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Abstract—A tropical cyclone (TC) is a typical extreme tropical
weather system, which could cause serious disasters in transit
areas. Accurate TC track forecasting is the key to reducing
casualties and damages, however, long-term forecasting of TCs
is a challenging problem due to their extremely high dynamics
and uncertainty. Existing TC track forecasting methods mainly
focus on utilizing a single modality of source data, meanwhile,
suffer from limited long-term forecasting capability and high
computational complexity. In this paper, we propose to address
the above challenges from a new perspective - by utilizing large-
scale spatio-temporal multimodal historical data and advanced
deep learning techniques. A novel multi-horizon tropical cyclone
track forecasting model named Dual-Branched spatio-temporal
Fusion Network (DBF-Net) is proposed and evaluated. DBF-
Net contains a TC features branch that extracts temporal
features from 2D state vectors and a pressure field branch that
extracts spatio-temporal features from reanalysis 3D pressure
field. We show that with the above design, DBF-Net can fully
exploit the implicit associations of multimodal data, achieving
advantages that unimodal data-based method does not have.
Extensive experiments on 39 years of historical TCs track
data in the Northwest Pacific show that our DBF-Net achieves
significant accuracy improvement compared with previous TCs
track forecast methods.

Index Terms—Tropical cyclones, tracking forecast, spatio-
temporal data, multimodal data fusion

I. INTRODUCTION

TROPICAL cyclones (TCs, a.k.a, typhoons or hurricanes)
are low-pressure vortexes occurring over the tropical or

subtropical oceans. TCs are one of the major meteorological
disasters facing mankind. Accurate forecasting for the TCs tra-
jectory can greatly reduce the casualties and property damages
caused.

The research on TCs track forecast has gone through
four stages since the 1960s - empirical methods, statistical
methods, numerical methods and deep learning methods. Early
methods of TCs track forecast were limited by observation
techniques and computational devices and could rely only on
the subjective experience for achieving forecast. Thus, some
traditional methods such as extrapolation and similar path
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methods were developed [1]. From the 1980s, with the rapid
development of statistical models, forecasting models based
on statistical regression methods such as Climatology and
Persistence (CLIPER) [2] were proposed. However, limited
representation capabilities of manual feature selection make
it difficult to produce accurate forecast results. Since the
1990s, with the improvement of observation techniques and
computer performance, Numerical Weather Prediction (NWP)
systems (e.g. American National Hurricane Center Track and
Intensity Model) gradually become the mainstream choice for
official meteorological forecasting agencies. NWP achieves
forecasting by solving complex partial differential equations
of weather dynamics. However, NWP is very computation-
ally expensive and requires the support of supercomputer
platforms. In recent years, machine learning especially deep
learning has developed rapidly. Various Deep Neural Networks
(DNNs) based on deep learning have revolutionized real-world
applications such as computer vision [3], natural language
processing [4], time series forecasting [5], etc. Since the
computational complexity of DNNs is much smaller than that
of traditional NWP models, many DNN variants have been
proposed recently to predict TCs track [6]–[14]. In this paper,
we also focus on deep learning-based TC track forecasting.

Long-term forecasting of TCs is a challenging problem
due to their extremely high dynamics and uncertainty. The
trajectory of a TC could be affected by various physical
quantities in the atmosphere and ocean, such as pressure
field, wind field, sea surface temperature, etc. Existing deep
learning-based TC track forecasting methods mainly focus on
utilizing a single modality of source data [7]–[11], [14], mean-
while, suffer from limited long-term forecasting capability and
high computational complexity. In this paper, we propose to
address the above challenges from a new perspective - by
utilizing large-scale spatio-temporal multimodal historical data
and advanced deep learning techniques. We define the source
data into three categories: inherent features of TCs, remote
sensing images and meteorological fields. The key to deep
learning-based forecasting methods is the full exploitation of
different types of data.

The inherent features of TCs at a particular time are always
represented by a column vector or tensor, which contains
information such as the latitude, longitude and intensity of the
center of TCs at that time. Infantile deep learning-based TCs
track forecast model mainly utilizes historical inherent features
of TCs to predict the future locations of the TCs. The classical
Multi-Layer Perceptions (MLP) [7], [8] and various time series
prediction models, such as Recurrent Neural Networks (RNNs)
[9], [10] , Long Short Term Memory (LSTM) model [11]
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and Bi-direction Gate Recurrent Unit model [14], are used
to learn the time-series pattern of the data. However, the time
series models based only on inherent features of TCs usually
have limited accuracy of track forecast due to the lack of
consideration of factors affecting TCs’ trajectory.

Compared with the two-dimensional (2D) inherent features
of TCs vector, the 3D remote sensing images and meteorologi-
cal fields can describe the relevant information around the TCs.
As for the TCs track forecasting using remote sensing images,
it can be treated as a special kind of video frame prediction
task. M. Rüttgers et al. used a Generative Adversarial Network
(GAN) to predict the TCs track images and the corresponding
location of TCs center [15]. Wu et al. proposed a multitask
machine learning framework based on an improved GAN to
predict the track and intensity of TCs simultaneously [16].
The track forecast methods above take full advantage of the
powerful performance of GANs in the field of computer vision.
However, the remote sensing images used in such methods
need to be acquired from geostationary satellites to ensure
high temporal resolution, and the images can not represent
the physical factors affecting the TCs trajectory.

meteorological fields, such as pressure fields and wind
fields, are the main factors affecting the trajectory of TCs.
In 2017, M.Mudigonda et al. [17] proposed the CNN-LSTM
model for segmenting and tracking TCs and verified the direct
high correlation of TC tracks in meteorological fields. S. Kim
proposed a Convolutional LSTM (ConvLSTM)-based spatio-
temporal model that predicts the trajectory map based on the
density map sequence generated from the wind velocity and
precipitation fields [12]. But the predicted trajectory map can
not reflect the exact location of the TCs precisely. Therefore,
how to efficiently fuse the meteorological fields data into the
TCs track forecast model to improve the forecast accuracy has
gradually become the mainstream research direction in recent
years [13], [18]. Due to the large variation in the distribution
of different meteorological fields, S. Giffard-Roisin et al. [13]
used different CNN models to encode the reanalysis data of
wind and pressure field respectively and fuse them with past
track data of TCs. However, multiple CNN models increase
the number of parameters and computational complexity of the
forecast model, and the model is difficult to train. In addition,
the inclusion of excessive use of meteorological field data
weakens the role of the inherent features data of TCs and
does not adequately learn the time-series features of the data.
Therefore, how to efficiently utilize the meteorological field
data and fully exploit the intrinsic time-series information of
the inherent features of TCs still needs further research.

To solve the problems above, this paper tries to exploit the
temporal information in the inherent features data of TCs and
the spatio-temporal information in reanalysis 3D pressure field
data, and proposes a Dual-Branched spatio-temporal Fusion
Network (DBF-Net) for multi-horizon tropical cyclone track
forecast (i.e. predicting the TCs’ track at multiple future time
steps [19]). Specifically, as shown in Fig. 1, the time-series
features of the input TC features are extract by a LSTM-based
[20] network in the TC features branch efficiently. Meanwhile,
the spatio-temporal features of the geopotential height (GPH)
around TCs are encoded by the 3D-CNN-based [21] network

Fig. 1. An overview of the proposed DBF-Net for multi-horizon TC track
forecast.

in the Pressure field branch, and fused into the first branch
to complement the track forecasting information by predicting
the GPH at multiple future time steps, and provide the multi-
horizon TCs trajectory forecasting outputs.

Through efficient spatio-temporal feature extraction and
fusion of the two types of data, the 24h forecast accuracy
of DBF-Net on historical TC tracks data in the Northwest
Pacific (WNP) is 119km which is much better compared with
other deep learning-based methods [13], [14]. Besides, we also
compare our method with other traditional methods, such as
extrapolation [1], CLIPER model [2] and NWP methods [22]–
[25]. Finally, we exhibit the forecast results for several indi-
vidual cases of TC events for further analysis and verification.

II. METHODOLOGY

In this section, we will introduce the proposed Dual-
Branched spatio-temporal Fusion Network (DBF-Net) in de-
tail. The overall architecture of the DBF-Net is shown in
Fig. 1. The two branches contained in DBF-Net are split into
three sub-modules and will be introduced separately. Before
that, the basic LSTM and 3D-CNN modules used in DBF-Net
will be briefly introduced.

A. Preliminaries

We formally introduce symbols and notations in this sub-
section. In DBF-Net, there are two types of data as the input,
where Xt = {Xj ∈ Rp | j ∈ [t−m, t], j ∈ Z} represents the
input historical inherent features sequence of TC and Gt =
{GPHj ∈ Rq×q | j ∈ [t −m, t], j ∈ Z} represents the input
historical reanalysis 3D geopotential height data. Given the
initial forecast time t and the corresponding input data Xt

and Gt, the output multi-horizon TC track prediction can be
computed by:

Yτ = M(Xt,Gt) (1)

where, Yτ = {Yj = (Latt+j − Latt, Lont+j − Lont) | j ∈
[1, τ ], j ∈ Z}, Latt and Lont are the Latitude and Longitude
of TC center at time t. M(·) represents the end-to-end DBF-
Net. It should be noted that, we use the relative change in
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Fig. 2. The structure of LSTM module.

latitude and longitude Yj as the output of DBF-Net instead
of the direct location. The reason for this is that the pressure
field data is cropped from the center of TCs and the local
information is more suitable for digging the relative changes
in TCs motion.

B. LSTM

Recurrent Neural Networks (RNNs) [26] are one of the
popular models for capturing the temporal features of sequence
data. RNNs consist of multiple neural networks stacked in the
time dimension, and the temporal features could be extracted
by utilizing both input data xt at time t and the extracted latent
features ht−1at time t−1. However, vanilla RNNs suffer from
gradient disappearance and gradient explosion when using
long term sequence data for training [27]. Therefore, numerous
variants have been proposed to solve the problems above [28],
[29], including the well-known Long Short-Term Memory
(LSTM) model [28].

As shown in Fig. 2, the LSTM improves the vanilla RNNs
by replacing the traditional ANN module in RNNs with a com-
plex LSTM module. In order to maintain the latent information
for both long and short term, namely cell state, three different
gates in LSTM module are proposed for different motivations:
forget gate, input gate and output gate.

Among them, the forget gate controls the remaining infor-
mation proportion of the cell state ct−1 and the proportion can
be computed by

ft = σ(Wf · [xt,ht−1] + bf ), (2)

where Wf and bf are the weight and bias value in a fully
connected layer. σ represents the Sigmoid function.

As for the input gate, it determines the amount of the candi-
date information feeding into the cell state by controlling the
proportion index. The candidate information gt and proportion
index it can be computed by:

it = σ(Wi · [xt,ht−1] + bi)

gt = tanh(Wg · [xt,ht−1] + bg)
(3)

Then, the cell state can be updated from time t− 1 to time
t by:

ct = ft × ct−1 + it × gt (4)

Fig. 3. The difference between (a) 2D convolution and (b) 3D convolution.
The black boxes represent the convolution kernel and the lines with same
color represent the same kernel weight value.

Lastly, the output gate updates the latent variable by con-
trolling the proportion index of cell state at time t, that is:

ot = σ(Wo · [xt,ht−1] + bo)

ht = ot × tanh(ct)
(5)

Through the operations above, LSTM could efficiently
extract the temporal features by controlling the proportions
of different information flow and the cell state to ensure the
gradient is always within a proper range which avoids the
gradient disappearance and gradient explosion to some extent.

C. 3D-CNN

Convolutional Neural Networks (CNNs) have achieved re-
markable progress in extracting spatial features from image-
like 2D data. The local receptive field and shared weights make
it possible for CNNs to learn the local spatial relevance of the
2D data with fewer parameters compared with the traditional
fully connected layer. However, for video-like 3D data, the
traditional 2D convolution can not capture the relevance of
the 2D images at different time steps. Therefore, Ji et al [21]
proposed the 3D-CNN for human action recognition and 3D-
CNN has become a popular model for extracting spatio-
temporal features from video-like 3D data.

Fig. 3 illustrates the difference between 2D and 3D con-
volutions. As can be seen in 3(b) the convolution kernel
matrix in 3D-CNN not only slides on a single 2D feature map
but also moves in the temporal dimension (same color lines
in different feature maps in temporal dimension), thus both
spatial and temporal features could be extracted from 3D data
simultaneously.

D. TC Features Encoder Module

The TC features encoder module in the first branch of DBF-
Net plays the role of encoding the inherent features of TCs
Xt = (x1, x2, x3, x4, x5, x6) at multiple historical times. Each
xj in Xt represents the latitude at time t, longitude at time
t, maximum wind speed near the center at the bottom at
time t, latitude difference between time t and t− 1, longitude
difference between time t and t−1 and wind speed difference
between time t and t− 4 respectively. The features above are
also the classical persistence factors in statistical forecasting
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Fig. 4. The LSTM-encoder module in TC Features Branch.

methods. As a result, the purpose of the TC features encoder
module is to encode time series features of the persistence
factors.

As shown in Fig. 4, the TC features encoder module consists
of a two-layer stacked LSTM encoder. Each Xt in sequence
Xt is passed sequentially into the two-layer LSTM encoding
module and produces the latent variable ht. The output of each
LSTM encoding layer is fed into the corresponding layer at
next time step. The specific operation procedure in each LSTM
encoding layer is as follows:

it = σ(WiiXt + bii +Whiht−1 + bhi) (6)
ft = σ(WifXt + bif +Whfht−1 + bhf ) (7)

gt = tanh(WigXt + big +Whght−1 + bhg) (8)
ct = ft × ct−1 + it × gt (9)

ot = σ(WioXt + bio +Whoht−1 + bho) (10)
ht = ot × tanh(ct) (11)

where the it, ft and ot represent the output of the input
gate, forget gate, and output gate in LSTM model. Wii(Whi),
Wif (Whf ) and Wio(Who) are the corresponding weight ma-
trix related to the Xt(ht−1). ct is the cell state fed into the
next time step together with the latent variable ht. σ(·) is the
Sigmoid function.

Given the input sequence Xt of length m+ 1 and the cor-
responding latent variable sequence {ht−m,ht−m+1, · · · ,ht},
t is the initial forecast time, we can compute the final time
series code of the TC features by:

ETC =
1

m+ 1

m∑
i=0

ht−i (12)

E. Pressure Field Branch

To efficiently use the meteorological fields in the vicinity
of TCs and improve the forecast accuracy, a 3D-CNN-based
encoder-decoder networks are utilized to generate high-level
spatio-temporal features from the reanalysis 3D geopotential
height (GPH) data at multiple time steps (as shown in Fig. 5).

As shown in Table I, the encoder of the pressure field branch
contains three convolutional layers, the first two of which

Fig. 5. The pressure field branch architecture.

TABLE I
THE 3D-CNN-BASED ENCODER ARCHITECTURE OF THE PRESSURE FIELD

BRANCH

Layers Kernel Size Stride In Channel

Conv 1 3× 3× 3 1× 1× 1 1
MaxPool 1 1× 2× 2 1× 2× 2 16
Conv 2 3× 3× 3 1× 1× 1 16
MaxPool 2 1× 2× 2 1× 2× 2 32
Conv 3 3× 3 1× 1 32
MaxPool 3 2× 2 2× 2 64

are 3D-CNN with kernel size 3 × 3 × 3. To ensure that the
GPH field data cover the full spatial extent that may affect
the TC tracks, the window size at each historical time step
GPHt of input 3D field Gt is set to 51 × 51 values, which
is approximately a radius of 1400km (the resolution of the
reanalysis GPH data is 0.5 degrees). We choose LeakyReLU as
the activation function of the encoder to enhance the nonlinear
representation of the model. The output high-level spatio-
temporal features can be computed by:

EGPH = FC(flatten(FGPH))

= FC(flatten(Encoder(Gt)))
(13)

where FC(·) is a fully connected layer. flatten(·) is the
flatten operation that flattening output feature map of the 3D-
CNN encoder.

As for the decoder in the pressure field branch, its structure
is symmetrical with the 3D-CNN encoder and the transpose
convolution is used to recover the spatio-temporal information
from high-level features. It predicts the future m+1 time steps
of the GPH, which is same length of time as the input Gt. The
loss function of the pressure field branch is computed by:

LGPH =
t+m+1∑
i=t+1

||Decoder(FGPH)− TGPHi||1

=
t+m+1∑
i=t+1

||GPHi − TGPHi||1

(14)

where TGPHi is the target value of the future GPH data. ||·||1
is the l1-norm function.

F. Dual-Branched Features Fusion Decoder Module

Based on the LSTM-based encoder in TC features branch
and the pressure field branch mentioned above, there are three
types of intermediate variables from two branches that fed into
the LSTM-based decoder module, that is the final time series
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Fig. 6. The LSTM-based decoder module in TC Features Branch with dual-
branched features fusion.

code of the TC features ETC, the high-level spatio-temporal
reanalysis 3D GPH features EGPH and the output features
from LSTM encoder layers E1 and E2. In this subsection, we
will introduce the LSTM-based decoder module for efficiently
fusing the dual-branched multi-modal features and generating
multi-horizon TC track forecasting results.

The proposed LSTM-based decoder module contains a two-
layers stacked LSTM decoder and the subsequent two fully
connected layers. The detailed decoding and feature fusion
process is defined as follows:

it = σ(WTiETC +WGiEGPH +WY iYt−1

+Whiht−1 + bi)
(15)

ft = σ(WTfETC +WGfEGPH +WY fYt−1

+Whfht−1 + bf )
(16)

gt = (WTgETC +WGgEGPH +WY gYt−1

+Whght−1 + bg)
(17)

ct = ft × ct−1 + it × gt (18)
ot = σ(WToETC+WGoEGPH +WY oYt−1

+Whoht−1 + bo)
(19)

ht = ot × tanh(ct) (20)
Yt = FC2(ReLU(FC1(ht))) (21)

where the initial state ht and ct are the elements of E1 and
E2, which are the final state of the LSTM encoder layers. The
initial input of the LSTM decoder Yt is set to zero. The loss
function of the LSTM-based decoder is also l1-norm function,
which is defined as follows:

Lloc =
t+τ∑

i=t+1

||Decoder(ETC,EGPH,E1,E2,Yt)− Yi||1

=
t+τ∑

i=t+1

||Ti − Yi||1

(22)

TABLE II
EXAMPLES OF CMA-BST DATA. I STANDS FOR THE INTENSITY LEVEL OF

TCS. LAT AND LON ARE THE LATITUDE AND LONGITUDE OF TCS’
CENTERS (UNIT: ×0.1◦). PRES STANDS FOR THE CENTRAL MINIMUM
PRESSURE (UNIT: HPA). WND AND OWD STAND FOR THE 2-MINUTE
MAXIMUM AND AVERAGE NEAR-CENTER WIND SPEED RESPECTIVELY

(UNIT: M/S).

YYYYMMDDHH I LAT LON PRES WND OWD

1953061506 0 125 1116 1000 10 15
1953061512 0 132 1117 1000 10 15
1953061518 0 142 1117 1000 10 15
1953061600 0 150 1117 1000 10 20
1953061606 0 159 1112 999 10 20

where, Ti is the ground-truth changes of latitude and longi-
tude. With the operation above, the features from both inherent
TC features and reanalysis 3D pressure field can be fused
effectively and we can achieve the multi-horizon TC track
forecasting results Yt based on the fused multi-modal features.

G. Loss functions and multi-stages training

We trained our proposed DBF-Net in a three stages manner.
First, we only train the TC features encoder module by adding
a fully connected layer to directly predict the target value of
the TC track and get the pre-trained LSTM encoder in the TC
features branch. Then, we utilize the reanalysis 3D pressure
fields GPH data to train the pressure field branch of the DBF-
Net and learn the temporal dynamic changing of GPH data.
Finally, we add the LSTM decoder module into the training
pipeline and train the DBF-Net in an end-to-end manner. The
loss function at the final step is as follows:

Lfinal = Lloc + αLGPH + βL2 (23)

where, the L2 is the regularization term with l2 penalty. α
and β are hyper-parameter. The training schedule detail will
be discussed in Section 3.3.

III. EXPERIMENT

In this section, we evaluate our proposed DBF-Net on
the historical TC tracks data in Northwest Pacific (WNP).
The forecasting performance of DBF-Net is verified by the
comparison with other deep learning-based and traditional TC
track forecast methods. We also analyze the forecast results
for several individual cases of TC events and the specific
forecasting characteristics of the DBF-Net.

A. Dataset

Best track dataset (CMA-BST). The inherent features data of
TCs is extracted from the Best Track (BST) data released by
China Meteorological Administration (CMA) [30]. It includes
the location and intensity of TCs in the Northwest Pacific
(WNP) Ocean (0◦N ∼ 50◦N , 100◦E ∼ 210◦E) at six-hour
intervals from 1949 to 2018. Examples of the CMA-BST data
are shown in Table II.
Geopotential Height dataset (CFSR-GPH). The reanalysis
3D geopotential height (GPH) data in pressure field branch is
collected from Climate Forecast System Reanalysis (CFSR)
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Fig. 7. All TCs track data used in the experiment. The line in red, blue and green represent the TCs for training, validating and testing. The scatters in
different color represent the first locations of TCs.

TABLE III
DATASET SPLITTING BASED ON CMA-BST AND CFSR-GPH.

Train Set Val Set Test Set

Years 1979∼2008 2009∼2013 2014∼2018
#TCs 723 104 113

#Samples 13233 1847 2174

dataset released by The National Centers for Environmental
Prediction (NCEP) [31] . CFSR-GPH is grid data with a
spatial resolution of 0.5◦ and the temporal resolution is aligned
with CMA-BST from 1979 to present. TCs in WNP are
mostly genrated at the southern edge of the subtropical high
pressure and move along its periphery. Therefore, the 500hPa
geopentential height data is chosen as the background pressure
field to describe the activity of TCs.
Data pre-processing. For both input data from CMA-BST and
CFSR-GPH, we use the maximum-minimum normalization for
data pre-processing and feed them into the TC features and
pressure field branch respectively.
Dataset Split. Based on the CMA-BST and CFSR-GPH
dataset mentioned above. We choose overlap of the two
datasets i.e. TCs from 1979 to 2018. And we only keep the
TCs with a life cycle greater than four days to ensure the
persistence. There are 940 TCs left in this dataset. We make
17000+ samples for model training, validating and testing
based on a sliding window of length input sequence length
+ prediction length (as shown in Figure 7 and Table III).

B. Metrics

We use the Mean Distance Error (MDE) to evaluate the TCs
track forecast results. The MDE is a commonly used metric to

measure the average distance error between model prediction
and ground truth. The MDE can be computed by:

MDE = 2×R× arcsin√
sin2(

φpre − φgt

2
) + cosφpre cosφgt sin

2(
λpre − λgt

2
)

≈
√

∆Lat2 +∆Lon2 × 110
(24)

where, R ≈ 6371km represents the radius of earth. φpre and
φgt stand for the latitude value of prediction and ground truth.
λpre and λgt stand for the longitude value of prediction and
ground truth.

Besides, the skill score is also the index to evaluate the
practical availability of the methods, as follows:

skill score =
eA − eB

eA
× 100% (25)

where, eA is the prediction error of CLIPER method and eB
is the error of proposed method.

C. Implementation Details

We train our proposed DBF-Net in a three stages manner
with the Pytorch framework, which has been discussed in
Section 2.5. We use the RMSProp optimizer and set the initial
learning rate to 0.001. The batch size of training set is set to
64. The hyper parameter α and β in equation (19) is set to
1.2 and 0.00001 respectively.

For multi-horizon forecasting (i.e. predicting the TCs track
at multiple future time steps), the output prediction sequence
length of the DBF-Net is 4 and the input sequence length is 5.
That is we predict the 6h, 12h, 18h and 24h TCs tracks based
on the historical data from time t − 5 (30h prior) to time t
(the current time). We train our DBF-Net on a single NVIDIA
GeForce GTX 3090 GPU.
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TABLE IV
COMPARISON OF THE TCS TRACK FORECASTING RESULTS OF

STATISTICAL AND DEEP LEARNING METHODS.

Methods MDE (km)

6h 12h 18h 24h

extrapolation 33.78 79.20 135.48 201.28
CLIPER-BP 37.53 73.31 115.13 162.62

FFN [13] 32.90 - - 136.10
BiGRU-attn [14] - - - 147.38
DBF-Net (Ours) 31.30 58.94 87.60 119.05

D. Comparison with Statistical/Deep Learning Forecast Meth-
ods

We first compare our proposed DBF-Net with other sta-
tistical and deep learning based TCs track forecast methods,
including the extrapolation method [1], CLIPER method [2],
feature fusion network [13] and recent BiGRU-attn [14]. The
extrapolation is a simple traditional TCs track forecast method.
It assumes that the direction and speed of TCs movement
do not change much, and predicts based on the movement
direction and velocity at previous times. CLIPER can be
treated as the benchmark of other track forecast methods. It
uses correlation analysis to screen climate persistence factors
and constructed multivariate linear regression models. In this
paper, we replace the multivariate linear model with a back
propagation (BP) neural network model, which enhancing the
nonlinear representation of the CLIPER model. We selected
20 factors with strong correlation from 46 climate persistence
factors by Pearson correlation analysis and feed them into the
BP neural network.

As shown in Table IV, our proposed DBF-Net outperforms
previous works. Specifically, compared with the benchmark
forecast method CLIPER, DBF-Net achieves better MDEs for
all forecast time steps. That is the skill score with respect
to the CLIPER is positive, which demonstrates the practical
availability of our method. In addition, our DBF-Net also
ourperforms previous deep learning based methods. Compared
with FFN [13] that utilizes the wind, pressure fields simulta-
neously, our DBF-Net achieves better results only based on
pressure field. This also shows that our method can better
encode the effective features of the input data.

E. Comparison with NWP Forecast Methods

We further compare our DBF-Net with the Numerical
Weather Prediction (NWP) system that commonly used in
operational forecasting. The global pattern T213/T639 released
by China Meteorological Administration (CMA) and Shanghai
typhoon region pattern (SHTP) released by Shanghai Typhoon
Institute of the CMA [22]–[25] are chosen for comparison.
Compared with our deep learning based method, the NWP
methods always need a great number of computation resources
and the inference time increases rapidly as input data res-
olution increases. However, NWP methods still can achieve
better forecast accuracy compared with deep learning based

methods. As shown in Table V, DBF-Net could achieve com-
parable performance compared with global pattern T213/T639,
especially in year 2014 and 2015, the 24h MDE of DBF-
Net is much better than T213/T639. However, compared with
the region pattern SHTP, the forecast of the DBF-Net still
has a certain gap. The great performance of the SHTP may
due to the high-resolution multi-layer nested grid input data
and huge computational resource consumption. In contrast,
our proposed DBF-Net achieves relatively high prediction
accuracy under the premise of low-resolution input (1◦ spatio
resolution for GPH data) and small computational resource
consumption. The inference time of our DBF-Net for multi-
horizon forecast is only 2.03 seconds which is about three
to four orders of magnitude faster compared with the NWP
methods. Besides, we believe that by using higher resolution
data for model training, our DBF-Net could further improve
the forecast accuracy which can be further studied in the future
works.

TABLE V
COMPARISON OF THE TCS TRACK FORECASTING RESULTS OF NWP

METHODS. THE RESULTS OF NWP METHODS IS RELEASED BY [22]–[25]

Year T213/T639 SHTP DBF-Net

2014 #Samples 411 112 330
24h MDE (km) 121.8 64.9 107.4

2015 #Samples 46 440 671
24h MDE (km) 150.6 67.8 107.0

2016 #Samples 412 194 332
24h MDE (km) 114.9 88.5 118.9

2017 #Samples 301 253 319
24h MDE (km) 98.7 89.1 130.6

AVG 121.5 77.6 116.0

Inference Time - - 2.03s

F. Ablation Study

Verification of model structure. In order to verify the
effectiveness of our proposed Dual-Branched spatio-tempotal
Fusion Network (DBF-Net) architecture, we experimented
with different branching structures. As can be seen in TableVI,
our proposed DBF-Net with two branches encoder-decoder
networks and feature fusion module, which is denoted as
”DBF-Net⋆”, achieves the best forecast MDE except with the
6h forecast result in ”DBF-Net” that verified the consistency
of our method. In addition, the relatively bad performance
of LSTM-based and 3D-CNN-based encoder-decoder archi-
tecture alone, which is denoted as ”TC-features-only” and
”Pressure-fields-only”, demonstrate that it is hard to obtain
good forecast results for single inherent features or meteoro-
logical fields input. It makes sense to fuse these two types of
data for better forecast accuracy. The results in Table VI also
show the effectiveness of the 3D-CNN Decoder module for
enhancing the temporal dynamic changing of GPH data.

It should be noted that the 3D-CNN decoder module in
pressure fields branch only plays a role in model training. Once
the DBF-Net is trained, the inference is done by just passing
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TABLE VI
THE IMPACT OF DIFFERENT BRANCHES IN DBF-NET. ⋆ REPRESENTS THE

MODEL WITH 3D-CNN DECODER IN PRESSURE BRANCH TO ENHANCE
THE TEMPORAL DYNAMIC CHANGING OF GPH DATA.

Architecture MDE (km)

6h 12h 18h 24h

TC-features-only 32.87 69.08 111.08 158.11
Pressure-fields-only 34.35 64.07 95.83 130.79

Pressure-fields-only⋆ 34.27 63.31 93.63 126.89
DBF-Net 31.18 59.13 88.82 121.79

DBF-Net⋆ 31.30 58.94 87.60 119.05

Fig. 8. The TCs track forecast result of our proposed DBF-Net of various
intensity.

TC features branch and 3D-CNN encoder module. Therefore,
the 3D-CNN decoder module does not increase the memory
and computational cost of the DBF-Net inference.
Effectiveness of multi-stages training method. As mentioned
in Section II G, we train our DBF-Net in a multi-stages manner
to enhance the ability of feature extraction from different
input data of each module in DBF-Net. In order to verify
the effectiveness of the multi-stages training method, we also
trained our DBF-Net in an end-to-end manner and the 24h
track forecast accuracy is 128.61km, which is 9.56km worse
compared with the one with multi-stages training.
Forecast Accuracy for TCs of Different Intensity Levels.
We classify TCs according to the intensity level at the ini-
tial forecast time. That is tropical depression (TD), tropical
storm (TS), severe tropical storm (STS), typhoon (TY), severe
typhoon (STY) and super severe typhoon (SuperTY). Fig. 8
reports the track forecast error of various TCs’ intensity. It
shows that, the forecast error decrease consistently as the
intensity of TCs increase. It means that the performance
of DBF-Net for forecasting TCs’ track with low intensity
is relatively poor. The same conclusion is also reported in
previous works [13].

G. Case Study

In this subsection, we select three individual cases of
TC events, namely Typhoon Trami 1824, Typhoon Hagibis

Fig. 9. TCs track forecast results for typhoon Trami 1824. The blue line
represents the ground truth track. The red line represents the forecast results.

Fig. 10. TCs track forecast results for typhoon Hagibis 1919 . The blue line
represents the ground truth track. The red line represents the forecast results.

1919 and Typhoon Fengshen 1925 (the four digits after the
typhoon name represent the typhoon number, for example,
the typhoon 1919 represents the 19th typhoon of year 2019).
According to the forecast results, the validity of the DBF-Net
is further verified, and the forecast characteristics of DBF-Net
are analyzed.

Fig. 9∼11 and Table VII∼ IX shows the TCs track
forecast results for the three cases. In the figures, the blue line
represents the ground truth track of TCs and the red line is the
forecast results of the proposed DBF-Net. The intersection of
the blue and red lines is the location of initial forecast time.
The 4 points extending from the red line represent the forecast
path in the next 24 hours (6-hour interval) from the initial
forecast time.

For Typhoon Trami 1824, its path generally shows a trend
of first westward and then northward. As shown in Fig. 9,
the error between the forecast and the ground truth track is
relatively small at the inflection point from west to north.
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Fig. 11. TCs track forecast results for typhoon Fengshen 1925 . The blue line
represents the ground truth track. The red line represents the forecast results.

TABLE VII
THE TRACK FORECAST RESULT OF DBF-NET FOR TYPHOON TRAMI

1824. INT STANDS FOR THE INTENSITY LEVEL OF THE TC. AVG STANDS
FOR THE AVERAGE PREDICTION MDE.

Typhoon Trami 1824

MMDDHH INT MDE (km)

6h 12h 18h 24h

092118 TS 54.56 111.16 137.78 194.56
092206 STS 19.60 41.45 40.61 75.08
092218 TY 63.42 103.65 136.77 147.31
092306 STY 5.89 49.85 62.80 92.46
092318 STY 1.05 26.49 46.63 68.26
092406 SuperTY 11.45 21.48 11.23 66.31
092418 SuperTY 22.59 33.89 65.07 83.58
092506 SuperTY 8.75 23.03 34.63 20.56
092518 SuperTY 24.11 27.85 52.71 62.20
092606 STY 23.19 51.10 83.84 129.74
092618 STY 26.29 44.59 65.90 94.28
092706 STY 13.92 28.89 62.13 86.24
092718 STY 33.67 58.95 55.01 50.70
092806 STY 18.94 24.64 26.86 52.50
092818 STY 3.85 23.75 91.57 108.31

AVG 23.48 41.70 58.40 82.43

This shows that the model itself has learned the potential
features of TCs track movement. For Typhoon Hagibis 1919,
there also a inflection point at time ”100718” (as shown
in Fig. 10 and Table 10). Although the forecast result is
relatively bad (177.07km for 24h forecasting), the DBF-Net
also could fix the prediction by bringing the observations
from the next time step (24.93km for 12h forecasting at time
”100806”). This shows that the historical information closest
to the initial forecast time is more important. For Typhoon
Fengshen 1925, its trajectory presents a 180◦ turning trend,
which is unconventional. As shown in Fig. 11, DBF-Net could
correctly predict the turning trend of the TC. However, the
forecasting length of the track vector is uniformly smaller than
the ground truth and causes the average MDE to be relatively
large (in Table 11).

In Table VII∼ IX, we also report the intensity level (INT)
at each time step. By comparing the results in Tables 7∼9,
it can be found that the DBF-Net has a relatively lower
MDE when the intensity level is larger. Especially for the

TABLE VIII
THE TRACK FORECAST RESULT OF DBF-NET FOR TYPHOON HAGIBIS

1919. INT STANDS FOR THE INTENSITY LEVEL OF THE TC. AVG STANDS
FOR THE AVERAGE PREDICTION MDE.

Typhoon Hagibis 1919

MMDDHH INT MDE (km)

6h 12h 18h 24h

100606 STS 28.26 68.36 90.68 107.11
100618 TY 11.00 30.92 31.60 30.41
100706 SuperTY 38.75 62.95 26.88 41.82
100718 SuperTY 42.27 75.44 132.27 177.07
100806 SuperTY 26.80 24.93 60.36 77.02
100818 SuperTY 51.18 54.16 82.65 93.71
100906 SuperTY 30.06 56.08 45.70 9.55
100918 SuperTY 29.00 56.08 86.27 109.05
101006 SuperTY 47.06 75.26 90.90 99.15
101018 STY 28.45 52.75 84.87 97.22

AVG 29.43 51.41 66.84 86.77

TABLE IX
THE TRACK FORECAST RESULT OF DBF-NET FOR TYPHOON FENGSHEN
1925. INT STANDS FOR THE INTENSITY LEVEL OF THE TC. AVG STANDS

FOR THE AVERAGE PREDICTION MDE.

Typhoon Fengshen 1925

MMDDHH INT MDE (km)

6h 12h 18h 24h

111206 TS 34.07 50.98 26.22 63.83
111218 TS 39.65 99.83 116.08 183.11
111306 STS 44.77 38.92 48.00 60.31
111318 STS 59.19 75.96 90.71 152.12
111406 STS 27.19 81.96 126.19 183.04
111418 TY 14.69 68.90 102.61 140.09
111506 STY 9.65 17.76 38.13 50.84

AVG 28.05 62.49 92.39 137.03

TCs with the intensity level of ”SuperTC”, the predicted
MDE is comparable to the NWP model. This phenomenon
also explains the relatively poor forecast results of Typhoon
Fengshen 1925.

IV. DISCUSSION AND FUTURE WORK

The proposed DBF-Net provides a relatively efficient way
to fuse multi-modal spatio-temporal data for tropical cyclone
track forecasting. The extensive experiments further verify
the importance of fusing the two types of data for bet-
ter forecast accuracy. However, as shown in Table V, the
forecast results of deep learning-based DBF-Net still have
a certain gap compared with the traditional complex NWP
methods, although DBF-Net has a greater advantage in terms
of computational consumption. Fortunately, recent works on
precipitation forecasting demonstrate the potential of deep
learning-based methods for weather/climate forecasting [32],
[33]. Therefore, there are still many aspects to be studied for
deep learning-based TC track forecast methods in the future
to improve the forecast accuracy. The following four issues
could be considered in the future:
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• Recent deep learning-based precipitation forecasting
methods mainly treat the forecast problem as a video
frame prediction task [32], [33]. The large-scale image-
like data with a high temporal resolution, such as radar
map and satellite image, is the primary input of the
proposed methods. Although the similar idea also inves-
tigates in TCs track forecast area recently [16], the model
architecture and scale of the training set are still limited
compared with the MetNet [32] and DGMR [33] which
can be further studied.

• The experiment results in Table VI shows the relatively
bad performance for forecasting only based on TC fea-
tures, especially for long-term forecast results (24h). The
reason for this may be due to the inadequacy of the
LSTM structure. The popular Transformer-based model
with attention mechanism [4], [5] could be a great choice
for capturing the temporal features of sequence data more
efficiently.

• The assumption of regular mesh of the reanalysis 3D
pressure data is adopted in this paper for simplicity. And
the vanilla convolution operation in 3D version is used
to extract the spatio-temporal features. However, there
exist irregular distribution of meteorology field across the
different spatial location. In order to solve this problem,
the graph convolution [34] and spherical CNNs [35] could
be used for further study.

• Different from the data-driven deep learning-based fore-
cast methods, the NWP methods mainly follow the
physics laws by solving the partial differential equations
(PDEs) with few boundary and initial condition samples
and achieving outstanding forecast results. These physics
laws can be treated as prior information for TCs track
forecast which is still ignored by deep learning-based
methods. Recently, many works try to merge the physics
information into the deep learning framework for weather
forecasting to maintain the advantages of numerical and
deep learning based methods at the same time [36]–[38],
so as to improve the performance of deep learning-based
TCs track forecasting.

V. CONCLUSION

In this paper, we study the Tropical Cyclone (TC) track
forecasting for multiple future time steps by proposing a novel
deep learning based model, named DBF-Net, to make full use
of both inherent features of TCs and reanalysis 3D pressure
fields data and fuse the multi-modal features efficiently. DBF-
Net contains two branches with encoder-decoder architectures
and can be split into three part. The first part is the LSTM-
based TC features encoder module that captures the high-level
temporal features from historical inherent features of TCs. The
second part is the pressure field branch that extracts the spatio-
temporal features by learning the temporal dynamic changing
of GPH data with a 3D-CNN-based encoder-decoder network.
The last part is a LSTM-based decoder module that fuses the
multi-modal high-level features from different branches and
produces the multi-horizon prediction.

Experiments on 39 years of historical TCs track dataset in
the Northwest Pacific Ocean show that the 24h track fore-

cast accuracy reaches 119.05km which outperforms previous
statistical/deep learning forecast methods. Our DBF-Net also
achieves comparable performance compared with the global
pattern T213/T639 with orders of magnitude faster. The case
study of three different typhoon events further shows the
ability of predicting the turning trend of our proposed method.
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