction. Table I shows that

the super-resolution performance is improved with the help of

feedback connections compared to the network without feed-

back connections (T=1). Moreover, the quality of reconstruc-

tion has been further improved as the increasing iteration T .

On the other hand, it also indicates that our proposed Local-

Global Spectral Block would certainly benefit from cross-time

feedback information. After that, we also discuss the influence

of G by fixing the T to 6. From Table II, we can observe

that with the help of local-spectral grouping strategy, the

spectrum reconstruction performance is enhanced compared to

the network without the grouping strategy (G=1). In addition,

with the increase of G, the spectral representation of FRLGN

becomes more powerful and the spectral reconstruction quality

is also improved. In a word, choosing larger T or G can

obtain better super-resolution results. In next experiments, we

set T=6, G=8 for CAVE dataset and Harvard dataset, and T=6,

G=12 for Chikusei dataset.

E. Comparisons with the State-of-the-Art Methods

In this section, we evaluate the single image super-resolution

effect of FRLGN in detail on three benchmarks, namely CAVE

dataset [35], Harvard dataset [36] and Chikusei dataset [37].

TABLE III
QUANTITATIVE ANALYSIS OF SEVEN DIFFERENT COMPARISON METHODS

ON CAVE TEST DATASET INVOLVING SIX METRICS.

s CC↑ SAM↓ RMSE↓ ERGAS↓ PSNR↑ SSIM↑

Bicubic 4 0.9846 5.1832 0.0224 7.7384 34.5069 0.9472

VDSR [43] 4 0.9896 4.3622 0.0188 6.3067 36.1348 0.9612

RCAN [44] 4 0.9913 4.3058 0.0172 5.7796 36.7979 0.9657

3DCNN [20] 4 0.9862 4.2297 0.0212 7.3182 34.9853 0.9549

GDRRN [29] 4 0.9891 4.2970 0.0192 6.5087 35.8465 0.9594

SSPSR [21] 4 0.9915 3.7384 0.0168 5.7527 37.0479 0.9682

FRLGN 4 0.9930 3.4332 0.0152 5.1599 37.8905 0.9737

Bicubic 8 0.9564 7.3210 0.0385 12.8323 29.5763 0.8741

VDSR [43] 8 0.9615 5.8692 0.0369 12.0527 30.0080 0.8999

RCAN [44] 8 0.9671 5.9008 0.0340 11.1373 30.7372 0.9061

3DCNN [20] 8 0.9594 5.6079 0.0370 12.3341 29.8880 0.8961

GDRRN [29] 8 0.9611 5.8864 0.0368 12.0684 30.0042 0.8966

SSPSR [21] 8 0.9675 5.6617 0.0341 11.0506 30.7976 0.9098

FRLGN 8 0.9712 5.0550 0.0323 10.3982 31.4007 0.9159

TABLE IV
QUANTITATIVE ANALYSIS OF SEVEN DIFFERENT COMPARISON METHODS

ON HARVARD TEST DATASET INVOLVING SIX METRICS.

s CC↑ SAM↓ RMSE↓ ERGAS↓ PSNR↑ SSIM↑

Bicubic 4 0.9606 2.5671 0.0101 3.0957 43.9037 0.9582

VDSR [43] 4 0.9640 2.5709 0.0090 2.8602 44.6486 0.9634

RCAN [44] 4 0.9671 2.4097 0.0086 2.7537 45.1204 0.9663

3DCNN [20] 4 0.9614 2.3917 0.0098 3.0324 44.1815 0.9600

GDRRN [29] 4 0.9630 2.4924 0.0093 2.9276 44.4577 0.9620

SSPSR [21] 4 0.9704 2.2766 0.0082 2.5893 45.5460 0.9684

FRLGN 4 0.9722 2.2496 0.0074 2.4463 46.1866 0.9730

Bicubic 8 0.9098 3.0165 0.0179 5.0694 39.6681 0.9131

VDSR [43] 8 0.9185 3.0093 0.0165 4.7369 40.2490 0.9223

RCAN [44] 8 0.9312 2.7808 0.0150 4.3438 40.9853 0.9313

3DCNN [20] 8 0.9128 2.7853 0.0172 4.9422 39.9615 0.9175

GDRRN [29] 8 0.9175 2.8669 0.0166 4.7946 40.1831 0.9214

SSPSR [21] 8 0.9338 2.6202 0.0149 4.2458 41.1869 0.9313

FRLGN 8 0.9373 2.7665 0.0139 4.0316 41.6320 0.9374

TABLE V
QUANTITATIVE ANALYSIS OF SEVEN DIFFERENT COMPARISON METHODS

ON CHIKUSEI TEST DATASET INVOLVING SIX METRICS.

s CC↑ SAM↓ RMSE↓ ERGAS↓ PSNR↑ SSIM↑

Bicubic 4 0.8987 3.7666 0.0176 7.6532 36.5603 0.8882

VDSR [43] 4 0.9176 3.1003 0.0155 6.9534 37.5648 0.9113

RCAN [44] 4 0.9142 3.0936 0.0156 7.1099 37.4313 0.9104

3DCNN [20] 4 0.9047 3.4808 0.0169 7.3419 36.9090 0.8931

GDRRN [29] 4 0.9144 3.2178 0.0159 7.0426 37.3754 0.9060

SSPSR [21] 4 0.9250 2.8281 0.0148 6.6082 37.9698 0.9193

FRLGN 4 0.9283 2.7580 0.0143 6.4953 38.2085 0.9240

Bicubic 8 0.7546 5.9617 0.0274 11.9665 32.7047 0.7829

VDSR [43] 8 0.7840 5.3103 0.0250 10.9097 33.4964 0.8069

RCAN [44] 8 0.7630 6.5447 0.0258 11.9078 33.0475 0.7946

3DCNN [20] 8 0.7723 5.5506 0.0257 11.0971 33.3107 0.7955

GDRRN [29] 8 0.7842 5.3033 0.0249 10.9107 33.5236 0.8062

SSPSR [21] 8 0.7880 5.2415 0.0247 10.7863 33.6194 0.8106

FRLGN 8 0.7887 5.2122 0.0246 10.8033 33.6332 0.8145
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Bicubic VDSR RCAN 3DCNN GDRRN SSPSR FRLGN

Bicubic VDSR RCAN 3DCNN GDRRN SSPSR FRLGN

Fig. 4. Mean error maps of superballs and paints hyperspectral images from the CAVE testing dataset with a scale factor of 4

Bicubic VDSR RCAN 3DCNN GDRRN SSPSR FRLGN

Bicubic VDSR RCAN 3DCNN GDRRN SSPSR FRLGN

Fig. 5. Mean error maps of two hyperspectral images from the Harvard testing dataset with the scale factor 4.

HR VDSR RCAN 3DCNN GDRRN SSPSR FRLGN

HR VDSR RCAN 3DCNN GDRRN SSPSR FRLGN

Fig. 6. Two reconstructed hyperspectral images from the Chikusei testing dataset with the scale factor 4, in which the bands 70-100-36 is treat as R-G-B.
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Fig. 7. Mean spectral difference curve of three hyperspectral images from the CAVE testing dataset with the scale factor 4:superballs,sushi,chart and stuffed.

Fig. 8. Mean spectral difference curve of three hyperspectral images from the Harvard testing dataset with the scale factor 4.

Fig. 9. Mean spectral difference curve of three hyperspectral images from the Chikusei testing dataset with the scale factor 4.

Specifically, we compare the FRLGN with five existing super-

resolution approaches, including two advanced deep multi-

spectral image super-resolution methods, VDSR [43], RCAN

[44], and three representative HSI super-resolution methods,

3DCNN [20], GDRRN [29] and SSPSR [21]. In addition, we

carefully tune the hyper-parameters of these super-resolution

methods to obtain a good performance. Moreover, the bicubic

interpolation is used as our baseline model. Table III, IV and

V depict the quantitative performance of all super-resolution

algorithms over testing images on three datasets, where bold

indicates the best results.

Table III shows that our FRLGN method outperforms other

comparative methods in all objective assessment metrics.

Specifically, the baseline approach has the worst performance

among these compared algorithms. As the competitive mul-

tispectral image super-resolution methods, VDSR and RCAN

can generate very satisfactory results. Nonetheless, in compari-

son with those HSI super-resolution methods, i.e, 3DCNN [20]

and SSPSR [21], their spectral reconstruction effect (SAM)

is relatively poor. This indicates that the multispectral super-

resolution approaches cannot effectively explore the spectral

prior information from the hyperspectral data. Similar to our

work, SSPSR [21] also adopts a group strategy but neglects

the continuous relationship among band groups. Therefore,

it achieves the suboptimal results for the SAM indices.

Compared with other comparison SR methods, our proposed

FRLGN can obtain better performance in spectral and spatial

dimensions. In term of PSNR, the FRLGN was 0.8 and 0.6

higher than the suboptimal method for upsampling factors d
of 4 and 8, respectively. The table IV and V show the similar

results. In conclusion, FRLGN has presented advantages on

three datasets compared to existing SR methods, especially

for PSNR and SSIM.

In order to further prove the effectiveness of FRLGN,
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Fig. 4 and 5 display the mean absolute error maps across all

spectral bands of two HSIs with the scale factor ×4 from the

CAVE testing dataset and Harvard testing dataset, respectively.

Principally, the bluer the color of the error map, the better the

reconstructed HSI. From fig. 4 and 5, we can easily discover

that the FRLGN method can obtain better reconstruction

fidelity when restoring the spatial information of the original

HSI. Specifically, in contrast to with the suboptimal SSPSR

method, FRLGN performs better in reconstructing textures

such as edges and structures. Besides, we also display two

reconstructed high-resolution HSIs from Chikusei test dataset

with a downsampling factor of 4 in Fig. 6. As can be seen

from Fig. 6, our FRLGN can restore finer texture details than

other comparison methods.

In addition, to prove our advantage in reconstructing spectral

information, Fig. 7, 8 and 9 show the average absolute differ-

ence of all comparison methods along the spectral dimension.

The average spectral error curve has a better visualization

effect than displaying the spectral reflectance of multiple loca-

tions. As shown in Fig. 7, 8 and 9, our method has the lowest

average spectral error curve, which indicates that FRLGN has

better spectral reconstruction ability. This can be attributed

to the guidance of the global spectral feedback information to

the local spectral band group. Moreover, as iterations increase,

the local spectral group information gradually accumulates,

leading to better spectral reconstruction performance.

IV. CONCLUSION

Considering the difficulty of simultaneously exploring the

spatial and spectral information of hyperspectral data, we pro-

pose a new approach for the single HSI super-resolution task,

called Feedback Refined Local-Global Network. FRLGN can

produce a clear high-resolution HSI by introducing a Feedback

Structure and a Local-Global Spectral Block. In particular, we

construct a recurrent neural network with feedback connec-

tions to refine low-level feature representations using feedback

global spectral high-level semantic information. Furthermore,

taking advantage of the feedback high-level semantic infor-

mation, we carefully design a Local-Global Spectral Block

to guide the extraction process of low-level representations

between local spectral bands using the feedback information,

and then generate a more powerful high-level feature among

global spectral bands. With the increasing number of iterations,

the spatial-spectral prior gradually accumulates, leading to

better HSI reconstruction performance. The comprehensive

experimental results and visual data analysis show the effec-

tiveness of the proposed FRLGN.
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