
Deep Adversarial Decomposition: A Unified Framework for Separating
Superimposed Images

Zhengxia Zou1*, Sen Lei2, Tianyang Shi3, Zhenwei Shi2, Jieping Ye1,4
1University of Michigan, Ann Arbor, 2Beihang University, 3NetEase Fuxi AI Lab, 4Didi Chuxing
{zzhengxi, jpye}@umich.edu, {senlei, shizhenwei}@buaa.edu.cn, shitianyang@corp.netease.com

Abstract

Separating individual image layers from a single mixed
image has long been an important but challenging task.
We propose a unified framework named “deep adversarial
decomposition” for single superimposed image separation.
Our method deals with both linear and non-linear mixtures
under an adversarial training paradigm. Considering the
layer separating ambiguity that given a single mixed input,
there could be an infinite number of possible solutions, we
introduce a “Separation-Critic” - a discriminative network
which is trained to identify whether the output layers are
well-separated and thus further improves the layer sepa-
ration. We also introduce a “crossroad l1” loss function,
which computes the distance between the unordered out-
puts and their references in a crossover manner so that the
training can be well-instructed with pixel-wise supervision.
Experimental results suggest that our method significantly
outperforms other popular image separation frameworks.
Without specific tuning, our method achieves the state of
the art results on multiple computer vision tasks, including
the image deraining, photo reflection removal, and image
shadow removal.

1. Introduction
In the computer vision field, many tasks can be consid-

ered as image layer mixture/separation problems. For ex-
ample, when we take a picture on rainy days, the image
obtained can be viewed as a mixture of two layers: a rain-
streak layer and a clean background layer. When we look
through a transparent glass, we see a mixture of the scene
beyond the glass and the scene reflected by the glass.

Separating superimposed images with single observation
has long been an important but challenging task. On one
hand, it forms the foundation of a large group of real-world
applications, including transparency separation, shadow re-
moval, deraining, etc. On the other hand, it is naturally a
massively ill-posed problem, where the difficulty lies not
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only in the absence of the mixture function but also in the
lack of constraints on the output space. In recent litera-
ture, most of the above-mentioned tasks are investigated
individually despite the strong correlation between them
[8, 23, 48, 54, 59, 60]. In this paper, we propose a new
framework for single superimposed image separation which
deals with all the above tasks under a unified framework.

Learning a priori for image decomposition. Given
a single superimposed image, as we have no extra con-
straint on the output space, there could be an infinite num-
ber of possible decomposition. Previous works often in-
tegrate hard-crafted priors to apply additional constraints
to their separation outputs. For example, in recent litera-
ture [17, 67], researchers introduced the “gradient exclu-
siveness” [67] and the “internal self-similarity” [17], where
the former one emphasizes the independence of the layers
to be separated in their gradient domain, and the latter one
assumes that the distribution of small patches within each
separate layer should be “simpler” (more uniform) than in
the original mixed one. However, these hand-crafted priors
may introduce unexpected bias and thus fails in complex
mixture conditions. In this paper, we investigate an inter-
esting question: can a good prior be learned from data? To
answer this question, we re-examine the prior under a to-
tally different point of view by taking advantage of the re-
cent success of generative adversarial networks [19, 28, 47].
We introduce a “Separation-Critic” - a discriminative net-
work DC , which is trained to identify whether the output
layers are well-separated. The layer separation can be thus
gradually enforced by fooling the Critic under an adversar-
ial training paradigm.

Crossroad loss function. In addition to the Critic DC ,
we also introduce a layer separator G and train it to min-
imize the distance between the separated outputs and the
ground truth references. However, a standard l1 or l2 loss
does not apply to our task since the G may predict un-
ordered outputs. We, therefore, introduce a “crossroad l1”
loss which computes the distance between the outputs and
their references in a crossover fashion. In this way, the train-
ing can be well-instructed by pixel-wise supervision.

4321



Figure 1: We propose a unified framework for single mixed image separation under an adversarial training paradigm. Our
method can be applied to a variety of real-world tasks, including image deraining, photo reflection removal, image shadow
removal, etc.

Confronting nonlinear mixture and degradation. In
some real-world image separation tasks, the mixture of im-
ages is usually beyond linear. For example, the formation
of a reflection image may depend not only on the relative
position of the camera to the image plane but also on light-
ing conditions [59]. Besides, the degradation (e.g., over-
exposure and noise) may further increase the difficulty of
the separation. In these conditions, one may need inject-
ing “imagination” into the algorithm to recover the hidden
structure of degraded data. Inspired by the recent image
translation methods [28], we further introduce two Marko-
vian discriminators (PatchGAN) to improve the perceptual
quality of the outputs.

Experimental results show that our method significantly
outperforms other popular image separation frameworks
[17, 35]. We apply our method to a variety of computer vi-
sion tasks. Without specifically tuning, we achieve the state
of the art (sota) results on nine datasets of three different
tasks, including image deraining, photo reflection removal,
and image shadow removal. To our best knowledge, this
is the first unified framework for solving these problems as
most previous solutions on these tasks are separately inves-
tigated and designed.

2. Related Work
Superimposed image separation. In signal process-

ing, a similar topic to our paper is Blind Source Separation
(BSS) [5, 14–16, 27], which aims to separate source sig-
nals from a set of mixed ones. The research of this topic
can be traced back to the 1990s [26], where the Indepen-
dent Component Analysis (ICA) [27] was a representative
of the methods at the time. The key to estimating the ICA

model is the Central Limit Theorem, i.e., the distribution
of a sum of two images tends toward a Gaussian distribu-
tion, under certain conditions. Some statistics-based criteria
thus have been introduced to measure the independence and
non-Gaussianity of the images, e.g., Kurtosis and negative
entropy.

The main difference between the BSS and our task is that
the former one typically requires multiple mixed inputs [14–
16, 27] or additional user interactions [35], while the latter
one does not. We focus on the latter case since multiple
mixed inputs or user interactions are not always available
in practice. Recently, Gandelsman et al. proposed a deep
learning-based method called Double-DIP [17] that can sep-
arate superimposed images with single observation under
certain conditions. However, their method can only handle
the input with regular mixed patterns.

Related application. Many real-world tasks can be
viewed as special cases of superimposed image separation:

1) Single Image Deraining. A rainy image can be sim-
ply viewed as a superposition of a clean background image
and rain streaks. Some early deraining methods were de-
signed based on low-rank constraints [4, 41, 42, 71] and
sparse coding methods [20, 29, 43, 57], where the rain-
streaks are considered as high frequency noise. How-
ever, these methods usually lead to over-smoothed results.
Recent deraining methods typically formulate the derain-
ing as a deep learning based “image-to-image” translation
process which is trained with pixel-wise regression loss
[12, 13, 23, 39, 55, 62, 64].

2) Reflection-removal. Early reflection removal methods
often require additional input images [35] and hand-crafted
priors on estimating the reflection layer. Such priors include



Figure 2: An overview of our method. Our method consists of a separator G and several discriminators. The G, which is
trained under a “crossroad l1” loss, aims to decompose a single mixed input into two individual images. To identify whether
the separation is good or not, we introduce an “Critic” DC , which is trained together with G under an adversarial training
paradigm. We further use two Markovian Discriminators (DM1, DM2) to improve the perceptual quality of the outputs.

the smoothness prior [40, 51], gradient sparsity constraint
[2, 36, 37], ghost cues [51], etc. In Recent methods, the
priors are usually explored by data-driven methods [9, 44,
53, 60] and adversarial training/synthesis [59, 67], which
better handle more complex reflections.

3) Shadow-removal. To remove shadows, some early
works designed physical models based on illumination in-
variant assumption [10, 11]. Later, more methods based on
hand-crafted features were proposed [1, 21, 25, 32, 52, 66,
69]. Similar to deraining and reflection removal, recent re-
searches on shadow removal also suggest using deep learn-
ing or adversarial training techniques, which brings addi-
tional improvements especially on complex lightening con-
ditions [8, 24, 30, 33, 46, 50, 54, 68].

Generative Adversarial Networks (GAN). GAN has
received a great deal of attention in recent years and has
achieved impressive results in a variety of computer vision
tasks, e.g., image generation [7, 47], image style transfer
[28, 70], image super-resolution [34], etc. A typical GAN
[19] consists of two neural networks: a generator G and
a discriminator D. The key to the GAN’s success is the
idea of adversarial training where the G and D will con-
test with each other in a minimax two-player game and
forces the generated data to be, in principle, indistinguish-
able from real ones. More recently, GAN has also been ap-
plied to some image separation tasks to improve perceptual
quality of the recovered images, including image deraining
[38, 65], image reflection removal [44, 59, 67] and image
de-shadowing [8, 24, 33, 54].

3. Methodology

We frame the training of our model as a pixel-wise re-
gression process with the help of adversarial losses. Our
method consists of an image separator G, a Separation
Critic DC and two Markovian discriminators DM1 and
DM2. Fig. 2 shows an overview of our method.

3.1. Crossroad l1 Loss Function

Suppose x̂1 and x̂2 represent two individual images and
y = f(x̂1, x̂2) represents their mixture. We assume the
operation f(·) is unknown and could be either a linear or
a non-linear mixing function. Given a mixed input y, our
separator aims to predict two individual outputs x1 and x2:

x1, x2 = G(y), (1)

that recover the two original images x̂1 and x̂2.
We train the separator G to minimize the distance be-

tween its outputs (x1, x2) and their ground truth (x̂1, x̂2).
Note that since we can not specify the order of the two out-
puts for a typical image decomposition problem (especially
when the x̂1 and x̂2 are from the same image domain), the
standard pixel-wise l1 or l2 loss functions do not apply to
our task. The solution to this problem is to introduce new
loss functions that can deal with unordered outputs. We
therefore propose a new loss function called “crossroad l1”
loss for our task. The main idea behind is to crossly com-
pute the distance by exchanging the order of the outputs and
then take their minimum value as the final response:

lcross((x1, x2), (x̂1, x̂2))

=min{d1,1 + d2,2, d1,2 + d2,1}
(2)

where di,j = ‖xi− x̂j‖1, i, j ∈ {1, 2}. We use the standard
l1 function rather than l2 in di,j since it encourages less
blurring effect. The G can be therefore trained to minimize
the loss Lcross on an entire dataset:

Lcross(G) = Ex̂i∼pi(x̂i){lcross((x1, x2), (x̂1, x̂2))}, (3)

where pi(x̂i) represents the distribution of the image data,
and i ∈ {1, 2}.

3.2. Separation Critic

Considering the layer ambiguity, instead of applying
any hand-crafted [67] or statistics-based constraints [27] to



Figure 3: We compare different decomposition priors for
image separation, including the “exclusion loss” [17, 67],
“Kurtosis” [27], and the proposed “Separation-Critic”. For
either of the three metrics, a lower score indicates a heav-
ier mixture. In sub-figure (a), we plot the response of the
three metrics given a set of mixed inputs that are synthe-
sized based on Eq. (5). Clearly, if a metric is good enough,
the response should be monotonically decreasing as α in-
creases. We also test on additional nonlinear corruptions,
including (b) overexposure, (c) random gamma correction,
and (d) random hue transform. The proposed Critic shows
better robustness in all conditions.

our output space, we learn a decomposition prior through
an adversarial training process. We therefore introduce
a “Separation-Critic” DC which is trained to distinguish
between the outputs (x1, x2) and a pair of clean images
(x̂1, x̂2). We express its objective function as follows:

Lcritic(G,DC) = Ex̂i∼pi(x̂i){logD(x̂1, x̂2)}
+ Exi∼pi(xi){log(1−D(x1, x2))}
+ Ex̂i∼pi(x̂i){log(1−D(mix(x̂1, x̂2)))}.

(4)

Note that when training the DC with fake samples, in addi-
tion to the decomposed output (x1, x2), we also synthesize
a set of “fake” images by mixing two clean images with ran-
dom linear weights (x′1, x

′
2) = mix(x̂1, x̂2) to enhance its

discriminative ability on mixed images:

x′1 = αx̂1 + (1− α)x̂2, x′2 = (1− α)x̂1 + αx̂2. (5)

At the input end of the DC , we simply concatenate two im-
ages together in the channel dimension for modeling their
joint probability distribution. The adversarial training of
G and DC is essentially a minimax optimization process,
where G tries to minimize this objective while DC tries to
maximize it: G? = argminG maxDC

Lcritic(G,DC).
In Fig. 3, we give four examples to illustrate the effec-

tiveness of our Critic. We compare a well-trained DC with
two popular metrics for image separation, 1) the exclusion
loss [17, 67], and 2) the Kurtosis [27], where the former
one enforces separation of two images on the image gradi-
ent domain, and the latter one is widely used in BSS for
measuring the independence (non-Gaussianity) of the re-
covered signals: Kurtosis(u) = E{u4} − 3(E{y2})2. For
either of the three metrics, a lower score indicates a higher
degree of mixture1. We mix two images by using Eq. (5)
with different α. Clearly, if a metric is good enough, the
curve should be monotonically decreasing as α increases.
Fig. 3 (a) shows the response the above three metrics. We
further add some additional nonlinear corruptions on the
mixed images, including (b) random overexposure, (c) ran-
dom gamma correction, and (d) random hue transform. We
can see our Critic shows better robustness, especially for
nonlinear degradation.

3.3. Improving Perceptual Quality

To improve the perceptual quality of the decomposed im-
ages, we further introduce another two conditional discrim-
inators DM1 and DM2 to enhance high-frequency details.
We follow Isola et al. [28] and build DM1 and DM2 as
two local perception networks - that only penalize struc-
ture at the scale of patches (a.k.a the Markovian discrimi-
nator or “PatchGAN”). The DM1 and DM2 try to classify
if each N ×N patch in an image is a clean image (real) or
a decomposed one (fake). This type of architecture can be
equivalently implemented by building a fully convolutional
network with N ×N perceptive fields, which is more com-
putationally efficient since the responses of all patches can
be obtained by taking only one time of forward propagation.
We express the objective of DM1 and DM2 as follows:

LMi(G,DMi) = E(x̂i,y)∼pi(x̂i,y){logD(x̂i|y)}
+ E(xi,y)∼pi(xi,y){log(1−D(xi|y))},

(6)

where i = 1, 2. Our final objective function is defined as
follows:
L(G,DC , DMi) = Lcross(G) + βCLcritic(G,DC)

+ βM
∑
i=1,2

LMi(G,DMi)
(7)

1To ensure the monotonic consistency of the three metrics, we plot their
negative values when computing the exclusion loss and Kurtosis



Figure 4: A comparison between our method and two image
separation methods: Double-DIP [17] and a user-assisted
framework proposed by Levin et al. [35]. Check out our
supplementary material for more separation results.

where βC > 0 and βM > 0 control the balance between the
different components of the objective. We aim to solve:

G? = argmin
G

max
DC ,DMi

L(G,DC , DMi), i = 1, 2. (8)

The networks G, DC and DMi thus can be alternatively
updated in an end-to-end training process.

3.4. Implementation Details

We follow the configuration of the “UNet” [49] when
designing the architecture of our separator G. We build our
DC ,DM1 andDM2 as three standard FCNs with 4, 3, and 3
convolutional layers. The perceptive field ofDM1 andDM1

is set to N = 30. We resize the input of DC to a relatively
small size, e.g., 64 × 64, to capture the semantics of the
whole image instead of adding more layers. We do not use
batch-normalization in G as it may introduce unexpected
artifacts. As our default settings, we train our model for 200
epochs by using the Adam optimizer with batch size = 2
and learning rate = 0.0001. We set βC = βM = 0 for
the first 10 epochs and set βC = βM = 0.001 for the rest
epochs. For more implementation details, please refer to
our supplementary material.

4. Experimental Analysis
We evaluate our methods on four tasks: 1) superimposed

image separation, 2) image deraining, 3) image reflection
removal, and 4) image shadow removal.

Dogs+Flwrs. LSUN

Double-DIP [17] (CVPR’19) 14.70 / 0.661 13.83 / 0.590
Levin et al. [35] (TPAMI’07) 10.54 / 0.444 10.46 / 0.366
Our method (tr. on ImageNet) 23.32 / 0.803 21.63 / 0.773
Our method (w/ default tr. set) 25.51 / 0.849 26.32 / 0.883

Table 1: Comparisons (PSNR/SSIM) of different methods
on mixed image separation: 1) Stanford-Dogs [31] + VGG-
Flowers [45], 2) LSUN Classroom + LSUN Church [63].
To test on the cross-domain generalization ability of our
method, we also train on ImageNet and test on the above
datasets. Higher scores indicate better.

4.1. Separating Superimposed Images

We evaluate our method on two groups of well-known
datasets: 1) Stanford-Dogs [31] + VGG-Flowers [45], 2)
LSUN Classroom + LSUN Church [63]. During train-
ing phase, we randomly select two images (x̂1, x̂2) from
one group of the datasets and then linearly mix them as
y = αx̂1 + (1 − α)x̂2 with a random linear mixing fac-
tor α from the range of [0.4, 0.6]. During testing, we set
the mixing factor as a constant α = 0.5. All images are
resized to 256x256 pixels. We follow the datasets’ origi-
nal train/test split when performing training and evaluation.
For the LSUN dataset, due to its large number of images,
we only train our method for 20 epochs.

We compare our method with other two popular meth-
ods for single mixed image separation: the Double-DIP
(CVPR’19) [17] and Levin’s method (TPAMI’07) [35],
where the former one is an unsupervised deep learning
based method, and the latter one is designed based on im-
age statistics and requires additional user-interactions. Fig.
4 shows two typical results of the above three methods.
Table 1 shows their quantitative evaluations2. We use the
Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity (SSIM) index [58] as two basic evaluation metrics. The
accuracy is crossly computed between the outputs and their
references. We record the best of the two scores as the final
accuracy. Our method significantly outperforms the other
two methods in terms of both visual quality and quantita-
tive scores. As Double-DIP and Levin’s methods do not
require training data of specific domain, we also test on the
cross-domain generalization ability of our method by train-
ing on ImageNet-1M (∼1.28M images, randomly mixed on
1K classes, with 6 training epochs) [6] and test on the above
datasets. Note that this time we do not train specifically on
their own training sets and our method again shows superi-
ority over the other two methods.

2Since Levin’s method requires heavy user interactions and the Double-
DIP is extremely slow (∼40 minutes / image on a GTX-1080Ti GPU), we
only evaluate these two methods on 10 images that are randomly selected
from each of our test set.



Figure 5: A comparison of image separation results with the
standard l1 loss and the proposed crossroad l1 loss.

Figure 6: A comparison of the results based on different im-
age separation priors: Zhang’s exclusion loss [67], Kurtosis
[27], and the Separation Critic (ours).

Ablation PSNR SSIM PI

Ours (with standard l1 loss) 16.26 0.6768 23.34
Ours (with cross-l1 loss) 22.74 0.7782 21.92

Table 2: A comparison of the image separation results
with standard l1 loss and the proposed crossroad l1 loss on
Stanford-Dogs dataset [31]. PSNR/SSIM: higher scores in-
dicate better. PI: lower scores indicate better.

Ablation PSNR SSIM PI

cross-l1 only 17.34 0.6693 22.41
cross-l1 + Zhang’s loss [67] 17.77 0.6840 23.09
cross-l1 + kurtosis [27] 18.02 0.7141 22.28
cross-l1 + Sep-Critic 18.29 0.7231 22.16
cross-l1 + Sep-Critic + adv-pcpt. 18.27 0.6938 21.97

Table 3: Evaluation of decomposition results with different
priors on Stanford-Dogs [31] + VGG-Flowers [45] datasets
(with overexposure and noise). PSNR/SSIM: higher scores
indicate better. PI: lower scores indicate better.

4.2. Controlled Experiments

Analysis on the crossroad l1 loss. To evaluate the im-
portance of our crossroad l1 loss, we replace it with a stan-
dard l1 while keeping other settings unchanged. We train
the above two models on the Stanford-Dogs [31]. Table 2
shows the evaluation results of the two models and Fig. 5
shows a group of visual comparisons. We can see our
method clearly separates the two images while the standard
l1 fails to do that and encourages “averaged” outputs.

Analysis on the adversarial losses. We compare our

Rain100H [62] Rain800 [65]

LP [41] (CVPR’16) ¶‡ 15.05 / 0.425 20.46 / 0.730
DDN [13] (CVPR’17) ¶‡ 22.26 / 0.693 21.16 / 0.732
JORDER [62] (CVPR’17) ‡ 23.45 / 0.749 22.29 / 0.792
RESCAN [39] (ECCV’18) ‡ 26.45 / 0.846 24.09 / 0.841
DID [64] (CVPR’18) † 25.00 / 0.754 - / -
DAF-Net [23] (CVPR’19) † 28.44 / 0.874 - / -
PReNet [48] (CVPR’19) ¶ 29.46 / 0.899 - / -
Our method 30.85 / 0.932 24.49 / 0.885

Table 4: A comparison (PSNR / SSIM) of different derain-
ing methods on two datasets: Rain100H [62] and Rain800
[65]. Results reported by: # [62], ‡ [39], † [23], ¶ [48].

DID [64] DDN1k [13]

LP [41] (CVPR’16) † 22.75 / 0.835 20.66 / 0.811
JORDER [62] (CVPR’17) † 24.32 / 0.862 22.26 / 0.841
DDN [13] (CVPR’17) † 27.33 / 0.898 25.63 / 0.885
JBO [71] (ICCV’17) † 23.05 / 0.852 22.45 / 0.836
DID [67] (CVPR’18) † 27.95 / 0.909 26.07 / 0.909
SPANet [55] (CVPR’19) # 30.05 / 0.934 - / -
Our method 31.67 / 0.942 27.91 / 0.893

Table 5: A comparison (PSNR / SSIM) of different derain-
ing methods. All methods are trained on the training set of
DID [64] and then tested on the test sets of DID and DDN1k
[13]. Results reported by: † [64], # [55].

method with different decomposition priors on Stanford-
Dogs [31] + VGG-Flowers [45] datasets. In addition to the
linear mixing inputs, we also apply overexposure and noises
to increase the separation difficulties. To better evaluate the
perceptual quality, we introduce another metric called Per-
ception Index (PI) [3]. The PI was originally introduced as
a no-reference image quality assessment method based on
the low-level image statistics and is recently widely used
for evaluating super-resolution results [3, 56]. In Fig. 6 and
Table 3, we compare our adversarial losses with the exclu-
sion loss [17, 67] and the Kurtosis [27]. As we can see, the
integration of our adversarial losses yields noticeable im-
provements in the output quality. We found the exclusion
loss encourages blurred output and it is hard to balance it
with other losses. We also found the Kurtosis may intro-
duce a slight color-shift on its outputs.

4.3. Application: Deraining

We conduct our deraining experiments on several
datasets: Rain100H [62], Rain800 [65], and DID [64]. To
better test the generalization ability of our method, we fol-
low Zhang et al. [64] to train our method on DID [64], and
then randomly sample 1,000 images from the dataset [13]
as another testing set, denoted as DDN1k. Given a rainy in-
put image, we use its clean background and the rain streak



Figure 7: Deraining results of PReNet [48] (CVPR’19) and our method on the Rain100H [62] dataset. Our method encourages
fewer artifacts than PReNet. Also, the rain-streak map can be well-estimated by using our method. As a comparison, the
PReNet ignores this part of the output.

Reflection Removal Dataset [59]
Method Focused set Defocused set Ghosting set Method Dataset [60]

CEILNet [9] (ICCV’17) † 19.524 / 0.742 20.122 / 0.735 19.685 / 0.753 Li & Brown [40] (CVPR’14) ¶ 16.46 / 0.745
Zhang et al. [67] (ICCV’18) † 17.090 / 0.712 18.108 / 0.758 17.882 / 0.738 SIRP [2] (CVPR’17) ¶ 19.18 / 0.760
BDN [60] (ECCV’18) † 14.258 / 0.632 14.053 / 0.639 14.786 / 0.660 CEILNet [9] (ICCV’17) ¶ 19.80 / 0.782
RmNet [59] (CVPR’19) † 21.064 / 0.770 22.896 / 0.840 21.008 / 0.780 BDN [60] (ECCV’18) ¶ 23.11 / 0.835
Our method 22.809 / 0.871 23.195 / 0.891 23.266 / 0.881 Our method 23.18 / 0.877

Table 6: Reflection removal results (PSNR / SSIM) of different methods on two challenging datasets [59] and [60]. In dataset
[59], the images are nonlinearly synthesized with three types of reflections: “focused”, “defocused”, and “ghosting”. We
achieve the best results in all experimental entries. Results reported by: † [59], ¶ [60].

Figure 8: Deraining results of our method on some real-
world rain images [65]. 1st row: input. 2nd row: output.

map as our ground truth references. Since Rain800 and DID
do not provide rain streak maps, we simply set the ground
truth of our second output as a “zero image” when training
on these two datasets. In all our following experiments, we
set βC = βM = 0.0001, and set the input/output size of our
separator G to 512x512 pixels.

We compare with more than five sota deraining meth-
ods, including RESCAN (ECCV’18) [39], DID (CVPR’18)
[64], DAF-Net (CVPR’19) [23], PReNet (CVPR’19) [48],
SPANet (CVPR’19) [55], etc. Table 4 and Table 5 show
the deraining results of these methods. Our method out-
performs other sota methods in most entries. Fig. 7 shows

Dataset [67]

Li & Brown [40] (CVPR’14) * 18.29 / 0.750
CEILNet [9] (ICCV’17) * 19.04 / 0.762
Zhang et al. [67] (ICCV’18) * 21.30 / 0.821
Our method 22.36 / 0.846

Table 7: Reflection removal results (PSNR / SSIM) of dif-
ferent methods on dataset [67]. * results reported by [67].

two examples from the dataset Rain100H with our method
and PReNet (CVPR’19) [48]. Our method encourages less
artifacts. Another advantage of our method is that the rain-
streak map can be also estimated. As a comparison, the
PReNet ignores this part of output. Fig. 8 shows a group of
our deraining results on some real-world rain images.

4.4. Application: Image Reflection Removal

We test our method on two large scale datasets for re-
flection removal [59, 60]. The dataset [60] consists of
over 50,000 images which are synthesized by mixing their
transmission layers and reflection layers (linear mixture +
Gaussian blur). The dataset [59] consists of 12,000 images
with three types of reflections: “focused”, “defocused”,



Figure 9: Results of different reflection removal methods: BDN [60] (ECCV’18), RmNet [59] (CVPR’19), and our method
on a real-world reflection image from the dataset [67].

Figure 10: Reflection removal results of our method on the
BDN dataset [60]. 1st row: input. 2nd row: our output.

Figure 11: Results of our method and DSC [22] (TPAMI19)
on two datasets: ISTD [54] (1st row), SRD [46] (2nd row).

and “ghosting”, which are synthesized by using adversarial
training. When we train our model, the transmission layers
are used as the reference for our first output. We discard the
synthesized reflection in our second output since it cannot
capture ground truth reflections. We compare with several
sota reflection removal methods, including the method of
Zhang et al. (ICCV’18) [67], BDN (ECCV’18) [60], Rm-
Net (CVPR’19) [59], etc. Table 6 shows the quantitative
evaluations of these methods. Note that although RmNet
[59] uses auxiliary images [53, 67] during training, we still
achieve the best results in all experimental entries. We also
test on a set of real-world reflection images [67]. We train
our model on the synthetic training set [67] and then eval-
uate on its real-world testing set. Fig. 9 and Table 7 shows
some comparison results.

4.5. Application: Shadow Removal

In this experiment, we test our method on two shadow re-
moval datasets: ISTD [54] and SRD [46]. The two datasets
consist of 1,870 and 3,088 shadow/shadow-free image pairs

ISTD [54] SRD [46]

Yang et al. [61] (TIP’12) *† 15.63 22.57
Guo et al. [21] (TPAMI’12) *† 9.300 12.60
Gong et al. [18] (BMVC’14) *† 8.530 8.730
DeshadowNet [46] (CVPR’17) ¶† 7.830 6.640
DSC [22] (TPAMI19) ¶† 7.100 6.210
ST-CGAN [54] (CVPR’18) * 7.470 -
ARGAN [8] (CVPR’19) ¶ 6.680 -
Our method 6.566 5.823

Table 8: Shadow removal results of different methods on
ISTD [54] dataset and SRD [46] dataset. We follow the
evaluation metric introduced by Guo et al. (lower is better).
Results reported by: * [54], † [22], ¶ [8].

that captured in real-world environments. We compare our
methods with some sota shadow removal methods, includ-
ing DSC (TPAMI19) [22], ST-CGAN (CVPR’18) [54], and
ARGAN (CVPR’19) [8]. Table 8 shows the evaluation re-
sults of these methods. We do not compare ST-CGAN and
ARGAN on SRD [46] because the authors did not report
their accuracy on this dataset and the code has not been re-
leased yet. We follow the evaluation metric introduced by
Guo et al. [21], where a lower score indicates a better re-
sult. Fig. 11 gives an comparison example of our method
and DSC [22] on the above two datasets.

5. Conclusion

We propose a unified framework for single superimposed
image separation - a group of challenging tasks in computer
vision and signal processing field. Different from the pre-
vious methods that are either statistically or empirically de-
signed, we shed light on the possibilities of the adversar-
ial training for this task. Our method consists of a layer
separator and several discriminators. We also introduce a
“crossroad l1” loss function, which minimizes the distance
between the ground truth layers and the unordered outputs.
Without specific tuning, our method achieves the state of
the art results on multiple tasks, including image deraining,
image reflection removal, and image shadow removal.
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