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Abstract—For better performance of hyperspectral target de-
tectors, the prior target spectrum is expected to be accurate
and consistent with the target spectrum in the hyperspectral
image to be detected. The existing hyperspectral target detection
algorithms usually assume that the prior target spectrum is
highly reliable. However, the label obtained is not always precise
in practice and pixels of the same object may have quite different
spectra. Since it is hard to acquire a highly reliable prior
target spectrum in some application scenarios, we propose a
Bayesian Constrained Energy Minimization method (B-CEM) for
hyperspectral target detection. Instead of the point estimation
of the target spectrum, we infer the posterior distribution of
the true target spectrum based on the prior target spectrum.
Specifically, considering the characteristics of hyperspectral im-
age and target detection task, we adopt the Dirichlet distribution
to approximate the true target spectrum. Experimental results
on three datasets demonstrate the effectiveness of the proposed
B-CEM when the known target spectrum is noisy or inconsistent
with the true target spectrum. The necessity to approximate the
true target spectrum is also proved. Generally, distributional
estimate achieves better performance than using the known target
spectrum directly.

Index Terms—Bayesian, distributional estimate, hyperspectral
target detection.

I. INTRODUCTION

HYPERSPECTRAL remote sensing image contains abun-
dant spectral and spatial information and has been

widely used both in the military and civilian fields, such
as national defense [1], [2], security [3], mineralogy [4],
and agriculture [5]. Hyperspectral target detection, which is
a significant task in HSI processing, is gradually attracting
increasing attention. It can be applied to detect important
military targets [6], [7], such as oil tanks, aircraft, ships, and
airports. Besides, it can also be used to detect newborn leaves
[8], iron oxide [9], gas [10], and post-disaster rescue [11].
In recent years, hyperspectral target detection algorithms have
been studied extensively and deeply.

Existing hyperspectral target detection methods are pri-
marily based on spectral information and simple correlation
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information of adjacent pixels to complete detection tasks.
The most direct idea is to measure the distance between the
spectrum of the tested pixel and the prior spectrum of the
target and then to detect the target. The spectral angle mapper
(SAM) [12] measures the spectral angle between the spectrum
of the test pixel and the prior spectral features of the target as
the distance. The spectral information divergence (SID) [13]
algorithm leverages the relative entropy to interpret spectral
information and compares the similarity between the two
spectra by measuring the probabilistic discrepancy between
them.

Since the above hyperspectral target detection algorithms
only require prior knowledge of the target spectral features,
their performance usually depends on the quality of the prior
target features [14]. Some methods use prior knowledge of
the spectral signature of both target and background. Matched
filter (MF) [15], adaptive matched filter (AMF) [16], [17] and
adaptive coherence/cosine estimator (ACE) [15], [18], [19] are
detection algorithms based on binary hypothesis test. AMF and
ACE are based on the target and background spectrum follow-
ing the assumption of different Gaussian distribution probabil-
ity models, and the detector is derived from the generalized-
likelihood ratio test (GLRT) [20]. In [21], a new SNR-based
signal detection theory is developed and LRT/GLRT-derived
detectors can be interpreted as SNR/GSNR-derived detectors
where no probability distributions are assumed. Moreover, the
adaptive cosine estimator (ACE) can be also shown to be a
special case of an SA-detector based on the new SA-based
signal detection theory in conjunction with data whitening.

Another classical hyperspectral target detection algorithm
is based on the subspace model. The orthogonal subspace
projection (OSP) [22], [23] first projects the spectrum of the
test pixel to the orthogonal subspace of the background’s
spectrum to suppress the interference of the background’s
spectrum. Then it finds a vector with the maximum of the
residual target signature SNR. However, the performance of
the orthogonal subspace projection (OSP) is sensitive to the
prior target knowledge, and the prior target knowledge is
significantly affected by the target background. To address
this issue, Chang et al. [24] develop three approaches to
extend OSP in improving its performance, namely data spher-
ing, BKG-annihilated OSP (BA-OSP) based on LRaSMD,
and a combination of data sphering and LRaSMD. Besides,
hyperspectral target detection algorithms based on sparse
representation [25], [26] establish an overcomplete spectral
dictionary containing target and background spectral features,
and assume that the spectrum of each pixel can be represented
as a sparse linear combination of the spectrum contained in the
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spectral dictionary. Then target detection is transformed into
an L0 norm minimization problem. In order to achieve the
separation of the target and the background, the Constrained
Energy Minimization (CEM) [22], [27] utilizes a finite impulse
response (FIR) filter that minimizes the total spectral output
energy with constrain of outputting a constant filter’s response
to the target spectral feature. Based on these methods, some
latest methods are presented, such as the Robust CEM [28],
the Hierarchical CEM (H-CEM) [29], the Ensemble-Based
Cascaded CEM (E-CEM) [30], the automatic target detection
and classification algorithm (ATDCA) [31], Matched Shrunken
Subspace Detectors (MSSD) [32], etc.

The prior knowledge of the spectral features of target and
background is difficult to obtain in practical applications. It is
even more difficult to obtain complete statistical features of
the background spectrum. Therefore, spatial correlation and
simple texture information are added in [33], [34] to improve
the detection performance. TVHTD algorithm [35] utilizes the
total variation to take advantage of the spatial information
of the hyperspectral image. Besides, several band selection
algorithms have been proposed for target detection. Xu et
al. [36] propose a particle swarm optimization (PSO)-based
band selection (BS) approach. Chang et al. [37] reinterpret the
CEM-CBS as linearly constrained minimum variance-based
CBS (LCMV-CBS).

In recent years, the idea of machine learning has been
introduced into hyperspectral target detection. For example,
the Ensemble-Based Cascaded CEM (E-CEM) [30] introduces
the idea of ensemble learning, which to some extent alleviates
the overfitting problem of nonlinear or layered detectors based
on partial spectral data, and gets detectors with relatively stable
performance. Random forest-based metric learning detector
[38] is also proposed. Moreover, several cascaded detection
algorithms, such as the Hierarchical CEM (H-CEM) [29]
and the Robust Iteratively Reweighted Unstructured Detector
(RACE) [14], have been proposed. There are also some
other efforts contributing to improving HTD techniques, such
as structurally incoherent background and target dictionaries
(SIBTD) [39] and kernel-based SAM [40]. In addition, deep
convolutional neural network is also adopted to process target
detection tasks [41].

Existing hyperspectral target detection algorithms usually
assume that the spectral features of the target are highly
reliable. However, this assumption is not always valid. On
one hand, the known target spectrum is always obtained by
averaging all spectra of all pixels of the target object according
to the label of the hyperspectral image for a similar scene,
which further assumes that the label of the data set is highly
reliable. Since a large number of ground investigations and
abundant prior knowledge about the scene captured is a must
to accurately label the hyperspectral image [42], the label
obtained by visual interpretation is not always precise in
practice. Spontaneous mixing of data distribution may also
lead to sample crossover between different classes. On the
other hand, the quality of the spectral data can not always be
guaranteed because it is vulnerable to uncompensated errors
in the sensor, surface contaminants, material diversity, light
shadows, weather, and other environmental factors. In this case

of imperfection, the spectral properties of the pixels in the
hyperspectral image are usually quite complex, meaning that
pixels of the same object may have quite different spectra.
For example, to detect the aircraft, the spectrum of the target
aircraft at airport A was captured yesterday morning and stored
in the spectrum library as the known target spectrum. Our task
is to detect the same type of aircraft at airport B this afternoon,
where the true target spectrum is considered to be the spectrum
of the aircraft captured at airport B this afternoon. The true
target spectrum is inconsistent with the known target spectrum.

Therefore, the common and inevitable problems in the target
detection task for the hyperspectral image are as follows:
1) There is noise in the known spectrum of the target; 2)
The target spectrum of the given hyperspectral image is not
consistent with the known target spectrum. Since the quality
of the prior target spectrum is significant for the hyperspectral
target detectors [14], the above problems can seriously degrade
the detection performance.

In this work, we introduce the true spectrum of targets as an
intermediate variable for the purpose to enhance the robustness
of the method for the possible noise in the known target
spectrum or the spectral inconsistency between the true target
spectrum and the given target spectrum. There are primarily
two methods for estimating variables, namely point estimation
and distribution estimation. Point estimation is to obtain a spe-
cific value of the true target spectrum by leveraging the known
target spectrum, while distribution estimation is to infer the
distribution that the true target spectrum may follow according
to the known target spectrum and its confidence. Compared
with point estimation, distribution estimation is not only based
on the known target spectrum, but also takes into account the
distribution that the target spectrum may follow. Since only
one possible spectrum of the target is availabel, instead of the
point estimation, we aim to infer the posterior distribution of
the true target spectrum to effectively handle its uncertainty.
Then a Bayesian Constrained Energy Minimization method
(B-CEM) is developed for hyperspectral target detection.
Specifically, we adopt the Dirichlet distribution to estimate
the true target spectrum. Two major reasons contribute to this
proposal: 1) Hyperspectral images are generally considered to
follow a mixture of Gaussian distributions. 2) Given that the
background of the hyperspectral image X is unknown, no one
knows how many Gaussian distributions produced the data,
and hence the number of clustering cannot be determined. The
experimental results prove the effectiveness of our proposed
approach against competitive methods.

The contributions of our work are as follows:
1) We note that the exact target spectrum is not always

avaiable, which means the known target spectrum is noisy
or inconsistent with the true target spectrum. Hence, we
introduce Bayesian to hyperspectral target detection and
formalize the problem in a probabilistic way.

2) We introduce the true target spectrum as an intermediate
variable, and develop a hierarchical probability model.
We adopt distributional estimation for the true target
spectrum to overcome the uncertainty caused by the
difficulties to label the hyperspectral image accurately and
the unstable quality of the spectral data.
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The rest of this paper is organized as follows. In section
II, we give a process of probabilistic inference in detail and
introduce our proposed target detection method (B-CEM) for
hyperspectral image. Details about data sets and some experi-
mental results are reported in section III. The conclusions are
given in Section IV.

II. METHODOLOGY

We divide hyperspectral target detection into two steps: 1)
estimation of the true target spectrum, and 2) target detection.
In the first stage, we aim at acquiring the approximate posterior
distribution over the true target spectrum so as to acquire better
detection performance. Specifically, we consider the known
target spectrum as the mean of the Gaussian distribution, the
variance of which depends on the confidence of the known
target spectrum. Once the Gaussian distribution is obtained, we
treat it as the base distribution of the Dirichlet distribution and
adopt the Dirichlet distribution to approximate the posterior
distribution over the true target spectrum. In the second stage,
we adopt a regularized CEM detector to detect targets with the
true target spectrum sampled from the Dirichlet distribution
acquired in the first stage and infer the posterior detection
score over an unknown background.

In this section, we review the classical CEM detector and
the regularized CEM detector [43] briefly in subsection A.
Then we detail the proposed methods, B-CEM. The true target
spectrum is introduced as an intermediate variable and the
detection score is factorized then in subsection B. Therefore,
the key is turned to acquire the true distribution for the
true target spectrum. Since the true distribution for the true
spectrum is hard to solve directly, we take an amortized
variational inference approach to approximate the posterior.
Specifically, we propose to formulate the distribution as a
Dirichlet one and present two major reasons that contribute to
this proposal in subsection C. Unfortunately, the expression of
the closed-form of the Dirichlet distribution cannot be derived.
The process to obtain a specific Dirichlet distribution hence is
introduced in detail in subsection D.

A. CEM Detector

For HSI data set X = [x1, . . . ,xN ] ∈ RC×N , xi ∈ RC×1

is the spectrum of pixel i, C is the number of the bands, N is
the total number of pixels. Except for the hyperspectral image,
the target spectrum t ∈ RC×1 is also available.

CEM can be considered as a standard linear filter. The
filter’s response to the target spectral feature is the inner
product of the spectrum vector x and detector’s coefficient
ω:

y = wTX (1)

In order to separate the target from the background, CEM
aims to find a projection vector that keeps the output of the
target large and suppresses the output of the background.

The optimal coefficients of a CEM detector can be obtained
by minimizing the average “energy” of output, which can be
obtained by averaging the square of the output values, under

the constrain that the filter’s response to the target spectral
feature is a constant:

min
w

E[y2] = wTRw

s. t.wT t = 1
(2)

where R = E[XXT ] = 1
NXXT ∈ RC×C is the maximum

likelihood estimation of correlation matrix for the HSI data
set X . The closed solution of the above optimization problem
can be given as follow:

w∗ =
R−1t

tTR−1t
(3)

Due to the performance of CEM in the target detection task
of hyperspectral images, many methods have been devoted to
improving the performance of the detector based on CEM in
recent years. A classic improvement is the regularized CEM
detector.

Adding a positive diagonal matrix with small values λI to
the matrix R : R + λI, where λ > 0, can help enhance the
numerical stability of matrix inverse operation R−1. Then the
closed solution of the CEM detector can be modified as:

w(λ)∗ =
(R + λI)

−1
t

tT (R + λI)
−1

t
(4)

Once we obtain the optimal coefficients of the CEM detector
w(λ)∗, Equation 1 can be adopted to complete the detection
on each pixel of X .

B. Detection Score Expression

We use Bayesian in hyperspectral target detection and
transform regularized CEM detector into a filter. Given a
hyperspectral image X to be detected and the known target
spectrum tobs, we compute the following detection score:

f(xi | tobs, λ) = (w(λ)∗)Txi (5)

where xi is one of the pixels in the hyperspectral image
X , tobs is the known spectrum of the target of interest,
λ > 0 is the regularization coefficient and (w(λ)∗)T is the
optimal coefficients of the regularized CEM detector obtained
by Equation 4.

However, the common and inevitable problems in the target
detection task for the hyperspectral image are as follows: 1)
There is noise in the known spectrum of the target; 2) The
target spectrum ttrue of the given hyperspectral image X is
not consistent with the known target spectrum tobs.

Therefore, we introduce the true target spectrum ttrue as an
intermediate variable to enhance the robustness of the method
for 1) the possible noise in tobs or 2) the spectral inconsistency
between tobs and ttrue. We draw on the detection processes
that humans perform in hyperspectral target detection tasks.
When we are to detect the target in the hyperspectral image
X and given the known target spectrum tobs, the first step is
to get the true target spectrum ttrue, which is consistent with
the target spectrum of the hyperspectral image X.

Since the true target spectrum ttrue is hard to obtain
directly, our method models the posterior distribution for ttrue
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based on the known target spectrum tobs, which is represented
as p(ttrue | tobs). Given that only one possible spectrum of
the target is available, distributional estimates rather than point
estimates are used. By introducing the true target spectrum
ttrue, the detection score can be obtained by:

f̃(xi | ttrue, λ)

=
∫
f(xi | ttrue, λ) · p(ttrue | tobs)dttrue

(6)

C. Approximation of the Posterior Distribution

Since the known target spectrum tobs is not always clean
and may not be exactly the same as the spectrum of targets
in the hyperspectral image X, we introduce the true target
spectrum ttrue as an intermediate variable and develop a
bayesian constrained energy minimization method (B-CEM).
Unfortunately, the true distribution for the true spectrum
p(ttrue | tobs) is hard to solve directly, our approach takes
an amortized variational inference approach to approximate
the posterior. Specifically, the Dirichlet distribution is finally
adopted for the approximate posterior distribution over the
true target spectrum q(t | tobs, α) in this work, where α is
the parameter of the Dirichlet distribution G ∼ DP(α,G0).
Two major reasons contribute to this proposal: 1) Hyper-
spectral images are generally considered to follow a mixture
of Gaussian distributions. 2) Given that the background of
the hyperspectral image X is unknown, no one knows how
many Gaussian distributions produced the data, and hence
the number of clustering cannot be determined. For the base
distribution G0 of the Dirichlet distribution G ∼ DP(α,G0),
we consider the known target spectrum tobs as the mean of the
Gaussian distribution G0, the variance var of which depends
on the confidence of tobs. The higher the confidence, the
smaller the variance var. Based on the Gaussian distribution
G0 ∼ N (tobs, var), we assume that the approximate true
target spectrum t follows the obtained Dirichlet distribution
G ∼ DP(α,G0).

As mentioned above, we represent the approximate posterior
distribution over the true target spectrum G ∼ DP(α,G0),
where G0 ∼ N (tobs, var) as q(t | tobs, α). The detection
score of each pixel xi in the hyperspectral image X hence
can be approximated by the approximate true target spectrum
t as follow:

f̃(xi | ttrue, λ)

≈
∫
f(xi | t, λ) · q(t | tobs, α)dt

(7)

D. Approximation of the True Target Spectrum

The approximate true target spectrum t follows the obtained
Dirichlet distribution G ∼ DP(α,G0), which is a distribu-
tion over probability distributions and is determined by two
parameters α,G0. α is a positive concentration or scaling
parameter, the smaller the value is, the more concentrated
the distribution is. G0 ∼ N (t, var) is the base Gaussian
distribution. Therefore, the Dirichlet Process DP can be
considered as a black box, where the input distribution is G0,
the output distribution is G, and α controls what the output

looks like. G is a random probability measure that has the
same support as G0. If G ∼ DP(α,G0), for any finite set of
partitions X1 ∪X2 ∪ ... ∪Xk of X, we have

G(X1), ..., G(Xk) ∼ Dirichlet(αG0(X1), ..., αG0(Xk))
(8)

where G(Xi) is the sum of the probabilities of this discrete
distribution of G within partition Xi, G0(Xi) is the sum of
the probability of base distribution G0 within partition Xi.

Unfortunately, the closed-form solution of the Dirichlet dis-
tribution G cannot be derived. Therefore, the process to sample
G, which is graphically known as stick-breaking, is detailed
following. Firstly, we sample θ1 ∼ G0 and β1 ∼ Beta(1, α),
then π1 = β1. Then we sample the first sample and set the
weight of this sample to β1. Similarly, we sample θ2 ∼ G0

and β2 ∼ Beta(1, α), then π2 = (1−π1)×β2. We sample the
second sample and set the weight of this sample to β2. This
stick should have 1 − π1 − π2 left then and we continue to
take β3 from it. Then π3 = (1−π1−π2)×β3. In this way, G
is obtained. θi is the position and πi is the weight. Since the
whole process is like breaking the stick, the sampling process
to get the Dirichlet distribution G is called stick breaking.

We formulate the approximate posterior distribution over the
true target spectrum q(t | tobs, α) as the Dirichlet distribution
G ∼ DP(α,G0). Once a specific G obtained by stick breaking
is acquired, we will sample 10 spectral signatures as the set
of true target spectra T = {t1, t2, ..., t10} from it.

Given each approximate true target spectrum ti ∈ T and the
hyperspectral image X = [x1, . . . ,xN ] ∈ RC×N , we adopt a
regularized CEM detector to detect targets from an unknown
background and get the target detection score:

f(xi | ti, λ) = (w(λ)∗)Txi (9)

where

w(λ)∗ =
(R + λI)

−1
ti

ti
T (R + λI)

−1
ti

(10)

Therefore, the final target detection score can be derived:

f̃(xi | ttrue, λ) ≈ 1

10

∑
f(xi | ti, λ), i = 1, 2, ..., 10 (11)

where ti ∈ T.

III. EXPERIMENT

We compare the proposed B-CEM with six other algorithms
on hyperspectral target detection tasks and prove the effec-
tiveness of our method. Since the label obtained is not always
precise in practice and pixels of the same object may have a
quite different spectrum, there is always noise in the known
target spectrum or a gap between the known target spectrum
and the true target spectrum in the real application scenario.
The known target spectra of the experimental data sets are
considered as the true target spectra because they are obtained
by averaging the target spectra in the test scene. However, this
is impossible in practice and we cannot acquire such a true
target spectrum in the real application scenario because a gap
often exists between the known target spectrum and the true
target spectrum. Therefore, to evaluate whether our method
can address this issue which always occurs in practice, we
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have to simulate the gap between the known target spectrum
and the true target spectrum. In this paper, we use a simple
way to simulate the gap, namely adding noise. We consider
the target spectra, which are obtained by averaging the target
spectra in the test scene, as the true target spectra ttrue. Then
we add noise to the true target spectra as the known target
spectra tobs, which can be obtained in real-world applications.
Specifically, we add Gaussian white noise with a Signal-to-
Noise Ratio (SNR) of 10dB−50dB to the target spectrum. The
higher the SNR, the less the noise is contained in the known
target spectrum. SNR refers to the ratio of signal energy and
quantization noise energy. The calculation formula of SNR is
as follows:

SNR(dB) = 10 log10

(
Psignal

Pnoise

)
= 20 log10

(
Asignal

Anoise

)
(12)

where Psignal is the power of signal, Pnoise is the power
of noise, Asignal is the amplitude of signal, and Anoise is
the amplitude of noise. We can draw a conclusion from the
formula of SNR that the lower SNR is, the greater the noise
is.

We evaluate the detection performance of six other detectors
and our B-CEM under different SNR. All the experiments
are conducted using python on a workstation with an Intel(R)
Core(TM) i7-10700K processor (3.80 GHz), 64 GB of mem-
ory, and Nvidia GeForce RTX 2080 Ti.

A. Datasets

We conduct experiments on one synthetic hyperspectral
image generated from the United States Geological Survey
(USGS) digital spectral library [44], and two real hyperspectral
images, AVIRIS San Diego Data, and AVIRIS Cuprite Data.

The synthetic hyperspectral image is consists of 15 kinds of
endmember spectrum. Similarly to Chang et al. [45], we divide
the synthetic map with size of s2×s2, s = 8 into s×s regions.
Then we initialize each region with the same type of ground
cover randomly selected from the aforementioned 15 kinds of
spectra. By replacing the spectrum of background pixels, we
implant the target into the corresponding pixels. In order to
ensure that there is no pure pixel in this hyperspectral image
synthesized, the synthetic data is mixed through a (s + 1) ×
(s+1) spatial low-pass filter. The other detailed information is
shown in Table I. The first band of the synthetic hyperspectral
image and the ground truth location of the target is shown in
Figure 1.

The AVIRIS San Diego data set, which is collected by
AVIRIS at San Diego, America, contains a part of an airport.
The target of interest in this image is the three airplanes. The
spectrum of the target is obtained by averaging all spectra of
pixels in the target regions. The other detailed information is
shown in Table I. The first band of the hyperspectral image
and the ground truth location of the target are shown in Figure
2.

The AVIRIS Cuprite Data, which is collected by AVIRIS in
the Cuprite mining district of Nevada, contains about 14 kinds
of mineral in this image. A subset of this image with 250×191
pixels are used to evaluate our method and are marked by

(a) (b)

Fig. 1: The synthetic hyperspectral image. (a) The first band
of the synthetic hyperspectral image. (b) The ground truth.

(a) (b)

Fig. 2: The AVIRIS San Diego hyperspectral image. (a) The
first band of the synthetic hyperspectral image. (b) The ground
truth.

the red box in Figure 3 (a), which is the minerals map [46]
produced by the Tricorder 3.3 software. The other detailed
information is shown in Table I, where the number of bands
used is 188 after removing the low SNR and water absorption
bands. Since the target of interest in this hyperspectral image,
the buddingtonite, has two kinds of spectrum in the USGS
Digital Spectral Library [44], we make the target spectrum be
the average of them. The first band of the hyperspectral image
and the ground truth location of the target are shown in Figure
3.

(a) (b) (c)

Fig. 3: The AVIRIS Cuprite hyperspectral image. (a) The
AVIRIS Cuprite hyperspectral image and its subset used. (b)
The first band of the synthetic hyperspectral image. (c) The
ground truth.
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TABLE I: Detailed information of data sets used. Syn is the synthetic hyperspectral image, San is the AVIRIS San Diego Data,
and Cup is the AVIRIS Cuprite Data.

Dataset No. of band used Wavelength No. of target pixels Target Size

Syn 224 400− 2500nm 12 The Labradorite HS17.3B 64× 64

San 189 380− 2510nm 134 The average within the target regions 200× 200

Cup 188 400− 2500nm 39 The buddingtonite 250× 191

B. Detection performance

We compare the detection performance of B-CEM with the
Constrained Energy Minimization (CEM) [27], the adaptive
coherence/cosine estimator (ACE) [18], the Matched filter
(MF) [15], the spectral information divergence (SID) [13], the
spectral angle mapper (SAM) [12] and the Ensemble-Based
Cascaded CEM E-CEM [30], including classical detection
algorithms and the SOTA method. As mentioned earlier,
Gaussian white noise with different SNR is added to the true
target spectrum ttrue to simulate the situation where tobs is
noisy or not exactly the same as ttrue.

In order to more intuitively reflect the magnitude of added
noise with SNR range from 10dB to 50dB, we visualized the
target spectrum ttrue of the AVIRIS San Diego data set and
the target spectrum tobs with noise of 10dB, 30dB and 50dB,
which is shown in Figure 4. It can be observed that when SNR
is greater than 30dB, the target spectrum with noise added is
relatively close to the known target spectrum. Therefore, we
only present detection results and ROC curves on the three
data sets when SNR ranges in 10dB − 30dB.

Fig. 4: The true target spectrum ttrue and the target spectrum
tobs with noise of 10dB, 30dB and 50dB. When SNR is
greater than 30, the target spectrum with noise added is
relatively close to the original target spectrum.

1) Detection performance on the AVIRIS San Diego data
set: The corresponding numerical AUC with the noisy known
target spectrum when the SNR (Signal-to-Noise Ratio) ranges
from 10dB−50dB for six other detectors and our B-CEM are
reported in Table II in detail. Figure 5 and Figure 6 show the
detection results and ROC Curve with the noisy known target
spectrum when the SNR ranges from 10dB − 30dB.

The numerical AUC with SNR ranging from 10dB−50dB,
which is presented in Table II, demonstrates that B-CEM gets a
significant performance boost compared with other detectors.

TABLE II: AUC of the different methods on the San Diego
Data Set. The known spectrum of the target tobs contains
Gaussian white noise of SNR ranges in 10dB − 50dB. Best
results are highlighted in bold.

SNR = 10 SNR = 20 SNR = 30 SNR = 40 SNR = 50

CEM [27] 49.89 46.97 45.64 61.45 76.79

ACE [18] 44.38 45.19 48.16 40.86 59.22

MF [15] 47.79 45.55 45.04 63.44 76.23

SID [13] 83.04 82.70 81.82 81.36 81.12

SAM [12] 85.57 81.23 81.06 80.89 80.47

E-CEM [30] 59.76 61.69 58.21 52.77 64.28

B-CEM 96.34 98.69 98.42 98.42 98.42

In B-CEM, we assume that the known target spectrum tobs
is often noisy or not exactly the same as the true target
spectrum. Based on the assumption above, we introduce t as
an intermediate variable to estimate the true target spectrum
and infer its approximate posterior distribution. Since the
target spectrum with high SNR is close to the known target
spectrum, our hypothesis that the known target spectrum is not
consistent with the true spectrum is not valid. Therefore, the
detection performance of B-CEM drops slightly when SNR
is 30dB or higher. While a quite low SNR (for example,
10dB) maybe means that the obtained approximate posterior
distribution over the true target spectrum contains noise, which
probably leads to the degradation of detection performance.
However, the detection performance of B-CEM is significantly
superior to that of other detectors despite the variation of SNR.
Besides, the performance gap of B-CEM with different SNRs
is small.

A similar conclusion can be drawn from the visualization of
the detection results. At high noise levels (SNR is 10dB), two
aircraft can be detected by B-CEM. When the noise is not as
much (SNR is 20dB and 30dB), B-CEM can detect all three
aircraft. B-CEM has a better detection ability compared with
other methods. It is worth noting that CEM [27], the basis
of our B-CEM, acquires a relatively poor performance, which
demonstrates the advantage of the distribution estimation and
the effectiveness of the proposed method.

Receiver Operating Characteristic (ROC) Curve is shown in
Figure 6 and proves the effectiveness of the proposed B-CEM
detector. The performance of B-CEM when SNR is 20dB
and 30dB is superior to that when SNR is 10dB. Regardless
of the SNR of noise contained in the known target spectrum
tobs, B-CEM acquires obviously better performance compared
to other detectors. However, 2D ROC curve can not evaluate
the target detectability and also not background suppressibility
(BS) [47]. For this reason, we further evaluate the detection
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(a) SNR=10 (b) SNR=20 (c) SNR=30

Fig. 5: The detection results of detectors on the AVIRIS San Diego data set with the noisy known target spectrum. SNR
(Signal-to-Noise Ratio) ranges from 10dB − 30dB.

(a) SNR=10 (b) SNR=20 (c) SNR=30

Fig. 6: The ROC Curves of detectors on the AVIRIS San Diego data set with the noisy known target spectrum. SNR (Signal-
to-Noise Ratio) ranges from 10dB − 30dB.

(a) 3D ROC curve

00.20.40.60.81

P
F

0

0.2

0.4

0.6

0.8

1

P
D

CEM, =0.01

ACE, =0.01

MF, =0.01

SID, =0.01

SAM, =0.01

E-CEM, =0.01

B-CEM, =0.01

CEM,sample values

ACE,sample values

MF,sample values

SID,sample values

SAM,sample values

E-CEM,sample values

B-CEM,sample values

(b) 2D ROC curve of (PD, PF )
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(c) 2D ROC curve of (PD, τ )
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(d) 2D ROC curve of (PF , τ )

Fig. 7: 3D ROC curves along with its generated three 2D ROC curves using Equation 13 by data sample values and uniform
step size, ∆ = 0.01, on the San Diego data Set with the noisy known target spectrum when SNR = 10
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(a) 3D ROC curve
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(b) 2D ROC curve of (PD, PF )
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(c) 2D ROC curve of (PD, τ )
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(d) 2D ROC curve of (PF , τ )

Fig. 8: 3D ROC curves along with its generated three 2D ROC curves using Equation 13 by data sample values and uniform
step size, ∆ = 0.01, on the San Diego data Set with the noisy known target spectrum when SNR = 20
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(d) 2D ROC curve of (PF , τ )

Fig. 9: 3D ROC curves along with its generated three 2D ROC curves using Equation 13 by data sample values and uniform
step size, ∆ = 0.01, on the San Diego data Set with the noisy known target spectrum when SNR = 30

performance of our method by the 3D ROC curves proposed
in [47]. We adopt the detector as follow:

δNP
τ (tobs) =

{
1; if δNP

normalized(tobs) > τ

0; if δNP
normalized(tobs) ≤ τ

(13)

where

δNP
normalized(tobs) =

δNP
τ (tobs)−mintobs δ

NP
τ (tobs)

maxtobs δ
NP
τ (tobs)−mintobs δ

NP
τ (tobs)

(14)
Figure 7-9(a) present the 3D ROC Curves when SNR

ranges in 10dB − 30dB, which is generated as a function of
(PD, PF , τ) with three independent variable. τ is the thresh-
old parameter, PD is detection probability and PF is false
alarm probability. Figure 7-9(b) shows the 2D ROC curves of
(PD, PF ) derived from 3D ROC curve. Their corresponding
AUC values can be further used to evaluate the effectiveness
of detectors with SNR ranging in 10dB−30dB. Figure 7-9(c)
shows the 2D ROC curves of (PD, τ) derived from 3D ROC
curve. Their corresponding AUC values can be further used
to evaluate detection probability of detectors. Higher values
of AUC(D,F ) and AUC(D,τ) indicate higher detection per-
formance. Figure 7-9(d) shows the 2D ROC curves of (PF , τ)
derived from 3D ROC curve. Their corresponding AUC values
can be further used to evaluate background suppression of
detectors. A lower value of AUC(F,τ) indicates a better BKG
suppression and thus a better detection performance.

When SNR is 10dB − 30dB, B-CEM is proved to be the
most effective detector because its corresponding AUC value
of (PD, PF ) is obviously the highest. With the increase of
SNR, the corresponding AUC value of (PD, τ) and (PF , τ)
for B-CEM increases, and AUC(D,τ) of B-CEM is the highest
when SNR is 20dB and 30dB. Therefore, the detection prob-
ability of B-CEM increases with the increase of SNR and is

the highest when SNR is 20dB and 30dB. While background
suppression of B-CEM decreases with the increase of SNR.
Since we first acquire the approximate posterior distribution
over the true target spectrum, and then the approximate true
target spectrum t is randomly sampled from the obtained
distribution. There is some uncertainty in this process, which
is the reason why background suppression of B-CEM is worse
than that of some other detectors.

Generally, distributional estimates adopted in B-CEM
present a significant performance boost in the case of noise or
spectral inconsistency compared to other detectors.

2) Detection performance on the AVIRIS Cuprite data set:
The corresponding numerical AUC with the noisy known
target spectrum for all detectors are reported in Table III in
detail. Figure 10 and Figure 11 show the detection results and
ROC Curve on the AVIRIS Cuprite data set with the noisy
known target spectrum when the SNR (Signal-to-Noise Ratio)
ranges from 10dB − 30dB.

TABLE III: AUC of the Different Methods on the Cuprite Data
Set. The known spectrum of the target tobs contains Gaussian
white noise of SNR ranges in 10dB − 50dB. Best results are
highlighted in bold.

SNR = 10 SNR = 20 SNR = 30 SNR = 40 SNR = 50

CEM [27] 42.65 50.19 72.13 71.17 72.78

ACE [18] 45.79 46.62 59.22 68.69 77.08

MF [15] 43.33 50.38 73.65 72.68 75.17

SID [13] 62.80 58.88 60.62 60.56 60.73

SAM [12] 59.07 56.74 58.84 59.02 59.20

E-CEM [30] 63.24 80.22 79.48 81.65 80.46

B-CEM 89.60 91.44 93.43 91.50 91.40
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(a) SNR=10 (b) SNR=20 (c) SNR=30

Fig. 10: The detection results of detectors on the AVIRIS Cuprite data set with the noisy known target spectrum. SNR
(Signal-to-Noise Ratio) ranges from 10dB − 30dB.

(a) SNR=10 (b) SNR=20 (c) SNR=30

Fig. 11: The ROC Curves of detectors on the AVIRIS Cuprite data set with the noisy known target spectrum. SNR (Signal-
to-Noise Ratio) ranges from 10dB − 30dB.

(a) 3D ROC curve
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(b) 2D ROC curve of (PD, PF )
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(c) 2D ROC curve of (PD, τ )
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(d) 2D ROC curve of (PF , τ )

Fig. 12: 3D ROC curves along with its generated three 2D ROC curves using Equation 13 by data sample values and uniform
step size, ∆ = 0.01, on the Cuprite Data Set with the noisy known target spectrum when SNR = 10
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(a) 3D ROC curve
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(b) 2D ROC curve of (PD, PF )
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(c) 2D ROC curve of (PD, τ )
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(d) 2D ROC curve of (PF , τ )

Fig. 13: 3D ROC curves along with its generated three 2D ROC curves using Equation 13 by data sample values and uniform
step size, ∆ = 0.01, on the Cuprite Data Set with the noisy known target spectrum when SNR = 20
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(b) 2D ROC curve of (PD, PF )
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(c) 2D ROC curve of (PD, τ )
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(d) 2D ROC curve of (PF , τ )

Fig. 14: 3D ROC curves along with its generated three 2D ROC curves using Equation 13 by data sample values and uniform
step size, ∆ = 0.01, on the Cuprite Data Set with the noisy known target spectrum when SNR = 30

Similarly, the AUC of B-CEM is a significant improvement
over that of other detectors. Its AUC also generally conforms
to the trend of increasing first and then decreasing. The target
spectrum that contains noise of a quite low SNR (for example,
10dB) may lead to the obtained approximation posterior
distribution of the true target spectrum is noisy, which further
leads to the true target spectrum sampled is noisy, and then
leads to the performance decline of the B-CEM detector. While
the target spectrum with a quite high SNR (for example, 50dB)
is close to the known target spectrum, which is considered
as the true target spectrum. Therefore, our hypothesis that the
known target spectrum is not consistent with the true spectrum
is not valid. Generally, compared with other detectors, B-
CEM has a significantly better and relatively robust detection
performance regardless of the SNR.

For the visualization of the detection results, B-CEM can
detect almost all targets with relatively high confidence. False
alarm decreases with the increase of SNR. Besides, Receiver
Operating Characteristic (ROC) Curve is shown in Figure 11
and proves the effectiveness of the proposed B-CEM detector.
The performance of B-CEM when SNR is 30dB and 20dB is
superior to that when SNR is 10dB. Regardless of the SNR of
noise added, B-CEM acquires better performance compared to
other detectors.

To further evaluate the detection performance of B-CEM,
we adopt the 3D ROC curves proposed in [47]. Using
δNP

normalized(tobs) in Equation 13 to threshold the detection maps
produced Figure 12-14(a-d).

When SNR is 10dB − 30dB, the AUC value of (PD, PF )
for B-CEM is the highest, which demonstrates that B-CEM
is the most effective detector. With the increase of SNR,
the corresponding AUC value of (PD, τ) and (PF , τ) for all
detectors decrease. Obviously, it is reasonable that background

TABLE IV: AUC of the Different Methods on the synthetic
hyperspectral image. The known spectrum of the target tobs
contains Gaussian white noise of SNR ranges in 10dB−50dB.
Best results are highlighted in bold.

SNR = 10 SNR = 20 SNR = 30 SNR = 40 SNR = 50

CEM [27] 0.00 0.00 100.00 100.00 100.00

ACE [18] 78.36 83.60 85.87 88.22 88.74

MF [15] 0.00 0.00 100.00 100.00 100.00

SID [13] 100.00 100.00 100.00 100.00 100.00

SAM [12] 100.00 100.00 100.00 100.00 100.00

E-CEM [30] 100.00 100.00 99.98 100.00 100.00

B-CEM 100.00 100.00 100.00 99.95 100.00

suppression decreases with the increase of SNR. However,
the less noise actually reduces the detection probability of all
detectors. The probable reason can be: 1) The AVIRIS Cuprite
data set is mislabeled, or 2) The added Gaussian white noise
with a higher SNR makes the target spectrum even closer to
that of some other material.

Generally, B-CEM presents better performance in the case
of noise or spectral inconsistency compared to other detectors.

3) Detection performance on the Synthetic Hyperspectral
Image: The numerical AUC with the noisy known target
spectrum for all detectors on the synthetic hyperspectral image
are reported in Table IV in detail. Figure 15 and Figure 16
show the detection results and ROC Curve with the noisy
known target spectrum when the SNR (Signal-to-Noise Ratio)
range from 10dB − 30dB.

In general, from Table IV, it can be observed that most
detectors perform well when SNR is high. The AUC of detec-
tors including CEM [27], ACE [18], and MF [15] decrease as
SNR decreases. When SNR ranging from 10dB − 50dB, the
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(a) SNR=10 (b) SNR=20 (c) SNR=30

Fig. 15: The detection results of detectors on the synthetic hyperspectral image with the noisy known target spectrum. SNR
(Signal-to-Noise Ratio) ranges from 10dB − 30dB.

(a) SNR=10 (b) SNR=20 (c) SNR=30

Fig. 16: The ROC Curves of detectors on the synthetic hyperspectral image with the noisy known target spectrum. SNR
(Signal-to-Noise Ratio) ranges from 10dB − 30dB.
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(b) 2D ROC curve of (PD, PF )
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(c) 2D ROC curve of (PD, τ )
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(d) 2D ROC curve of (PF , τ )

Fig. 17: 3D ROC curves along with its generated three 2D ROC curves using Equation 13 by data sample values and uniform
step size, ∆ = 0.01, on the synthetic hyperspectral image with the noisy known target spectrum when SNR = 10
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(a) 3D ROC curve
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(b) 2D ROC curve of (PD, PF )
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(c) 2D ROC curve of (PD, τ )
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(d) 2D ROC curve of (PF , τ )

Fig. 18: 3D ROC curves along with its generated three 2D ROC curves using Equation 13 by data sample values and uniform
step size, ∆ = 0.01, on the synthetic hyperspectral image with the noisy known target spectrum when SNR = 20
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(c) 2D ROC curve of (PD, τ )
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(d) 2D ROC curve of (PF , τ )

Fig. 19: 3D ROC curves along with its generated three 2D ROC curves using Equation 13 by data sample values and uniform
step size, ∆ = 0.01, on the synthetic hyperspectral image with the noisy known target spectrum when SNR = 30

performance on synthetic data sets of the same detector at the
same noise level is better than that on real data sets. Their good
performance on the synthetic hyperspectral image is in sharp
contrast to their relatively poor performance on the two real
hyperspectral images, namely the AVIRIS San Diego data set
and the AVIRIS Cuprite data set. Since the primary difference
between synthetic images and real images is the reliability of
the known target spectrum, the known target spectrum of the
synthetic image is reliable and can be regarded as the true
target spectrum. Therefore, the better performance of most
detectors on the synthetic data set exactly proves that the true
target spectrum is crucial for target detection performance.
Once the true target spectrum is obtained, the detectors can
not only achieve better detection performance but also achieve
stronger robustness to noise.

The 2D ROC Curve of B-CEM is the same as that of CEM
[27], SID [13], SAM [12] and E-CEM [30], as shown in
Figure 16. However, their performance variations is presented
in Figure 17-19(a-d), which is produced by thresholding the
detection maps via δNP

normalized(tobs) in Equation 13.
When SNR is 10dB − 30dB, it can be observed that the

AUC value of (PD, PF ) for B-CEM is very high. Therefore,
we can draw the conclusion that B-CEM is the most effective
detector. The corresponding AUC value of (PD, τ) hardly
changes at different noise levels, which proves that the detec-
tion probability of B-CEM is relatively robust to noise. While
background suppression of B-CEM increases with the increase
of SNR, which is described in Figure 17-19(d). Although
background suppression of B-CEM is worse than that of some
other detectors due to the distribution estimation adopted, the
detection performance of B-CEM is significantly better than
that of other detectors.

We can observe the same conclusion from both AUC values

and 2D ROC and 3D ROC curves. Most detectors perform
well when adding very little noise. With the decrease of SNR,
the performance of other detectors except B-CEM decreased.
However, most detectors perform better on synthetic datasets
than on real datasets. This also shows the importance of
matching the prior spectrum with the target spectrum, so it
is necessary to estimate the true spectrum.

Generally, the same conclusions can be drawn from both
numerical AUC and ROC curves. Most detectors perform well
when SNR is high. Although the performances of all detectors
decrease with the decrease of SNR, B-CEM is more robust
to noise. Most detectors perform better on synthetic data sets
than on real data sets at the same noise level. This indicates the
significance of the true target spectrum. Therefore, estimating
the true target spectrum is necessary, which might be the
primary reason for the B-CEM’s effectiveness.

B-CEM is suitable for the application scenario where the
known target spectrum contains noise or the gap between
the true target spectrum and the known target spectrum ex-
ists. For example, the proposed method can acquire a better
performance when the sensor, surface contaminants, material
diversity, light shadows, weather, or other environmental fac-
tors of capturing hyperspectral images to be detected are quite
different from those of obtaining the known target spectrum.
However, when the difference between the true target spectrum
and the known target spectrum is quite small, or when the
true target spectrum is available, the true target spectrum that
we obtained by distribution estimation may deviate from the
known true target spectrum due to the inherent uncertainty of
distribution estimation. Therefore, the point estimation might
be a better choice when the true target spectrum is available.
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IV. CONCLUSION

We propose a Bayesian Constrained Energy Minimization
method (B-CEM) for hyperspectral target detection, where
we introduce the true target spectrum as an intermediate
variable and build a hierarchical probability model. Given
the characteristics of hyperspectral image and target detection
task, we adopt the Dirichlet distribution to approximate the
posterior distribution of the true target spectrum. The validity
of the proposed B-CEM and the necessity to obtain the
true target spectrum are proved by experimental results on
three data sets. The proposed B-CEM detector gets noticeable
improvements and is relatively robust, especially when the
known target spectrum is noisy or inconsistent with the true
target spectrum. Furthermore, B-CEM may provide new ideas
for further studies on hyperspectral target detection when the
known target spectrum is less reliable.
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and R. Sarmiento, “Hyperspectral unmixing on gpus and multi-core
processors: A comparison,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 6, no. 3, pp. 1386–1398,
2013.

[24] C.-I. Chang and J. Chen, “Orthogonal subspace projection using data
sphering and low-rank and sparse matrix decomposition for hyperspec-
tral target detection,” IEEE Transactions on Geoscience and Remote
Sensing, pp. 1–19, 2021.

[25] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Sparse representation for
target detection in hyperspectral imagery,” IEEE Journal of Selected
Topics in Signal Processing, vol. 5, no. 3, pp. 629–640, 2011.

[26] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Simultaneous joint sparsity
model for target detection in hyperspectral imagery,” IEEE Geoscience
and Remote Sensing Letters, vol. 8, no. 4, pp. 676–680, 2011.

[27] W. Farrand, “Mapping the distribution of mine tailings in the Coeur
d’Alene River Valley, Idaho, through the use of a constrained energy
minimization technique,” Remote Sensing of Environment, vol. 59,
pp. 64–76, Jan. 1997.

[28] S. Yang, Z. Shi, and W. Tang, “Robust hyperspectral image target detec-
tion using an inequality constraint,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 53, no. 6, pp. 3389–3404, 2015.

[29] Z. Zou and Z. Shi, “Hierarchical suppression method for hyperspectral
target detection,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 54, no. 1, pp. 330–342, 2016.

[30] R. Zhao, Z. Shi, Z. Zou, and Z. Zhang, “Ensemble-based cascaded
constrained energy minimization for hyperspectral target detection,”
Remote Sensing, vol. 11, p. 1310, June 2019.



14

[31] H. Ren and C.-I. Chang, “Automatic spectral target recognition in
hyperspectral imagery,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 39, no. 4, pp. 1232–1249, 2003.

[32] Z. Wang and J.-H. Xue, “Matched shrunken subspace detectors for
hyperspectral target detection,” Neurocomputing, vol. 272, pp. 226–236,
2018.

[33] X. Yang, J. Chen, and Z. He, “Sparse-SpatialCEM for Hyperspectral
Target Detection,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 12, pp. 2184–2195, July 2019.

[34] J. F. Randrianasoa, P. Cettour-Janet, C. Kurtz, Éric Desjardin,
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