
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

Collaborative Sparse Hyperspectral Unmixing Using
l0 norm

Zhenwei Shi*, Tianyang Shi, Min Zhou, Xia Xu

Abstract—Sparse unmixing has been applied on hyperspectral
imagery popularly in recent years. It assumes that every observed
signature is a linear combination of just a few spectra (endmem-
bers) from a known spectral library. However, solving the sparse
unmixing problem directly (using l0 norm to control the sparsity
of solution at a low level) is NP-hard. Most related works focus
on convex relaxation methods, but the sparsity and accuracy of
results cannot be well guaranteed. Under these circumstances,
this paper proposes a novel algorithm termed as collaborative
sparse hyperspectral unmixing using l0 norm (CSUnL0), which
aims at solving l0 problem directly. Firstly, it introduces a row-
hard-threshold function. The row-hard-threshold function makes
it possible to combine l0 norm, instead of its approximate norms,
with alternating direction method of multipliers (ADMM). Com-
pared with convex relaxation methods, the l0 norm constraint
guarantees sparser and more accurate results. Moreover, the anti-
noise ability of CSUnL0 also gets improved. Secondly, CSUnL0
uses l2 norm of each endmembers’ abundances across the whole
map as a collaborative constraint, which can take advantage of
the hyperspectral data’s subspace property. The experimental
results indicate that l0 norm contributes to acquiring a more
sparser solution and helps CSUnL0 to enhance calculation
accuracy.

Index Terms—Hyperspectral image, Collaborative sparse un-
mixing, l0 norm, Alternating direction method of multipliers
(ADMM).

I. INTRODUCTION

W ITH the development of technology, each pixel of a
hyperspectral image has hundreds of amplitude values

corresponding to its wave bands. So it is realizable to draw
continuous spectral curves for different materials, which is
of great help in image detection and identification. However,
under the limit of low space resolution of hyperspectral im-
ages, each pixel is a mixture of several spectra corresponding
to distinct materials [1]. Hence, it is in need of identifying
the component spectra (endmembers) and estimating their
corresponding fractions (abundances) [2], [3].

In recent years, for simplicity and efficiency, the linear
model has been widely applied to hyperspectral unmixing
problem. It assumes that the signature of each pixel is a
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linear combination of distinct endmembers [4], [5]. Under
this model, there are three kinds of main primitive unmixing
methods respectively based on geometry [6]–[8], statistics [9],
and nonnegative matrix factorization (NMF) [10]–[12]. They
are all unsupervised methods and can extract endmembers
directly from hyperspectral images. However, these methods
could gain virtual endmembers without any physical meaning
[13], or suppose there is at least one pure pixel existing in the
image [6]–[8] (It is hard to guarantee this assumption in real
hyperspectral images).

In order to overcome the aforementioned disadvantages
and make full use of pre-existing spectral libraries, sparse
unmixing model [14]–[16] was introduced and has been used
in hyperspectral unmixing. It utilizes the spectral libraries
as a priori knowledge and assumes all endmembers in a
hyperspectral image can be found in a known large spectral
library. Furthermore, the number of endmembers in the hyper-
spectral image is much smaller than the number of spectra in
the library. That is to say, sparse unmixing problem can be
described as an optimization problem which aims at finding
the sparsest solution (equivalent to minimize l0 norm of an
abundance vector) based on the hyperspectral images and
physical constraints. However, this optimization problem is
NP hard [17].

For sparse unmixing, there are five major types of cal-
culative methods [18], namely, brute force methods [19],
sparse Bayesian methods [20], greedy pursuit methods [21]–
[24], nonconvex optimization methods [17], [25], [26] and
convex relaxation methods [27]–[29]. The brute force methods
traverse all possible solutions to get the best one and cutting-
plane method can reduce the number of possible solutions. The
sparse Bayesian methods, based on Bayesian statistics, utilize
the sparsity and non-negativity of the abundance vector as a
priori to calculate the maximum a posteriori estimation of the
abundance vector. Meanwhile, the sparse Bayesian methods
have very high computational complexity. The greedy pursuit
methods try to find a locally optimal solution in each step
and finally reach a global optimum. They are simpler than
Bayesian methods. However, due to the strong correlation of
endmembers in the spectral library, greedy pursuit methods
could encounter the problem of trapping into local optimum
sometimes. The nonconvex optimization methods attempt to
relax l0 problem to a related nonconvex problem, but it
brings high computational complexity. The convex relaxation
methods often replace the l0 norm with the l1 norm or others,
and these methods can get further improved by considering
priori information [30] or the influence of spectral variation
[31]. Nevertheless, the l1 norm just aims at making the sum
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of fractional abundances’ absolute values as small as possible,
so it cannot guarantee sufficient sparseness of the resulting
abundance vector sometimes [32], [33]. In addition to the
above classical methods, some multi-objective based methods
are also used for sparse unmixing [34].

In this paper, we propose a novel collaborative sparse
hyperspectral unmixing algorithm using l0 norm (CSUnL0)
to solve the above problems. This algorithm is inspired by
the collaborative sparse unmixing by variable splitting and
augmented Lagrangian algorithm (CLSUnSAL) [28], which
belongs to convex relaxation methods. Different from CLSUn-
SAL, CSUnL0 aims to solve the sparse unmixing problem
directly without replacing l0 norm by l1 norm. In summary,
there are two contributions of this paper:

1. For solving l0 problem, CSUnL0 uses variable the
splitting method and introduces a row-hard-threshold function,
which makes it possible to apply alternating direction method
of multipliers (ADMM [35], [36]) into situations where l0
norm exists. Especially, we present a relevant theorem as a
support for the convergence analysis of CSUnL0 algorithm.

2. Based on the above proofs, before l0 norm calculation,
CSUnL0 uses l2 norm as a metric of the abundance vector to
realize collaborative sparse unmixing, which means it directly
limits the sparsity in a reasonable range by integrating global
information. Thus, abundance vectors acquired by CSUnL0
are sparser. That is to say, under the novel sparse model, the
anti-noise ability of this algorithm is stronger and the result is
more accurate.

Therefore, under some conditions, the original NP-hard
problem can be transformed into a simpler problem which
aims to obtain an acceptable sub-optimal solution, and this
could be solved in polynomial-time.

The rest of this paper is organized as follows. Section II
mainly reviews the sparse unmixing of the hyperspectral data
model. In Section III, we introduce our novel algorithm in
details and present related proofs. Then, in Section IV, we
present our experimental results and make some discussion.
Finally, Section V is our conclusion.

II. SPARSE UNMIXING OF HYPERSPECTRAL DATA MODEL

ACCORDING to the linear unmixing model, each pixel of
a hyperspectral image can be decomposed into a linear

combination of endmembers, as follows:

y = Ax + n (1)

where y ∈ RL×1 is an observed spectral vector of a pixel
in the hyperspectral image with L bands, A ∈ RL×m is a
spectral library including m spectral vectors, x ∈ Rm×1 is
an abundance vector including m elements, each element is
mutual independence and corresponds to a spectral vector of
the spectral library, n ∈ RL×1 is observation noise.

Usually, the number of materials (endmembers) in a hy-
perspectral image is far smaller than the number of spectral
vectors in the spectral library. The abundance vector x should
have a few non-zero elements, which means the vector x is
sparse. Furthermore, the model in Eq.(1) is supposed to meet
the following two physical constraints:

xi ≥ 0, i = 1, 2, ...,m (2)
m∑
i=1

xi = 1 (3)

where xi is the ith element of the vector x. The above
constraints correspond to abundance non-negativity constraint
and sum-to-one constraint respectively [37]. However, in the
real hyperspectral images, spectral vectors is variable. So the
non-negative proportion coefficients ω is introduced to revise
the sum-to-one constraint. Then the generalized sum-to-one
constraint is shown as follow [38]:

m∑
i=1

ωixi = 1 (4)

Moreover, the sparsity of the vector x indicates that each
pixel in the hyperspectral image can be expressed in a few
spectral vectors in the spectral library. Therefore, the sparse
unmixing optimization problem can be described as follows:

min
x
||x||0

subject to : ||y −Ax||2 ≤ ε, x ≥ 0
(5)

where ||x||0 is l0 norm representing the number of non-zero
elements in the vector x, and ε is an error margin. Because l0
norm is discrete and nonconvex, the optimization problem of
l0 norm is NP-hard [17].

A popular method is to replace the l0 norm with l1 norm
which is a relative ideal convex approximation of l0 norm [39].
Then the new sparse unmixing optimization problem can be
written as:

min
x
||x||1

subject to : ||y −Ax||2 ≤ ε, x ≥ 0
(6)

Furthermore, the application range of the above formulas
can be extended from a pixel to the whole hyperspectral
image. Then a collaborative sparse unmixing model can be
proposed [28], which takes advantage of the hyperspectral
data’s subspace property. Assuming that Y ∈ RL×K is a
hyperspectral image matrix including L bands and K pixels,
each column vector is a spectral vector; A ∈ RL×m is a
spectral library including m spectral vectors; X ∈ Rm×K is an
abundance matrix, whose elements correspond to abundance
of m spectra in K pixels. Meanwhile, the matrix X should be
row sparse.

Collaborative linear unmixing model can be written as:

Y = AX + N (7)

where N ∈ RL×K is an observation noise matrix.
As mentioned above, the following optimization problem

can be solved to estimate the abundance of the endmembers:

min
X
||X||r−0

subject to : ||Y −AX||F ≤ ε, X ≥ 0
(8)

where || · ||F is the Frobenius norm of matrix, ||X||r−0 (row-
zero norm) means the number of non-zero rows in X [40].
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Similarly, above optimization problem is also NP-hard.
Therefore, ||X||r−0 is usually relaxed to ||X||2,1 (||X||2,1 =∑m
i=1 ||xi||2, where xi is ith row in X) which is l2,1 mixed

norm [41]. As a consequence, Eq.(8) can be rewritten as
follows:

min
X
||X||2,1

subject to : ||Y −AX||F ≤ ε, X ≥ 0
(9)

By introducing a suitable Lagrange multiplier, the collabo-
rative linear sparse unmixing model can be written as:

min
X

1

2
||Y −AX||2F + λ||X||2,1

subject to : X ≥ 0
(10)

The λ ≥ 0 is the regularization parameter and here is used for
adjusting the sparsity of solution. Then the above problem can
be solved by CLSUnSAL [28] which is based on ADMM.

However, the tests have shown that the solution of opti-
mization problem under the l2,1 norm constraint cannot keep
sparse all the time, that is to say, it could produce more
virtual endmembers which are inactive in the hyperspectral
image [32], [33]. Then we expect a kind of constraint which
can reduce virtual endmembers. Inspired by iterative hard-
thresholding algorithm [42], we look back to l0 norm to get a
more accurate solution.

III. COLLABORATIVE SPARSE HYPERSPECTRAL
UNMIXING USING l0 NORM

IN this section, firstly, we introduce a new sparse unmixing
model (CSUnL0) which adopts an l2,0 norm constraint

rather than the l2,1 norm constraint. Secondly, we use ADMM
to solve the corresponding optimization problem.

A. CSUnL0 model description

The motivations of the new sparse unmixing model are
explained as follows: Firstly, the l1 norm is an approximation
of the l0 norm and the corresponding algorithm is difficult
to achieve high accuracy. Secondly, we found that the closed
form solution of the row-zero norm problem can be achieved
by splitting variables and using a row-hard-threshold function.

For illustration purpose, the row-hard-threshold function is
defined as:

(RHt(X))i,j =

{
xi,j

∑
j x

2
i,j > t

0
∑
j x

2
i,j ≤ t

= 1(
∑
j

x2i,j > t) ·xi,j

(11)
where t is a threshold and xi,j represents the jth element
of the ith row in the matrix X. Moreover, 1(·) is one if the
proposition in the bracket is true, and zero otherwise.

Lemma 1. For the optimization problem:

min
Φ
||Ψ−Φ||2F + λ||Φ||r−0 (12)

Its closed-form solution is:

Φ = RHλ(Ψ) (13)

Meanwhile, l2 norm is used as a metric which decides
whether to retain a row of Ψ.

Proof. The proof of Lemma 1 is given in APPENDIX A.

Based on the Lemma 1, we can use l2 norm as a metric of
non-zero rows, then the new sparse unmixing model from the
Eq.(8) can be written as:

min
X

1

2
||Y −AX||2F + λ||X||2,0 + lR+(X) (14)

where we define ||X||2,0 =
∑m
i=1 1(||xi||2 > 0) and the

matrix X contains m endmembers and K pixels. Besides,
lR+(X) is zero if X ≥ 0, and +∞ otherwise.

Then we introduce three variables V1,V2 and V3 to split
variables, the Eq.(14) is equivalent to:

min
X,V1,V2,V3

1

2
||Y −V1||2F + λ||V2||2,0 + lR+(V3)

subject to : V1 = AX

V2 = X

V3 = X

(15)

The augmented Lagrange function of the Eq.(15) can be
written as:

L(X,V1,V2,V3,D1,D2,D3)

=
1

2
||Y −V1||2F + λ||V2||2,0 + lR+(V3)+

µ

2
||AX−V1 −D1||2F +

µ

2
||X−V2 −D2||2F+

µ

2
||X−V3 −D3||2F

(16)

where D1, D2 and D3 are Lagrangian multipliers, µ is a
penalty parameter [43].

The term λ||V2||2,0 in Eq.(15) is the only difference be-
tween our model and CLSUnSAL model, so we can only
discuss the V2 part. Ignore variables independent of V2, the
optimization problem in Eq.(16) becomes:

min
V2

µ

2
||X−V2 −D2||2F + λ||V2||2,0 (17)

and this has the same form with the problem in Lemma 1.
That is to say, the new sparse unmixing model can be solved
by using ADMM which has been verified as a very effective
algorithm to solve sparse unmixing problems [27], [28].

Physically, an active endmember corresponds to a material
which exists in the hyperspectral image and l2 norm of
its abundance vector is relatively large. Meanwhile, because
of noise’s randomness and weak intensity, the l2 norm of
an inactive endmember’s abundance vector caused by noise
should be relatively small. Therefore, the row-hard-threshold
is used to distinguish between the above two cases and exclude
inactive endmembers during iteration.

B. CSUnL0 algorithm

In this part, we will show in detail how ADMM is used to
solve Eq.(16).

The major steps of ADMM are: update X, V1, V2 and V3

as optimization variables and then update Lagrange multipliers
D1, D2 and D3 one by one. The algorithm will be detailed
as follows:
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When updating X, variables independent of X need not be
taken into account. The optimization problem becomes:

min
X

(
µ

2
||AX−V

(k)
1 −D

(k)
1 ||2F+

µ

2
||X−V

(k)
2 −D

(k)
2 ||2F +

µ

2
||X−V

(k)
3 −D

(k)
3 ||2F )

(18)

The above formula has a closed-form solution:

X(k+1) =(ATA + 2I)−1[AT (V
(k)
1 + D

(k)
1 )+

V
(k)
2 + D

(k)
2 + V

(k)
3 + D

(k)
3 ]

(19)

where I is a unit matrix with appropriate size.
Similarly, just concentrate on one variable V1 and consider

other variables independent of the V1 in Eq.(16) as constants.
Then the following optimization problem can be solved:

min
V1

1

2
||Y −V1||2F +

µ

2
||AX(k+1) −V1 −D

(k)
1 ||2F (20)

The above formula has a closed-form solution:

V
(k+1)
1 =

1

1 + µ
[Y + µ(AX(k+1) −D

(k)
1 )] (21)

Then it is the turn of V2 to become the only considered
variable in Eq.(16), and define manual adjustable parameter
a = 2λ

µ for controlling directly, because µ is variable and
incremental during optimization procedure. The optimization
problem becomes:

min
V2

µ

2
(||X(k+1) −V2 −D

(k)
2 ||2F + a||V2||2,0) (22)

Based on the Lemma 1, the above formula can be solved
by row-hard-threshold algorithm: V

(k+1)
2 = RHa(X(k+1) −

D
(k)
2 ), as shown in the Algorithm 1:

Algorithm 1 Pseudo-code for row-hard-threshold algorithm
1: Input: X ∈ Rm×K , a ≥ 0 (where a is a threshold value)
2: for i = 1...m
3: if ||xi||22 ≤ a (xi is the ith row of X)
4: xi = 0;
5: end if
6: end for
7: Output: X

After updating V2, we do the same to update V3 by solving
the optimization problem below:

min
V3

µ

2
||X(k+1) −V3 −D

(k)
3 ||2F + lR+(V3) (23)

The above formula is used to project X(k+1) −D
(k)
3 into

non-negative quadrant:

V
(k+1)
3 = max(X(k+1) −D

(k)
3 , 0) (24)

The updating procedure of Lagrangian multipliers D1,
D2 and D3 is executed after updating X, V1, V2 and V3.
The details are described in the following.

The complete CSUnL0 algorithm is summarized in Algo-
rithm 2:

Algorithm 2 Pseudo-code for CSUnL0
1: Initialization:
2: set k = 0, choose a > 0, µ > 0, ε > 0,

V0
1,V

0
2,V

0
3,D

0
1,D

0
2,D

0
3

(Y ∈ RL×K ,A ∈ RL×m,ε is the normalized error
tolerance)

3: Repeat:
4: X(k+1) = (ATA + 2I)−1[AT (V

(k)
1 + D

(k)
1 ) + V

(k)
2 +

D
(k)
2 + V

(k)
3 + D

(k)
3 ]

5: V
(k+1)
1 = 1

1+µ [Y + µ(AX(k+1) −D
(k)
1 )]

6: V
(k+1)
2 = RHa(X(k+1) −D

(k)
2 )

7: V
(k+1)
3 = max(X(k+1) −D

(k)
3 , 0)

8: D
(k+1)
1 = D

(k)
1 −AX(k+1) + V

(k+1)
1

9: D
(k+1)
2 = D

(k)
2 −X(k+1) + V

(k+1)
2

10: D
(k+1)
3 = D

(k)
3 −X(k+1) + V

(k+1)
3

11: k = k + 1
12: Until: ||Vk

1 −AXk||F+||Vk
2 −Xk||F+||Vk

3 −Xk||F <√
(2m+ L)×Kε or the maximum iteration is reached.

From Algorithm 2, it is shown that the complexity of
CSUnL0 depends on updating X in the fourth line, which has
the same form with CLSUnSAL. So CSUnL0 and CLSUnSAL
have the same complexity [28]. Furthermore, assume that
there are L bands, K pixels, and m endmembers in the
hyperspectral image. Because the term (ATA + 2I)−1 is
constant, the complexity of updating X depends on the other
matrix multiplications which is max(O(mLK),O(m2K)).

Due to the non-convexity of CSUnL0, we will discuss the
convergence condition of our algorithm in Note 1 and Theorem
1.

Note 1. Assuming that the abundance matrix X in Algorithm
2 is always non-negative, which means X ≥ 0 is true. Then
the original algorithm can be written as follows:

min
X,V1,V2,V3

1

2
||Y −V1||2F + λ||V2||2,0

subject to : V1 = AX

V2 = X

(25)

The whole augmented Lagrange function of the Eq.(25) is:

L(X,V1,V2,D1,D2) =
1

2
||Y −V1||2F + λ||V2||2,0+

µ

2
||AX−V1 −D1||2F +

µ

2
||X−V2 −D2||2F−

µ

2
||D1||2F −

µ

2
||D2||2F

(26)

Furthermore, the corresponding iterative procedure is:

X(k+1) = (ATA + I)−1[AT (V
(k)
1 + D

(k)
1 ) + V

(k)
2 + D

(k)
2 ]

V
(k+1)
1 =

1

1 + µ
[Y + µ(AX(k+1) −D

(k)
1 )]

V
(k+1)
2 = RHa(X(k+1) −D

(k)
2 )

D
(k+1)
1 = D

(k)
1 −AX(k+1) + V

(k+1)
1

D
(k+1)
2 = D

(k)
2 −X(k+1) + V

(k+1)
2

(27)
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Besides, the stopping criterion is ||Vk
1 −AXk||F +

||Vk
2 −Xk||F <

√
(m+ L)×Kε, where ε is a normalized

error tolerance.

Theorem 1. Before reaching the stopping criterion,
L(Xk,Vk

1 ,V
k
2 ,D

k
1 ,D

k
2) in Note 1 is decreasing with a lower

bound when the following conditions hold.
1. λ ≤ µ(m+L)Kε2

m( 4
µ+2
√
2)2

2. µ ≥ 2

Proof. The proof of Theorem 1 is given in APPENDIX B.

Based on the Theorem 1, it provides a weaker convergence
condition. However, this theorem cannot promise the result
is globally optimal, because duality feasible condition is not
always true when the objective function is non-convex espe-
cially. That is to say, as long as the abundance matrix is non-
negative, an acceptable result would be found in polynomial
time by solving the l0 problem in our algorithm, and this result
is often good enough. Moreover, the least squares solution is
used to initialize the CSUnL0 algorithm, which will be helpful
to find a better sub-optimal result.

IV. EXPERIMENT RESULTS AND DISCUSSION

HERE we employ two synthetic and one real hyperspec-
tral images to evaluate the performance of CSUnL0.

In the first synthetic data experiment, we aim at testing the
accuracy and anti-noise ability of CSUnL0. This experiment
is designed as follows: We generate a hyperspectral data set
satisfying the Dirichlet distribution. Then CSUnL0 is applied
to this synthetic data set. Meanwhile, for comparison, we
also run some other representative algorithms in the same
data set, such as SMP [23], RSFoBa [24], SUnSAL [27],
CLSUnSAL [28] and ADSpLRU [29]. SMP and RSFoba are
classical greedy pursuit methods, SUnSAL and CLSUnSAL
are classical convex relaxation methods and ADSpLRU is the
newest convex relaxation method. Finally, RMSE is used as
a criterion to judge whether our algorithm is qualified or not.
The ith active endmember’s RMSE is defined below:

RMSEi =

√√√√ 1

K

K∑
j=1

(xi,j − x∗i,j)2 i = 1, 2, ..., r (28)

where X comes from the result of each algorithm, X∗ is the
real abundance distribution, and there are only r endmembers
used to construct the data set. Each algorithm’s RMSE is the
average value of all endmembers’ RMSEs:

RMSE =
1

r

r∑
i=1

RMSEi (29)

Moreover, a lower RMSE level indicates that the correspond-
ing algorithm is better.

In the second synthetic hyperspectral data experiment, we
choose CLSUnSAL to compare with CSUnL0. That is because
the only difference between CSUnL0 and CLSUnSAL is the
sparsity constraint – CSUnL0 uses l2,0 norm constraint while
CLSUnSAL uses l2,1 norm constraint. In order to visually
present the differences between these two algorithms, some
endmembers are put into several boxes with certain abundance.

Besides, we will discuss the existence of parameter a and its
impact on our algorithm. The details have been shown in part
B.

In the real hyperspectral data experiment, the well-known
AVIRIS Cuprite data set1 is used. For the real data, there is no
true abundance distribution. So RMSE is inapplicable to esti-
mate the performance of all the algorithms above. Therefore,
we just qualitatively analyze the validity of CSUnL0 compared
with SUnSAL and CLSUnSAL.

Our spectral library A ∈ R224×498 is Chapter 1 of the
U.S. Geological Survey (USGS) [44] digital spectral library
(splib06a). The reflectance values of 498 materials are mea-
sured for 224 spectral bands uniformly distributed in the
interval 0.4∼2.5 µm.

Especially, in the synthetic hyperspectral data experiments,
all the algorithms used to compare with ours have been tuned
to the best performance by using different parameter values.
For example, we choose λ = {0, 10−5, 10−4.5, ..., 1} for
SUnSAL and keep the best result. In the real hyperspectral
data experiment, these algorithms have been tuned as in their
papers.

A. Parameter preferences

In the row-hard-threshold algorithm of CSUnL0, the most
important parameter is a, relevant to the values of endmem-
bers’ abundance. It means that the endmember whose total
abundance (||x||22) is lower than a will be treated as noise and
removed in the iterative process. In other words, a controls
the result’s sparsity. Usually, there is a way to initialize the
parameter a: Set a to a relatively small value, gradually
increase a and run the program until the algorithm achieves
a good result. In the detailed implementation, we use a0 as
the upper bound where 0 ≤ a/K ≤ a0 and the image has K
pixels. After choosing a0 and initializing a to a very small
value, we double a when ||V2||2,0 stops changing. This way
can guarantee that the algorithm gradually excludes inactive
endmembers and improve the algorithm’s robustness.

B. Synthetic Hyperspectral Data Experiment 1

In this section, we run each algorithm with different in-
tensities of white noise in the first two groups and different
numbers of endmembers in the third group.

In the first two groups, the data sets are used with different
signal-to-noise ratio. Here the signal-to-noise ratio (SNR) is
defined as follows:

SNR = 10 lg(||Y||22/||N||22) (30)

where Y represents a synthetic hyperspectral image data with
some endmembers, N is added with white noise.

In the first group, we choose five materials from A, to
generate the corresponding abundance matrix H which obeys
the Dirichlet distribution in 30 × 30 pixels, and the sum of
elements in H is 30× 30. The abundances which are smaller
than 0.7 are used to avoid the pure pixel including only one

1http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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endmember [8], [27]. Those materials’ spectra are shown in
Fig.1.

Fig. 1. Selected 5 materials’ spectra. Each subgraph’s title corresponds to a
kind of mineral material.

So the synthetic hyperspectral image data Y can be gener-
ated by Y = AH. Then the 20 ∼ 50 dB white noise is added
into the data set Y. The experimental results are shown in the
Fig.2 and Table I:
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Fig. 2. Results of the first group: each algorithm’s RMSE under different
intensities of white noise. The results of SMP, RSFoBa (p=inf) and CSUnL0
are almost in the same value. CSUnL0 parameter setting: a0 = 0.04.

It can be observed from Fig.2 that all the RMSEs increase
with the intensity of white noise. The performance of CSUnL0
is much better than other convex relaxation algorithms (SUN-
SAL, CLSUNSAL, ADSpLRU) and very close to some greedy
pursuit algorithms (SMP, RSFoBa (p=inf)). This is because
CSUnL0 can exclude inactive endmembers out of the itera-
tion process by the row-hard-threshold function, and lots of
these inactive endmembers are caused by noise. Clearly, the
less inactive endmembers are, the sparser and more accurate
the result becomes. Therefore, it is feasible to improve the
algorithm’s anti-noise ability by using l2,0 norm to replace
l2,1 norm constraint and introducing the row-hard-threshold
function.

TABLE I
RMSES OBTAINED BY EACH ALGORITHM IN THE FIRST GROUP

SNR SMP RSFoBa RSFoBa SUn- CLSUn- ADSp- CSUn-

(dB) (p=2) (p=inf) SAL SAL LRU L0

50 0.0009 0.0009 0.0009 0.0027 0.0025 0.0013 0.0012

45 0.0015 0.0015 0.0015 0.0048 0.0040 0.0022 0.0018

40 0.0027 0.0027 0.0027 0.0082 0.0072 0.0043 0.0029

35 0.0056 0.0049 0.0049 0.0141 0.0123 0.0077 0.0049

30 0.0085 0.0088 0.0085 0.0244 0.0219 0.0175 0.0085

25 0.0150 0.0163 0.0150 0.0406 0.0360 0.0389 0.0147

20 0.0263 0.0378 0.0263 0.0683 0.0618 0.0701 0.0262

In the second group, we choose 5 different endmembers
which are shown in Fig.3. These endmembers are of Actinolite
and their spectra are very similar. The rest of conditions
in the second group are the same as the first group’s. The
experimental results are shown in Fig.4 and Table II:

Fig. 3. Selected 5 materials’ spectra with high similarity.
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Fig. 4. Results of the second group: each algorithm’s RMSE under different
intensities of white noise. CSUnL0 parameter setting: a0 = 0.05.
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TABLE II
RMSES OBTAINED BY EACH ALGORITHM IN THE SECOND GROUP

SNR SMP RSFoBa RSFoBa SUn- CLSUn- ADSp- CSUn-

(dB) (p=2) (p=inf) SAL SAL LRU L0

50 0.1095 0.0050 0.0050 0.0100 0.0125 0.0056 0.0052

45 0.1102 0.0086 0.0086 0.0159 0.0176 0.0108 0.0078

40 0.1118 0.0154 0.0154 0.0284 0.0302 0.0179 0.0125

35 0.1236 0.0252 0.0252 0.0470 0.0485 0.0331 0.0211

30 0.1346 0.0456 0.0439 0.0800 0.0813 0.0682 0.0354

25 0.1553 0.0775 0.0786 0.1284 0.1236 0.1119 0.0619

20 0.1896 0.1427 0.1453 0.1749 0.1736 0.1876 0.1072

From the Fig.4, when the similarity of active endmembers
increases, CSUnL0 can be better than greedy pursuit algo-
rithms (SMP, RSFoBa). Especially, SMP cannot extract right
endmembers in this case, because the selected 5 endmembers
belong to the same kind of material and have very high
correlation. Based on the pseudo-code of CSUnL0, it shows
that CSUnL0 searches active endmembers by endmembers’
abundances other than correlation, this way can avoid confu-
sion caused by endmembers’ high correlation. So CSUnL0 has
a good ability in extracting endmembers.

In the third group, we choose 15 materials from spec-
tral library A to create seven data sets respectively and
add 30 dB white noise into the data sets. The former
five endmembers are from the first group and the rest
ten endmembers are Neodymium Oxide GDS34, Monazite
HS255.3B, Samarium Oxide GDS36, Pinnoite NMNH123943,
Meionite WS700.HLsep, Spodumene HS210.3B, Laumontite
GDS5, Grossular WS484, Zoisite HS 347.3B and Wollastonite
HS348.3B respectively. Results are presented in Fig.5 and
Table III:
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Fig. 5. Results of the third group: each algorithm’s RMSE under different
number of endmembers. CSUnL0 parameter setting: a0 = 0.02.

TABLE III
RMSES OBTAINED BY EACH ALGORITHM IN THE THIRD GROUP

n SMP RSFoBa RSFoBa SUn- CLSUn- ADSp- CSUn-

(p=2) (p=inf) SAL SAL LRU L0

3 0.0048 0.0048 0.0048 0.0204 0.0117 0.0058 0.0052

5 0.0089 0.0083 0.0083 0.0238 0.0215 0.0167 0.0085

7 0.0100 0.0095 0.0095 0.0217 0.0190 0.0143 0.0096

9 0.0146 0.0130 0.0122 0.0247 0.0233 0.0160 0.0099

11 0.0156 0.0185 0.0145 0.0291 0.0316 0.0240 0.0120

13 0.0203 0.0291 0.0176 0.0346 0.0355 0.0234 0.0134

15 0.0213 0.0339 0.0289 0.0378 0.0416 0.0233 0.0147

* n is the number of endmembers.

From Fig.5, it can be observed that all the RMSEs increase
with the number of endmembers. The performance of CSUnL0
is also better than the others, especially when the number of
endmembers is large.

The above three pictures (Fig.2, Fig.4 and Fig.5) show that
CSUnL0 can achieve a good anti-noise performance, a better
ability in extracting endmembers and a more accurate solution.
It can be observed that CSUnL0 much surpasses CSUnSAL
in the above experiments. In conclusion, the introduction of
l2,0 norm constraint and the row-hard-threshold function are
beneficial.

C. Synthetic Hyperspectral Data Experiment 2

This experiment is designed for visualizing algorithms’
ability in extracting endmembers and anti-noise. In this ex-
periment, we design an abundance distribution H, which has
4 × 4 blocks in 45 × 45 pixels uniform distribution and
includes five endmembers (They are Actinolite HS116.3B,
Actinolite HS22.3B, Actinolite NMNH80714, Albite HS66.3B
and Almandine WS477). Each block has 7 × 7 pixels. Each
column of blocks contains four different endmembers with
the same abundances, each row of blocks contains the same
endmembers whose abundances are from 0.25 to 1. The fifth
endmember supposed as background is set to a complemen-
tary value, which means H5,j = 1 −

∑4
i=1Hi,j (Hi,j : the

abundance of the ith endmember in jth pixel). The abundance
distribution H is shown in Fig.6. So we can obtain the data
set Y = AH. If an algorithm performs well in extracting
endmembers, the position of these blocks and endmembers’
abundances can be found exactly in the result. In this case,
we observe how close the abundances obtained approaches the
real ones. Furthermore, 30 dB and 50dB white noise are added
into the data set to test the anti-noise ability of CSUnL0. The
experimental results are presented in Fig.7, Fig.8 and Table
IV :
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Fig. 6. Ground truth: The abundances of selected materials in the USGS spectral library.

Fig. 7. Results of experiment 2: the SNR of white noise is 50 dB.

Fig. 8. Results of experiment 2: the SNR of white noise is 30 dB.

TABLE IV
RMSES OBTAINED BY CLSUNSAL AND CSUNL0

RMSE(dB) CLSUnSAL CSUnL0

50 0.0285 0.0024

30 0.0851 0.0248

* a0 = 0.02

Fig.7 and Fig.8 show that the results obtained by CLSUn-
SAL are smaller than CSUnL0’s, which means the result of
CLSUnSAL exists a lot of inactive endmembers to make
abundances dispersive. On the contrary, CSUnL0 has no such
problem, the row-hard-threshold function guarantees that only
active endmembers are used to unmix the hyperspectal data in
the iteration. Moreover, to compare between Fig.7 and Fig.8,
CSUnL0’s results are stable when the noise intensity increases.
Thus, it can be believed that CSUnL0 has pruning dictionary
ability and stronger anti-noise ability.

Now we discuss the parameter a in CSUnL0 which di-
rectly controls the result’s sparsity. We still use the data
set in this experiment with 30 dB noise, initialize a0 =
10−5, 10−4.5, ..., 10−1 respectively. Then we will compare
CSUnL0’s performance between these cases to probe the role
of a, the results are shown as Table V and Fig.9.

Table V shows there is an interval for the parameter a to
get the best result and achieve a suitable sparse degree, that
is to say, an appropriate a exists and can make the algorithm
find a good solution near the optimal point. From Table V
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TABLE V
RMSES AND SPARSITY WITH DIFFERENT PARAMETER VALUES

a0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

RMSE 0.0960 0.0907 0.0759 0.0443 0.0246 0.0248 0.0249 0.0249 0.2195

||V2||2,0 130 85 40 12 5 5 5 5 1

* ||V2||2,0 is the extractive endmembers’ number, and the number of active endmembers is 5.

Fig. 9. Results of parameter experiment. From up to down, a0 = 10−5, 10−3, 10−1 respectively.

and Fig.9, if a0 is very small, CSUnL0 can’t exclude all
inactive endmembers, so the result isn’t sparse and accurate.
On the contrary, if a0 is very large, CSUnL0 will exclude some
active endmembers by mistake. In other words, CSUnL0 can
be tuned to the best performance, and the parameter a can
control the result’s sparsity.

D. Real hyperspectral data experiment

In some cases, simulation experiments cannot represent the
real situation. So we use a 204×151 pixel subset of the well-
known AVIRIS Cuprite data set to verify the effectiveness
of CSUnL0. In this experiment, some wavebands of the low
signal-to-noise ratio are removed, which means the spectral
library A and the data set Y have only 188 wavebands. The
results are shown in Fig.11. The real abundance distribution
is the first column of Fig.11 and those pictures come from the
software Tricorder 3.32 in 1995 which is shown in Fig.10,
but the AVIRIS Cuprite data set was collected in 1997.
Therefore, we can only regard this mineral classification figure
as a reference to quantitatively evaluate different algorithms’
performance.

2http://speclab.cr.usgs.gov/PAPERS/tetracorder/

Fig. 10. USGS map showing the distribution of different minerals in the
Cuprite mining district in Nevada.
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Fig. 11. The result of real hyperspectral data experiment. From up to down, maps correspond to Alunite, Buddingtonite, Chalcedony, and Montmorillonite
respectively. From left to right, there are Tricorder map and abundances map estimated by SUnSAL, CLSUnSAL and CSUnL0. CSUnL0 parameter setting:
a0 = 6× 10−5.

The Fig.11 shows that the results of algorithms are not
exactly the same as Tricorder map. There are two reasons
accounting for this phenomenon. On the one hand, when
making Tricorder map, each pixel is assumed to consist of the
only one endmember, which should certainly correspond to the
endmember with the highest abundance in this pixel. However,
when applying algorithms, we regard each pixel as a mixture
of all spectra from different materials and assign abundances to
these endmembers. On the other hand, in the spectral library,
there are some materials having similar spectra. In Tricorder

map, these materials with similar spectra are considered as
the same, but they remain separated when using unmixing
algorithms. Meanwhile, abundances of CSUnL0’s result are
always higher than the other two algorithms by excluding
inactive endmembers. This will reduce the interference of
noise. Thus, by solving l0 norm problem, CSUnL0 can obtain
more accurate results.

From all above, it can be claimed that CSUnL0 is a valid
algorithm for the real data set.
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V. CONCLUSION

In this paper, we propose a novel algorithm termed as
CSUnL0 for the sparse hyperspectral unmixing problem.
This algorithm is an improvement of CLSUnSAL which is
an effective convex relaxation algorithm. According to the
characteristics of materials distribution, CSUnL0 uses the
l2,0 norm constraint to replace the l2,1 norm constraint in
CLSUnSAL. In order to solve the NP-hard problem caused by
l0 norm constraint, this algorithm uses the variable splitting
method and introduces a row-hard-threshold function to apply
ADMM into the situation where l0 norm exists. Especially,
we present related convergence analysis for our algorithm.
In this way, this NP-hard problem could be transformed into
a new problem with polynomial complexity to find a good
sub-optimal solution. Furthermore, the results of experiments
with real and synthetic data sets indicate that the l2,0 norm
constraint contributes to getting a more accurate solution by
excluding inactive endmembers. Meanwhile, the results also
show that our proposed algorithm has a better anti-noise ability
and robustness.
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APPENDIX

A. Proof of Lemma 1

Proof. Assume that the vectors φi and ψi are the ith row of
the matrices Φ and Ψ. Therefore, we can write the Lagrange
function of the optimization problem as follows:

L(Φ) = ||Ψ−Φ||2F + λ||Φ||r−0

=
∑
i

λ||φi||r−0 +
∑
j

(Φ2
i,j − 2Ψi,jΦi,j)

+ ||Ψ||2F

=
∑
i

l(φi,ψi) + ||Ψ||2F

Ignore the constant term ||Ψ||2F , we can minimize
l(φi,ψi) = λ +

∑
j

(Φ2
i,j − 2Ψi,jΦi,j) as quadratic form by

φi = ψi when φi is a non-zero vector. Considering the
situation φi is zero vector, l(φi,ψi) has two cases to achieve
minimum:

l(φi,ψi) =

 0 φi = 0

λ−
∑
j

Ψ2
i,j φi = ψi

For each l(φi,ψi), the second case can be positive when∑
j

Ψ2
i,j < λ, and then φi should be set to zero for minimum,

which is just the operation of row-hard-threshold function.
That is to say, the solution of min

φi
l(φi,ψi) is φi = RHλ(ψi).

Besides,
∑
j

Ψ2
i,j = ||ψi||22 indicates the metric for a row in Ψ

should be its l2 norm.
Therefore, when each optimization subproblem

min
φi

l(φi,ψi) is satisfied, the original optimization problem

min
Φ

L(Φ) can be satisfied and the solution is:

Φ = RHλ(Ψ)

B. Proof of Theorem 1

Proof. As a whole, we focus on the monotonicity of Eq.(26)
between k and k + 1.

Firstly, the decline when updating X is:

L(Xk,Vk
1 ,V

k
2 ,D

k
1 ,D

k
2)− L(Xk+1,Vk

1 ,V
k
2 ,D

k
1 ,D

k
2)

=
µ

2
< Xk −Xk+1,AT (AXk + AXk+1 − 2Vk

1 − 2Dk
1)

+ Xk + Xk+1 − 2Vk
2 − 2Dk

2 >

=
µ

2
< Xk −Xk+1, (ATA + I)(Xk −Xk+1) >

≥ µ

2
||Xk −Xk+1||2F

(31)

Secondly, define g1(V1) = 1
2 ||Y −V1||2F . When updating

V1, the dual feasible condition about V1 is true:

0 =
∂L

∂V1
= Og1(Vk+1

1 ) + µ(Dk
1 + Vk+1

1 −AXk+1)

= Og1(Vk+1
1 ) + µDk+1

1

= Vk+1
1 −Y + µDk+1

1

(32)

Then after updating V1 and D1, the following inequality
can be obtained by using the above dual feasible condition.

L(Xk,Vk
1 ,V

k
2 ,D

k
1 ,D

k
2)− L(Xk,Vk+1

1 ,Vk
2 ,D

k+1
1 ,Dk

2)

= g1(Vk
1)− g1(Vk+1

1 )+ < µDk+1
1 ,Vk

1 −Vk+1
1 > +

µ

2
||Vk

1 −Vk+1
1 ||2F −

1

µ
||µDk

1 − µDk+1
1 ||2F

= (
1

2
+
µ

2
− 1

µ
)||Vk

1 −Vk+1
1 ||2F

≥ µ

2
||Vk

1 −Vk+1
1 ||2F

subject to : µ ≥ 2
(33)

Thirdly, assuming the row vectors (v2)i, (d2)i and (x)i
are the ith row in V2, D2 and X, a = 2λ

µ , so the range of
||(v2)i||22 calculated by row-hard-threshold function in Eq.(11)
is:

||(v2)i||22 ∈ {0} ∪ (a,+∞) (34)

Then define g2(V2) = λ||V2||2,0 and the equivalent form
g2((v2)i) = λ × 1(||(v2)i||2 > 0) ∈ {0, λ}. When updating
V2, the dual feasible condition about V2 only holds when
(v2)i 6= 0 :

0 =
∂L

∂(v2)i
= Og2((vk+1

2 )i) + µ((dk2)i + (vk+1
2 )i − (xk+1)i)

= Og2((vk+1
2 )i) + µ(dk+1

2 )i

= µ(dk+1
2 )i

(35)

Like the Eq.(33), the next equation can be gotten after
updating V2 and D2.

L(Xk,Vk
1 ,V

k
2 ,D

k
1 ,D

k
2)− L(Xk,Vk

1 ,V
k+1
2 ,Dk

1 ,D
k+1
2 )

= g2(Vk
2)− g2(Vk+1

2 )+ < µDk+1
2 ,Vk

2 −Vk+1
2 > +

µ

2
||Vk

2 −Vk+1
2 ||2F − µ||Dk

2 −Dk+1
2 ||2F

=
∑
i

δi

(36)

where

δi =g2((vk2)i)− g2((vk+1
2 )i)+

< µ(dk+1
2 )i, (v

k
2)i − (vk+1

2 )i > +
µ

2
||(vk2)i − (vk+1

2 )i||22 − µ||(dk2)i − (dk+1
2 )i||22

(37)
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Besides, based on the row-hard-threshold function and dual
variable updating formula in Note 1, we can elicit the follow-
ing equations:

(vk+1
2 )i = RHa((xk+1)i − (dk2)i)

(dk+1
2 )i = (dk2)i − (xk+1)i + (vk+1

2 )i

=

{
0, ||(xk+1)i − (dk2)i||22 > a

(dk2)i − (xk+1)i, ||(xk+1)i − (dk2)i||22 ≤ a
(38)

That is to say ||(dk+1
2 )i||22 ≤ a.

However, the dual feasible condition in Eq.(35) is not
always true and ||(v2)i||22 is in two ranges. So there are four
cases which need be discussed when the states are k and k+1:

(1) If (vk2)i = (vk+1
2 )i = 0, there is:

δi = −µ||(dk2)i − (dk+1
2 )i||22

≥ −µ(||(dk2)i||2 + ||(dk+1
2 )i||2)2

≥ −4µa = −8λ

(39)

(2) If ||(vk2)i||22 = 0, ||(vk+1
2 )i||22 > a, then ||(dk+1

2 )i||22 =
0, there is:

δi = −λ+
µ

2
||(vk+1

2 )i||22 − µ||(dk2)i||22 > −2λ (40)

(3) If ||(vk2)i||22 > a, ||(vk+1
2 )i||22 = 0, then ||(dk2)i||22 = 0,

there is:

δi = λ+ < µ(dk+1
2 )i, (v

k
2)i > +

µ

2
||(vk2)i||22 − µ||(dk+1

2 )i||22

= λ+
µ

2
||(dk+1

2 )i + (vk2)i||22 −
3µ

2
||(dk+1

2 )i||22
> −2λ

(41)

(4) If ||(vk2)i||22 > a, ||(vk+1
2 )i||22 > a, then ||(dk2)i||22 =

||(dk+1
2 )i||22 = 0, there is:

δi =
µ

2
||(vk2)i − (vk+1

2 )i||22 ≥ 0 (42)

Therefore, based on above four cases, the following inequal-
ity is true:

L(Xk,Vk
1 ,V

k
2 ,D

k
1 ,D

k
2)− L(Xk,Vk

1 ,V
k+1
2 ,Dk

1 ,D
k+1
2 )

≥ −8mλ
(43)

where m is the number of rows in V2.
As a conclusion, the change of the original Lagrange

function during an iteration cycle can be expressed as follow:

∆ =

L(Xk,Vk
1 ,V

k
2 ,D

k
1 ,D

k
2)− L(Xk+1,Vk+1

1 ,Vk+1
2 ,Dk+1

1 ,Dk+1
2 )

≥ µ

2
||Xk −Xk+1||2F +

µ

2
||Vk

1 −Vk+1
1 ||2F − 8mλ

subject to : µ ≥ 2
(44)

That is to say, when λ ≤ µ
16m (||Xk − Xk+1||2F + ||Vk

1 −
Vk+1

1 ||2F ) and µ ≥ 2, the Lagrange function in Eq.(26) is
decreasing.

Furthermore, the above formulas only give a dynamic
range for λ, then we try to establish the connection between
parameter λ and normalized error tolerance ε in Note 1 for
getting a universal and fixed parameter. In other words, there
is always a parameter λ to ensure the decreasing property
when giving any of normalized error tolerance ε.

Firstly, we relax the following parameter and variable:
(1) Shrink the upper bound of λ.
Obviously, µ

2 ||X
k − Xk+1||2F > 0 is always true, so we

ignore this item in Eq.(44) and λ ≤ µ
16m ||V

k
1 −Vk+1

1 ||2F can
be obtained.

Then based on Eq.(32), there is ||Vk
1−Vk+1

1 ||2F = µ2||Dk
1−

Dk+1
1 ||2F . So the following inequality can also promise that

Eq.(44) is always non-negative:

λ ≤ µ3

16m
||Dk

1 −Dk+1
1 ||2F (45)

(2) Magnify the value of ||Dk
2 −Dk+1

2 ||F .
Based on Eq.(38), there is:

||D2||F =

√√√√ m∑
i

||(d2)i||22 ≤
√
ma =

√
2mλ

µ
(46)

Therefore, the following inequality can be obtained by using
the triangle inequality:

||Dk
2 −Dk+1

2 ||F ≤ ||Dk
2 ||F + ||Dk+1

2 ||F ≤ 2

√
2mλ

µ
(47)

Secondly, assume that the algorithm reaches the stopping
criterion when k = ks > 0. The following inequality can be
derived based on Note 1:

||Vks+1
1 −AXks+1||F + ||Vks+1

2 −Xks+1||F
= ||Dks+1

1 −Dks
1 ||F + ||Dks+1

2 −Dks
2 ||F

<
√

(m+ L)×Kε
(48)

Then based on Eq.(47) and Eq.(48), for all k < ks, there is:

||Dk+1
1 −Dk

1 ||F ≥
√

(m+ L)×Kε− 2

√
2mλ

µ
(49)

Finally, when putting Eq.(49) into Eq.(45), we can obtain
a universal range for λ to guarantee the effectiveness of our
algorithm before reaching the stopping criterion. The range is
as follow:

λ ≤ µ3

16m

(√
(m+ L)×Kε− 2

√
2mλ

µ

)2

(50)

⇒
λ ≤ µ(m+ L)Kε2

m( 4
µ + 2

√
2)2

(51)

Besides, based on Eq.(32), Eq.(46) and µ > 2, the lower bound
of the augmented Lagrange function can be found as follow:

L(X,V1,V2,D1,D2)

≥ 1

2
||Y −V1||2F −

µ

2
||D1||2F −

µ

2
||D2||2F

≥ 1

2
(1− 1

µ
)||Y −V1||2F −

√
mµλ

2
≥ −

√
mµλ

2

(52)


