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Dehazing for Multispectral Remote Sensing Images
Based on Convolutional Neural Network with

Residual Architecture
Manjun Qin, Fengying Xie*, Wei Li, Zhenwei Shi, Member, IEEE, and Haopeng Zhang

Abstract—Multispectral remote sensing images are often con-
taminated by haze, which causes low image quality. In this paper,
a novel dehazing method based on deep convolutional neural net-
work (CNN) with residual structure is proposed for multispectral
remote sensing images. Firstly, multiple CNN individuals with
residual structure are connected in parallel and each individual is
used to learn a regression from the hazy image to the clear image.
Then, the outputs of CNN individuals are fused with weight maps
to produce the final dehazing result. In the designed network,
the CNN individuals, mining multiscale haze features through
multiscale convolutions, are trained using different levels of haze
samples to achieve different dehazing abilities. In addition, the
weight maps change with the haze distribution, and the fusion of
the CNN individuals is adaptive. The designed network is end-
to-end, and putting a hazy image into it, the clear scene can
be restored. To train the network, a wavelength-dependent haze
simulation method is proposed to generate labeled data, which
can synthesize hazy multispectral images highly close to real
conditions. Experimental results show that the proposed method
can accurately remove haze in each band of multispectral images
under different scenes.

Index Terms—Haze removal, Convolutional Neural Network,
haze simulation, multispectral remote sensing images.

I. INTRODUCTION

MULTISPECTRAL remote sensing imagery can provide
abundant ground information, which becomes an es-

sential way to explore earth resources and ecological envi-
ronment. However, multispectral images are often affected by
atmospheric conditions such as haze, fog, and cloud. These
phenomena reduce the image visibility and lead to the loss of
texture details, which bring obstacles for many applications
such as land classification and target detection. Therefore, haze
removal is necessary to improve the quality of remote sensing
images.

Numbers of dehazing methods have been developed for
multispectral remote sensing images. Earlier methods usually
focused on dehazing for each spectral band of multispectral
data. Richter [1] matched the histograms between haze areas
and clear parts to correct haze in Landsat TM and SPOT
HRV satellite imagery. Feng et al. [2] adopted homomorphic
filter to remove thin cloud from ASTER data. Du et al. [3]
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decomposed the image using wavelet transform to remove the
spatially varying haze. Liu et al. [4] combined the virtual
cloud point method with the background suppressed haze
thickness index to dehaze for high spatial resolution satel-
lite imagery. Chavez [5] took the band correlation property
of atmospheric scattering into account and used dark-object
subtraction method to correct uniform haze. Makarau et al.
[6] further developed Chavez’s work [5] through calculating a
haze thickness map (HTM) to remove inhomogeneous haze.

Since visible bands are more easily contaminated by haze,
some haze removal methods aiming at visible bands were
developed. Zhang et al. [7] developed a haze optimized
transformation method based on the spectral response of
visible bands to dehaze. This method was further improved
by Moro et al. [8] and He et al. [9] for more robust and
stable performance. Shen et al. [10] adopted the homomorphic
filter for thin cloud removal. Li et al. [11] and Galdran et
al. [12] used the gradient-based fusion method to sharpen
the visible imagery. Lan et al. [13] developed a three-stage
algorithm for haze removal considering sensor blur and noise.
Ni et al. [14] used linear intensity transformation and local
property analysis to dehaze for images from Google Earth
and NASA Earth. Long et al. [15] combined the dark channel
prior [16] with Gaussian filter to restore the clear image. Pan
et al. [17] deformed the haze imaging model and combined it
with dark channel prior to improve the dehazing performance.
Liu et al. [18] removed the haze component by calculating a
ground radiance suppressed haze thickness map (GRS-HTM),
which was more precise than HTM. These methods above did
not consider non-visible bands even though they also will be
contaminated by haze more or less.

Recently, supervised learning based methods have been
developed to solve the dehazing problem for outdoor images.
Tang et al. [19] extracted a set of haze-relevant features, with
which a regression model based on Random Forest was learned
to predict the medium transmission. Cai et al. [20] designed
a Convolutional Neural Network (CNN) model to regress the
transmission to dehaze. The real haze in multispectral remote
sensing images is spatially varying and wavelength-dependent.
However, [19] and [20] synthesized wavelength-independent
haze samples to train their dehazing models, and regressed
the transmissions under the assumption that the transmission
is local constant. Therefore, they cannot effectively remove
haze from multispectral images.

In this paper, a novel haze removal method based on CNN
is proposed for multispectral remote sensing imagery. In the
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designed network, multiple CNN individuals with residual
structure are used to learn the mapping from the hazy im-
age to the clear image for different levels of haze samples.
Through the fusion unit, the outputs of CNN individuals are
adaptively combined to yield the final restored image. In
addition, considering the wavelength correlation property of
atmospheric scattering, a wavelength-dependent haze synthesis
method based on Rayleighs law is proposed to generate the
labeled data to train the network. The designed network is
end-to-end, and the haze in the multispectral images can be
effectively and adaptively removed.

In summary, the proposed method has the following three
main contributions.

1) An end-to-end haze removal framework based on CNN
is proposed for multispectral remote sensing images, in which
multiple CNN individuals are connected in parallel to learn
the mapping from the hazy image to the clear image, and a
fusion unit is used to adaptively combine these individuals’
outputs to generate the final restored image.

2) The designed CNN individual employs multiscale con-
volutions to mine the multiscale features of haze and adopts
residual structure to reduce the learning difficulty. Better
performance is obtained.

3) A new wavelength-dependent haze simulation method is
proposed to generate hazy multispectral images close to real
conditions, with which to train the designed network, more
accurate dehazing results can be obtained.

The remainder of this paper is organized as follows. In
Section II, the atmospheric scattering model is described,
which is employed in this work. In Section III, we present
the details of the proposed dehazing framework. Section IV
introduces the proposed haze simulation method to generate
training data. Experimental results and analysis are shown in
Section V, and the conclusion is given in Section VI.

II. ATMOSPHERIC SCATTERING MODEL

The atmospheric scattering model was widely used in state-
of-the-art haze removal algorithms. It is based on the two
scattering phenomena of airlight and attenuation [21], and its
definition is:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where x denotes the positon of the point in the scene, I(x)
is the received hazy image by sensor, J(x) is the real scene
radiance to be recovered, A is the global atmospheric light,
and t(x) is the medium transmission. More precisely, the
medium transmission t is described as:

t(x) = e−β(x,λ)d(x) (2)

where d(x) represents the light path from the scene point to the
sensor, which can be viewed as a constant for remote sensing
images, and β(x, λ) is termed as attenuation coefficient, which
is dependent on the atmospheric particles and wavelength λ.

According to Rayleigh’s law [22] [23], the scattering co-
efficient β is inversely proportional to the γth power of
wavelength λ, which is described as:

β =
constant

λγ
(3)

where γ ∈ [0, 4] that depends on the size of suspended
particles in the atmosphere. For pure air, the size of constituent
molecules (10−4µm) is much smaller than the wavelength
and γ = 4. For fog and clouds, the size of component water
droplets is 1µm− 10µm, which is larger than the wavelength
and γ ≈ 0. For a wide range of atmospheric conditions that
are arose from aerosols, their particle sizes range between
molecules and water droplets and 0 < γ < 4. More specially,
γ varies from 0.5 to 1 for haze conditions [5].

III. THE PROPOSED APPROACH

According to the haze imaging model, namely the atmo-
spheric scattering model (1), once the atmospheric light A
and medium transmission t are estimated, the clear image J
can be easily obtained from:

J =
I+A(1− t)

t
(4)

Since only I is known, dehazing is an ill-posed problem.
Assuming transmission t is local constant, Tang [19] and Cai
[20] utilized a supervised learning framework to regress t from
the local image patch. Refined by the guided image filtering
[24], the obtained transmission t is put into (4) to produce
the dehazed image. In this paper, an end-to-end dehazing
framework based on CNN with residual structure is designed
to directly regress the clear image, which can achieve better
dehazing performance.

A. Designed dehazing framework

The architecture of the designed dehazing framework is
shown in Fig. 1, where n CNN individuals with residual
structure are connected in parallel to learn the regression from
the hazy image to the clear image. Training with different
levels of haze samples, these CNNs have different dehazing
abilities and can generate different outputs. These outputs
are multiplied by their corresponding weight maps and fused
through a convolutional layer to generate the final clear image.

1) CNN individual: In the designed model, n CNN indi-
viduals with the same structure are used to learn the mapping
from the hazy image to the clear image. A residual network
[25] can learn from reference, which is more easily converged
than the non-residual network for the regression problem [26].
Since the dehazed image has similar texture and color with
the corresponding hazy image, the latter can be viewed as
an approximate version of the former. Using the CNN with
residual structure to learn the dehazing mapping, the complex
texture and color information in the dehazed image is directly
provided by the input image, and only the different part (haze
component) is learned and represented by convolutional layers.
Thus, the learning difficulty is decreased.

The structure of the designed CNN individual is shown in
Fig. 2. A 3×3 convolutional layer with 16 filters is first used to
map the input image to high dimension. It is then followed by
a residual structure with two multiscale convolutional layers,
a feature fusion layer and an element-wise subtraction layer.
Each multiscale convolutional layer consists of three paralleled
convolutions with different kernel sizes {1×1, 3×3, 5×5}, to
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Fig. 1. Architecture of the designed dehazing network.
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Fig. 2. Structure of the designed CNN individual.

extract multi-scale features of haze. To keep size invariant for
the three scales, paddings are set to {0, 1, 2} and strides are
{1, 1, 1}. The feature fusion layer is used to fuse the multi-
scale feature maps, which calculates the average values among
the corresponding feature maps of the three scales, pixel by
pixel, see Fig. 3. The fused feature maps represent the haze
component. Then, the element-wise subtraction layer subtracts
the haze component from the input image to perform haze
removal in high dimension. The last 3× 3 convolutional layer
maps the output of the residual structure to low dimension to
generate the final dehazing result.

2) Adaptive fusion: In the designed dehazing framework,
the results of n CNN individuals are multiplied by their corre-
sponding weight maps, and then fused through a convolutional
layer to generate the final dehazing result. The weight map
for each CNN individual is obtained through calculating the
distance between the individual’s inner average haze map and
the input image’s haze map, as shown in Fig. 4.

HTM method [6] can be used to extract the haze map from
a band of the input multispectral remote sensing image, which

16 Conv 5×5

16 Feature Maps

16 Conv 3×3

16 Conv 1×1

48 Feature Maps

AVR

Multiscale feature fusion layer

Fig. 3. Illustration of the multiscale feature fusion layer.

searches dark objects within a local window:

h(x) = min
y∈Ω(x)

I(y) (5)

where Ω(x) is a window centered at x, I is a band of the
multispectral image. In this paper, we use an overlapping
window with size 3 × 3 to search the minimum value in the
first band, on which the haze effect is the most serious. Then,
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Fig. 4. Generation of the weight maps.

TABLE I
SPECTRAL BANDS OF LANDSAT 8 OLI

Spectral Band Wavelength Range
Band 1 - Coastal/Aerosol 0.433− 0.453µm
Band 2 - Blue 0.450− 0.515µm
Band 3 - Green 0.525− 0.600µm
Band 4 - Red 0.630− 0.680µm
Band 5 - Near Infrared 0.845− 0.885µm
Band 6 - Short Wavelength Infrared 1.560− 1.660µm
Band 7 - Short Wavelength Infrared 2.100− 2.300µm
Band 8 - Panchromatic 0.500− 0.680µm
Band 9 - Cirrus 1.360− 1.390µm

the guided image filtering [24] is used to refine the haze map
to remove the small blocking artifacts.

In the designed framework in Fig. 1, CNN individuals are
trained with different levels of haze samples. For individual i,
we calculate the average h(x) using (5) on its training set as
its inner haze map AM i, which reflects the strong dehazing
ability on this level of haze map. For an input hazy image, we
extract its haze map HM using (5). Then, the weight map of
individual i is defined as:

WM i = 1− |HM −AM i| , i = 1, . . . , n. (6)

The weight map of a CNN individual reflects its dehazing
performance for an input hazy image. The bigger the weight,
the smaller the distance between the individual’s inner haze
map and the input image’s haze map, and the stronger the
dehazing ability of this individual on the input image.

Next, n outputs of the CNN individuals are element-wisely
multiplied by the calculated weight maps, and then these
multiplying results are put into a 1 × 1 convolutional layer
to regress the final clear image, see the fusion unit of Fig. 1.

In our designed framework, when dehazing for an input
image, these CNN individuals have different dehazing abilities,
and the one with stronger dehazing ability is assigned bigger
weight. The haze distribution in the image is random, and
the weight maps change with the haze distribution. Therefore,
under the guidance of weight maps, the fusion is adaptive.

B. Training and dehazing
Our experimental data is from Landsat 8 OLI (Operational

Land Imager) imagery with 12-bit radiometric resolution. The

band information is listed in Table I. According to the atmo-
spheric scattering theory, haze is wavelength-dependent, and
the influence of haze decreases gradually with the wavelength
increasing. Haze in Landsat 8 OLI images is obvious in the
coastal, visible and panchromatic bands, and gets weak in the
near-infrared band. For Band 6, Band 7 and Band 9, their
wavelengths are more than 1µm which can penetrate haze
particles (size < 1µm), and the influence of haze can be
ignored. Therefore, in this paper, haze removal is performed in
the 6 bands with wavelength less than 1µm, including coastal,
visible, panchromatic and near-infrared bands, and correspond-
ingly, the input of the designed network has 6 channels. Since
the panchromatic band has a different resolution from the other
bands, it is resized to the same size with the others. Because
deep learning methods usually adopt training images in the
range of [0, 1], in this paper, each band is divided by 212 to
achieve normalization.

Training a deep CNN requires a big labelled dataset in-
cluding hazy images and their corresponding ground truth.
The collection of them is difficult and time-consuming for
multispectral remote sensing images, which need to be taken
under the same scene in different time phases. A feasible
way is to synthesize hazy images based on the physical haze
imaging model [19] [20] [27]. In this paper, a haze synthesis
method based on Rayleigh’s law is proposed to generate
training data, which will be introduced in the next section.

There are two training stages: one is the training of CNN
individuals and the other is the training for fusion. In the
first stage, we divide the whole training dataset into n groups
according to the haze thickness (the training images are
generated by simulation, and their haze thickness is known).
Using the n groups of images to train the n CNN individuals in
Fig. 1 respectively, n dehazing models are obtained. Because
the network individuals are trained using different levels of
haze, they are strong dehazing networks for the corresponding
level of haze, and weak dehazing networks for other levels of
haze. The second stage is to train the fusion unit using the
whole training dataset. Each image in the whole dataset is put
into the n CNN individuals to obtain n dehazing results. And
at the same time, the weight maps are calculated. Finally, the n
dehazing results are multiplied by their corresponding weight
maps and put into the convolutional layer to train the fusion
model.

Both training stages use the Euclidean Distance between
the output image and the clear image as the loss function. S-
tochastic gradient descent (SGD) is used to search the optimal
parameter. All the convolutional weights are initialized using a
zero-mean Gaussian distribution with standard deviation 0.01,
and the biases are initialized with constant 1. Training uses
a batch size of 10. The weight decay and momentum are set
to 0.0001 and 0.9, respectively. The learning rate is initially
set to 10−7 and decreases by half every 50,000 iterations. The
model is trained for 100,000 iterations.

In the test stage, the designed dehazing framework can
achieve end-to-end dehazing. The n CNN individuals and the
fusion unit are connected to constitute the whole dehazing
network. Putting the hazy image into it, the restored image
can be obtained at the output end.
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Fig. 5. Synthetic image with uniform haze.

IV. HAZE SIMULATION

Learning-based dehazing methods always adopt the haze
synthesis manner to produce abundant labeled data for train-
ing. Synthetic hazy images can also be used for quantita-
tive performance assessment of dehazing methods [19] [20].
Therefore, haze simulation plays an important role in dehazing
problem.

Synthesizing hazy images is based on the atmospheric
scattering model (1). Given a haze-free image J(x), the
atmospheric light A and transmission t ∈ (0, 1), the hazy
image can be synthesized using (1). Usually, A is set to 1 for
simplification [19] [20]. For the transmission t, Tang [19] and
Cai [20] set it to be global-constant, which can generate the
image with uniform haze. Pan [27] extracted the transmission
mask from a real hazy image and added it to a clear image
to synthesize the image with nonuniform haze. They assumed
that haze between different bands is wavelength-independent,
and generated the same transmission for all channels. How-
ever, according to the atmospheric scattering theory, haze is
highly wavelength-dependent and decreases progressively with
the wavelength increasing. In this paper, we propose a new
haze synthesis method based on Rayleigh’s law, which takes
the wavelength correlation into account and can generate hazy
images closer to real conditions.

A. Relation of transmissions between two bands

Taking band 1 as standard band, we derive the relation-
al expression of transmissions between it and other bands.
According to (2), the medium transmission is exponential
function of the scattering coefficient β and the light path d.
Taking a natural logarithm on both sides of (2), we can get:

lnt = −dβ(λ) (7)

Then, the ratio of lnt between band 1 and band i can be written
as:

lnt1 : lnti = −dβ1 : −dβi = β1 : βi, i = 2, 3, 4, 5, 8 (8)

where ti and βi are the transmission and scattering coefficient
of the ith band. Thus, transmission ti can be represented as:

ti = e
βi
β1

lnt1 (9)

According to Rayleigh’s law (3), the scattering coefficient
β is inversely proportional to the γth power of the wavelength
λ. Putting (3) into (9), we have:

ti = e
(
λ1
λi

)γ lnt1 (10)

where γ depends on the size of suspended particles in the
atmosphere, and λi denotes the wavelength of the ith band.
Usually, γ is suggested to 0.5, 0.7 and 1, corresponding to
dense haze, haze and moderate haze respectively [5], and λi

is the center wavelength of each band [5] [11], for example,
the center wavelength of band 1 is 0.443 µm (see Table I).

Equation (10) is the final derived relational expression of
transmissions between band 1 and band i. Through this func-
tion, given the transmission t1, ti can be calculated directly.

B. Haze synthesis method

When synthesizing hazy images, the transmission of band
1 (standard band) can be set to a global-constant value or
extracted from a real hazy image using Pan’s method [27],
and other bands’ transmissions are calculated by taking the
transmission of band 1 into (10). Adding these transmissions
on the corresponding bands of a clear image through (1), the
synthetic hazy image is obtained.

Setting the transmission of band1 to constant 0.5, Fig. 5
shows a synthetic image with uniform haze, where the first
six columns are band images (their center wavelengths are
increasing from left to right), and the last column is the RGB
composite images. As can be seen, synthetic haze gets weak
gradually from left to right with the wavelength increasing,
which is consistent with the atmospheric scattering theory.

Fig. 6 shows a synthetic image with nonuniform haze.
The first row exhibits a real hazy image, which provides the
transmission template for band 1. The second row shows the
generated transmission masks, in which the transmission mask
of band 1 is extracted from the real hazy image in the first row
using Pan’s method [27], and the remaining five transmission
masks are calculated by taking the generated transmission
mask of band 1 into (10). Adding these transmission masks
to the clear image in the third row, the synthetic hazy image
can be obtained and exhibited in the last row. It can be seen
that, the distribution of synthetic haze is highly close to that
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Fig. 6. Synthetic image with nonuniform haze.

of the real image in vision, and more importantly, the haze
correlation between different bands is preserved.

V. EXPERIMENT

In this paper, the number of CNN individuals n in the
designed dehazing network (see Fig. 1) is set to 5. The
designed network is trained on a PC with Nvidia GeForce
GTX 1080 GPU and tested in Python code. The whole work
is implemented with Caffe package [28].

To verify the effectiveness of the proposed dehazing frame-
work, the experiments are conducted in three aspects: the ef-
fectiveness of the designed network architecture, the dehazing
performance of the proposed framework, and the influence of
the haze simulation method on dehazing results.

A. Datasets for training and testing

Since the collection of hazy images and their corresponding
haze-free images from multispectral remote sensing images is
difficult, we use the haze synthesis method to produce labeled
data for training and testing.

Synthetic images with uniform haze are used to train the
network to ensure the diversity and balance of haze samples
[19] [20]. We collected 400 haze-free Landsat 8 OLI images
with size 200 × 200 and 6 spectral bands from the website
(http://ids.ceode.ac.cn/query.html). Following the description
of haze synthesis method in Section IV-B, the standard
transmission mask t for band 1 (standard band) is set to
global-constant and changed from 0 to 1 with interval 0.1.
For each transmission mask of band 1, the corresponding
transmission masks of other 5 bands are calculated using
(10). γ is set to 0.5, 0.7 and 1 according to [5]. Thus,
10 × 3 = 30 sets of transmission masks are generated, and
each set includes 6 transmission masks corresponding to the 6

bands. Adding these masks to 400 clear images according to
(1) respectively, totally 30 × 400 = 12000 hazy images with
different haze densities are obtained. Of the 12000 images,
9000 images are used as training set to train the network,
and the remained 3000 images are used as validation set to
determine the optimal parameters. In the first training stage,
the training set and validation set are divided into five groups
according to the value of t, where the values of t for the
five groups are {0.1, 0.2}, {0.3, 0.4}, {0.5, 0.6}, {0.7, 0.8},
{0.9, 1}, respectively. Each group is used to train a CNN
individual of the designed network. In the second training
stage, the five groups are merged.

The test set is used for qualitative and quantitative assess-
ment. Nonuniform haze is more common and more challeng-
ing to be removed. We synthesize images with nonuniform
haze to verify the effectiveness of the proposed method.
We extract 8 transmission maps from real hazy images with
different haze distributions using the method in [27]. Using
the 8 extracted transmission maps, we generate 80 standard
transmission masks for band 1 through t1 = mi × k, where
mi is the ith extracted transmission map, and k is a coefficient
varying from 0 to 1 with interval 0.1. Fixing γ to 1 and
calculating the corresponding transmission masks of other 5
bands using (10), totally 80 sets of transmission masks are
obtained (each set includes 6 channels). Adding them on 100
haze-free images respectively (do not overlap with the 400
haze-free images used in the training set), the test set including
80×100 = 8000 images with nonuniform haze is established.

B. Verification of network architecture

In our proposed dehazing framework, five CNN individuals
are used to learn the regression from the hazy image to the
clear image, which have different dehazing abilities, and then
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Fig. 7. Dehazing instance for a synthetic hazy image. (a) Synthetic image. (b) Ground truth. From (c) to (h) are Long’s, Pan’s, Feng’s, Makarau’s, Cai’s and
our results, respectively.

TABLE II
EUCLIDEAN DISTANCE FOR DIFFERENT NETWORKS ON VALIDATION SET

Network type Euclidean Distance
Non-residual 1326.76
Simple residual 1303.06
Multiscale residual 1266.19
Cascade connection of 5 CNNs 1228.26
Parallel connection of 5 CNNs 1085.16
Proposed 983.78

their outputs are combined with weight maps to generate
the final restored image. Each of the CNN individuals is
with residual structure and uses multiscale convolutions to
extract the haze feature. To demonstrate the effectiveness

and performance of our network architecture, we compare it
with five counterparts: non-residual network, simple residual
network, multiscale residual network (a CNN individual of the
designed network in Fig.1), the cascade connection of 5 CNN
individuals, and the parallel connection of 5 CNN individuals
(the designed network without the guidance of weight maps,
see Fig. 1), where the first three networks are single networks
and they have the same number of layers. For the cascade
connection network of 5 CNN individuals, the training is
using the whole training set, while for the parallel connection
network, the training set is divided to 5 groups according to
the haze thickness, and each group is used to train a CNN
individual.

We use the Euclidean Distance between the dehazed image
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Fig. 8. Dehazing instance for a real hazy image. (a) Real hazy image (ID: LC81230322016365LGN00). (b) Reference image collected in the same scene at
a different time (ID: LC81230322016333LGN00). From (c) to (h) are Long’s, Pan’s, Feng’s, Makarau’s, Cai’s and our results, respectively.

and the ground truth to evaluate the performances of these
networks. A lower value of Euclidean Distance indicates a
better performance. Table II gives each network’s average
result on the validation set. As can be seen, when using the
single network to dehaze, the multiscale residual network (a
CNN individual in Fig.1) outperforms the non-residual and
simple residual network, which demonstrates the advantage
of the multiscale features for dehazing. In addition, when
multiple network individuals are connected in cascade or in
parallel, the performance is improved, see the fifth and the
sixth rows in Table II. Compared with the simple cascade
connection network and parallel connection network, our final
designed network fuses the outputs of 5 CNN individuals

under the guidance of weight maps, and achieves the best
dehazing result.

C. Comparison with state-of-the-art methods

To verify the effectiveness of our proposed dehazing frame-
work, we compare it with five state-of-the-art dehazing meth-
ods, including Long’s [15], Pan’s [17], Feng’s [2], Makarau’s
[6] and Cai’s [20] methods. In [20], Cai used a CNN to
regress the transmission to dehaze for outdoor images. In
this paper, we retrain Cai’s network on multispectral remote
sensing images and compare it with our designed network to
verify the performance of our dehazing framework.
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(e) (f)(a) (b) (c) (d) (g)

Fig. 9. Dehazing instances for real hazy images under different scenes. (a) Original image. From (b) to (g) are Long’s, Pan’s, Feng’s, Makarau’s, Cai’s and
our results, respectively.

TABLE III
VALUES OF EVALUATION INDICATORS ON TEST SET

Metric MSE SSIM PSNR WPSNR UQI
Long’s 0.0400 0.7220 15.5313 21.8908 0.7847
Pan’s 0.0334 0.8211 17.5418 23.6010 0.7674

Feng’s 0.0552 0.7923 14.4788 20.5485 0.7042
Makarau’s 0.0172 0.8053 20.3359 26.4522 0.8235

Cai’s 0.0197 0.8421 19.5578 25.8724 0.8192
Our 0.0074 0.8964 23.8243 30.0059 0.8986

1) Comparison on synthetic images: Synthetic images can
provide quantitative and qualitative evaluations for dehazing
methods. Fig. 7 shows a dehazing instance on a multispectral
image using our method and five compared methods, where the
first row is the synthetic hazy image, the second row is the
reference image (ground truth), and the remaining six rows

are the dehazing results for the first row. Long’s and Pan’s
methods were developed for the remote sensing images with
three channels from Google Earth. When using them to remove
haze from multispectral images, Long’s method is failed with
obvious spectral distortions and Pan’s method cannot remove
haze completely. Feng’s and Makarau’s methods were origi-
nally developed for multispectral images. Obviously, Feng’s
result is under-dehazed and Makarau’s result is over-dehazed.
As for the deep learning based methods, Cai’s method used a
CNN to estimate the transmission, which fails for the dense
haze condition and leads to an under-dehazing result, while
our method directly regresses the clear scene and can correctly
dehaze for each band. Therefore, among the six methods, our
method can accurately restore the clear scene in each band,
and the result is the closest to the reference image.

We calculate five metrics between dehazed images and
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their reference images (ground truth) to quantitatively evaluate
the performance of these dehazing methods, including Mean
Squared Error (MSE), structural similarity (SSIM) [29], peak
signal-to-noise ratio (PSNR), weighted peak signal-to-noise
ratio (WPSNR) [30], and universal image quality index (UQI)
[31]. The dehazing performance is negatively correlated with
the MSE metric, and positively associated with the other four
metrics. Table III gives the statistical results of these metrics
on test set. Obviously, with the best values in all metrics,
our method greatly outperforms the compared methods and
achieves the best dehazing result.

2) Comparison on real hazy images: We verify the perfor-
mance of our proposed framework on real hazy images. Fig. 8
shows a dehazing instance for a real image with nonuniform
haze using the six dehazing methods, where the first row is
the real hazy image (ID: LC81230322016365LGN00), and
the second row is the corresponding haze-free image (ID:
LC81230322016333LGN00) collected under the same scene at
a different time, as reference. It can be seen that, Long’s result
is over-dehazed and its RGB composite image is over-saturated
compared with the reference image. Some texture information
is seriously lost in Band 1 and Band 5. Pan’s and Feng’s
results are under-dehazed, and some haze is still remained
in the first two bands. Makarau’s and Cai’s methods lead to
color distortions to different degrees in the RGB composite
images. What’s more, Cai’s method again under-estimates the
haze, leading to under-dehazing result for Band 1 and Band
2. Different from the compared methods, our method properly
removes haze in each band along with good color fidelity.

Fig. 9 shows true color composite images of more dehazing
instances with different land cover types including red ground,
village, forest, mountain, urban, desert and sea. The first row
is an instance for a clear image. It can be seen that, Pan’s
and our results are close to the original image and achieve
good color fidelity, while others are over-enhanced to different
degrees. From the second row to the last row, the thickness
and spatial distribution of the haze is varied, and as can be
seen, our method is superior to the compared methods not only
in dehazing ability but also in color fidelity.

(a) (b) (c)

Fig. 10. The influence of haze synthesis methods on dehazing results. (a) Real
hazy image. (b) and (c) are dehazing results using wavelength-independent
and our wavelength-dependent haze synthesis methods, respectively.

D. Influence of haze simulation method on dehazing results

The performance of learning-based methods is highly de-
pendent on the training data. Therefore, a good haze simulation
method is of great importance to the dehazing results. In [19],
[20] and [27], the wavelength-independent haze simulation
methods were used to synthesize hazy images, in which
all bands shared the same transmission. However, haze in
multispectral images is wavelength-dependent according to
the atmospheric scattering theory. In this paper, taking the
wavelength correlation into account, we propose a new haze
synthesis method.

We analyze the influence of different haze synthesis meth-
ods on dehazing results. When using a network trained by syn-
thetic hazy images to remove haze from real images, the better
the dehazing results, the closer the synthetic haze is to the real
haze and the better the performance of the corresponding haze
simulation method. Two dehazing networks are trained using
the synthetic images generated by the wavelength-independent
method and our wavelength-dependent method, respectively.
Using the two trained dehazing networks to dehaze for real
hazy images respectively, Fig. 10 shows the true color com-
posite results of two dehazing instances. It can be seen that, the
result images generated by our method have more details and
higher color fidelity, which means that our synthesis method
can generate hazy images closer to real conditions than the
compared method. Therefore, using our synthetic hazy images
to train the network, better dehazing results can be achieved.

VI. CONCLUSION

Haze often appears in multispectral remote sensing images,
which decreases the image visibility and causes wrong inter-
pretation. In this paper, a novel haze removal method based
on deep CNN is proposed for multispectral remote sensing
images. The designed network includes two parts. One is the
parallel connection of multiple CNN individuals with residual
structure. Each individual is used to learn a regression from
the hazy image to the clear image, which mines multiscale
features through multiscale convolutions to obtain stronger
representation for haze. Adopting the residual structure in the
designed network, only the haze component is learned and rep-
resented by convolutional layers, and the complex texture and
color information can be directly provided by the input image.
Thus, the learning difficulty is decreased. These individuals are
trained using different levels of haze samples, and they have
different dehazing abilities. The second part of the designed
network is the fusion of multiple CNN individuals to generate
the final dehazed image. We calculate the weight maps to
guide the fusion of these individuals’ outputs. Because haze is
spatially-varying, the fusion model is changed with the haze
distribution, and the haze in the image is adaptively removed.
Learning-based dehazing methods always adopt haze synthesis
manner to produce abundant labeled data for training, and
a good haze simulation method is of great importance to
dehazing results. In this paper, according to the atmospheric
scattering model and Rayleigh’s law, the relational expression
of transmissions between different bands is derived, and a
wavelength-dependent haze simulation method is proposed.
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The proposed haze synthesis method can generate haze highly
close to real conditions, using which to train the dehazing
network, more accurate dehazing results can be obtained.
Qualitative and quantitative experiments are conducted on
multispectral remote sensing images from Landsat 8 OLI. Re-
sults indicate that compared with the state-of-the-art methods,
our proposed dehazing method can effectively remove haze in
each band of multispectral images under different scenes.
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