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Abstract— Remote sensing image scene classification aims to
automatically assign semantic labels for remote sensing images.
Recently, to overcome the distribution discrepancy of training
data and test data, domain adaptation has been applied to remote
sensing image scene classification. Most domain adaptation
approaches usually explore transferability under the assumption
that the source domain and target domain have common classes.
However, in real applications, new categories may appear in
the target domain. Besides, only considering the transferability
will degrade the classification performance due to the strong
interclass similarity of remote sensing images. In this article,
we present an open set domain adaptation algorithm via explor-
ing transferability and discriminability (OSDA-ETD) for remote
sensing image scene classification. To be specific, we propose the
transferability technology, which aims at the high interdomain
variations and high intraclass diversity of remote sensing images.
The purpose of transferability is to reduce the global distribution
difference of domains and the local distribution discrepancy
of the same classes in different domains. For high interclass
similarity in remote sensing images, we adopt the discriminability
strategy. The discriminability intends to enlarge the distribution
discrepancy of different classes in different domains. To further
promote the effectiveness of scene classification, we integrate
the transferability and the discriminability into a framework.
Moreover, we prove that the algorithm has a unique optimizer.

Index Terms— Discriminability, open set domain adaptation,
remote sensing, scene classification, transferability.
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NOMENCLATURE

Ds and Dt Source and target domains.
Ys and Yt Source and target label spaces.
xsi and xt j Source and target samples.
xk

t j
Predicted known target
samples.

ns and nt Number of source or target
samples.

nk
t Number of predicted known

target samples.
nc

s Number of source samples
with label c.

nĉ
t Number of target samples

with pseudolabel ĉ.
C Number of known classes.
C + 1 Number of target domain

classes.
Qs Source domain marginal

distribution.
QYs

t Known class marginal
distribution in target domain.

Q
xs |yc
s and Q

xt |yĉ
t Source and target conditional

distributions.
λ, α, η, γ, σ, μ, ρ, and p Parameters.
θ Parameter.
K Kernel.
Y, Ỹ Label matrix.

I. INTRODUCTION

THE purpose of remote sensing image scene classification
is to assign each image with a specific semantic label,

which has been widely applied to urban planning, environ-
mental monitoring, and geographic image retrieval [1]–[3].
In recent years, many deep learning approaches have been
proposed for scene classification, such as autoencoder- [4],
[5], convolutional neural networks- [6]–[8], and generative
adversarial networks-based methods [9]–[11].

The previous methods assume that the training and test
data are drawn from the same distribution [12]. However, this
assumption is hard to guarantee in remote sensing. Remote
sensing images are taken under different conditions. Sensor
types, resolutions, geographic locations, and other factors can
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Fig. 1. Different domain adaptation scenarios, where gray modules indicate that this class is absent in the domain. (a) It assumes that the source domain
and the target domain have common categories, where Yt denotes the target domain label space and Ys denotes the source domain label space (Yt = Ys).
(b) Target domain and the combination of multiple-source domains share the same categories, where Ysk denotes the label space in the kth source domain
(Yt = ∪K

k=1Ysk ). (c) Scenario of open set domain adaptation, and the target domain includes unknown classes (Yt ⊃ Ys ).

cause distribution discrepancy between the training and test
data [13], [14]. To deal with this problem, domain adaptation
has been introduced, which aims to reduce the distribution
discrepancy between the labeled data (source domain) and the
unlabeled data (target domain) [15].

In remote sensing scene classification, based on the num-
ber of available source domains, domain adaptation can be
roughly divided into the single-source domain and multi-
source domain adaptation methods. The single-source domain
adaptation means that there is one available source domain.
In single-source domain adaptation, the source domain and
target domain have common classes, but the data distribution
is different, as shown in Fig. 1(a). The literature [16]–[20]
designs domain adaptive algorithm to reduce the global
or local distribution difference between domains. Recently,
to improve the classification performance of the target domain,
multisource domain adaptation has been proposed. In multi-
source domain adaptation, there have multiple source domains.
The literature [21] proposes a situation that multiple source
domains and target domain have common classes and designs a
multibranch neural network to learn invariant features between
domains. To further deal with the case that the classes of target
domain more than any source domain. Recently, the literature
[22] utilizes multiple complementary source domains to com-
bine the classes of the target domain, as shown in Fig. 1(b), and
proposes the multisource compensation network to mitigates
the domain shifts.

However, it still has the following two bottlenecks in the
domain adaptation of scene classification.

1) It is difficult to ensure that the source domain and the
target domain have common classes. The new classes
will inevitably appear in the target domain.

2) The traditional domain adaptation methods reduce the
global difference of interdomain or the local discrepancy
of intraclass to improve transferability. When small
interclass variations occur, only improving transferabil-
ity may deteriorate the decision boundary.

To cope with the first challenges, a novel scenario of an
open set domain adaptation has been proposed. As shown
in Fig. 1(c), the target domain contains unknown classes

that do not present in the source domain. In the literature
[23], the proposed semisupervised dual-dictionary nonnegative
matrix factorization algorithm is extended to open set domain
adaptation for hyperspectral image classification. In computer
vision, the literature [24]–[26] achieves open set domain
adaptation via recognizing unknown classes and improving the
transferability of interdomain or intraclass. However, the low
interclass discrepancy of remote sensing images determines
that only considering the transferability will degrade the clas-
sification performance.

In this article, to address the abovementioned challenges,
we present an open set domain adaptation algorithm via
exploring transferability and discriminability (OSDA-ETD)
for remote sensing image scene classification. As shown
in Fig. 2, based on the remote sensing images characteris-
tics of large interdomain variations, large intraclass diversity,
and small interclass discrepancy, OSDA-ETD adopts two
strategies. The first technology is transferability, which not
only minimizes the global distribution discrepancy between
domains but also reduces the local distribution difference of
the same class in different domains. The second strategy
is discriminability, which tries to maximize the distribu-
tion difference of different categories in different domains.
Finally, we embed the transferability and discriminability
into a framework and provide theoretical proof about the
optimizer.

The main contributions of this article are summarized as
follows.

1) We present a new open set domain adaptation algorithm
called OSDA-ETD, which considers the remote sensing
images characteristics of large interdomain varia-
tions, large intraclass diversity, and large interclass
similarity.

2) Aiming at the remote sensing characteristics, we pro-
pose the transferability and discriminability strategy and
prove that the OSDA-ETD has a unique optimizer.

The remainder of this article is structured as follows.
In Section II, we introduce the proposed method in detail.
In Section III, we conduct experiments on cross-domain
datasets. Section IV concludes this article.
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Fig. 2. Motivation and strategy diagram of OSDA-ETD. In the left column, the source domain and the target domain show the characteristics of large
interdomain variations, large intraclass diversity, and small interclass discrepancy. In the second column, the proposed method not only improves the
transferability of interdomain and interclass but also enhances the discriminability of interclass. In the third column, with the proposed method, the same class
can be well-aligned, and different classes are more discriminative. The right column represents the legend.

II. METHODOLOGY

A. Open Set Domain Adaptation

In open set domain adaptation, let us define Ds =
{xsi , ysi

}ns
i=1 as the labeled source domain and Dt = {xt j }nt

j=1 as
the unlabeled target domain. Ys = {yc}C

c=1 denotes the label
space of the source domain, and Yt = {yĉ}C+1

ĉ=1 denotes the
label space of target domain. The relationship of label set
between the source domain and target domain can be expressed
as Ys ⊂ Yt . Generally speaking, the known classes refer
to the shared classes between domains, while the unknown
classes are the private classes of the target domain. In addition,
the marginal distribution of source domain and target domain
is Qs and Qt , respectively. In the standard domain adaptation,
we have Qs �= Qt . In open set domain adaptation, we further
have Qs �= QYs

t and Qxs |yc
s �= Qxt |yĉ

t . In this article, QYs
t

denotes the marginal distribution of the known classes in target
domain, and Qxs |yc

s and Qxt |yĉ
t represent the class conditional

distribution of source domain and target domain, respectively.
Notably, some frequently used notations and their cor-

responding descriptions are listed in Nomenclature. Then,
we will present the proposed approach.

B. General Framework of OSDA-ETD
In computer vision, Fang et al. [25] design distribution

alignment with open difference (DAOD) to solve open set
domain adaptation. However, DAOD cannot get advanced
results for remote sensing images. The reason is that remote
sensing images have the characteristic of high interdomain
variations, high intraclass diversity, and low interclass dis-
crepancy. In this article, we propose OSDA-ETD for remote
sensing image scene classification. Peculiarly, OSDA-ETD
tries to optimize four complementary objectives as follows.

1) In open set domain adaptation, the labeled source
domain and the unlabeled target domain have different
classes. To identify known classes, OSDA-ETD mini-
mizes the source domain structure risk. For the unknown
classes, based on DAOD, OSDA-ETD minimizes open
set difference.

2) Aiming at the remote sensing images characteristic of
high interdomain variations and high intraclass diversity,
OSDA-ETD adopts the transferability strategy, which
can reduce the global interdomain difference and the
local intraclass discrepancy.

3) For the remote sensing images characteristic of a low
interclass discrepancy, OSDA-ETD utilizes the discrim-
inability strategy, which can enhance the interclass dif-
ference in different domains.

4) Maximizing the manifold consistency to extract the
geometric relationship between domains.

The overall objective function of OSDA-ETD can be defined
as follows:
g∗

= arg min
g∈H

Rs(g) +ρ�g�2
k + γ Ru,C+1

t (g)−σ Ru,C+1
s (g)

+λ(1−α)Dt
g,k

(
Qs , QYs

t

)
+λα

C∑
ĉ=1

C∑
c=ĉ

Dt
g,k

(
Qxs |yc

s , Qxt |yĉ
t

)

−η

C∑
ĉ=1

∑
c �=ĉ

Dd
g,k

(
Qxs |yc

s , Qxt |yĉ
t

)
+ μRm(Ds,Dt ) (1)

where H is the hypothesis space, Rs(g) + ρ�g�2
k is the term

of source domain structural risk, Ru,C+1
t (g) and Ru,C+1

s (g)
are the risks that the samples are regarded as the unknown
classes, γ Ru,C+1

t (g) − σ Ru,C+1
s (g) is the open set difference,

Dt
g,k(Qs , QYs

t ) represents the distribution discrepancy of inter-

domain, Dt
g,k(Qxs |yc

s , Qxt |yĉ
t ) denotes the distribution difference

of same class between different domains, Dd
g,k(Qxs |yc

s , Qxt |yĉ
t )

implies the distribution difference of different class between
different domains, and Rm(Ds,Dt ) represents the term of
manifold regularization. In addition, λ, μ, η, α, γ , ρ, and
σ are the parameters.

According to the representer theorem [27], the minimizer
g∗ in (1) is defined as

g∗(x) =
ns+nt∑
i=1

θi K (xi , x) ∀x ∈ X (2)

where xi ∈ Ds ∪Dt , θ i ∈ R
(C+1)×1 is the parameter, and K is

the kernel. With the form of g∗, in Sections II-C–II-F, we will
describe the computation of terms in (1).

C. Open Set Loss of OSDA-ETD

In open set domain adaptation, our ultimate goal is to learn
an adaptative model for the target domain. However, the target
domain is composed of known and unknown classes; the
identification of the unknown class is much more difficult than
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the known class. Fortunately, some incomplete multisource
domain adaptation works [28], [29] consider the recognition
of unknown categories in the target domain. Recently, based
on the open set learning bound, DAOD enables the unknown
target samples to be separated from samples using an open
set difference. In our work, to identify the target domain
samples as the corresponding known class and unknown class,
following DAOD, we connect the structural risk of the source
domain and the open set difference to construct the open
set loss of OSDA-ETD. In this process, we utilize two label
matrices. The first label matrix Y ∈ R

(C+1)×(ns+nt ) can be
defined as follows:

Yi j =
{

1, x j ∈ Ds,i

0, otherwise
when i ≤ C (3)

Yi j =
{

1, x j ∈ Dt,C+1

0, otherwise
when i = C + 1 (4)

where Ds,i denotes the set of source samples in the i th class
and Dt,C+1 denotes target samples.

The other label matrix Ỹ ∈ R
(C+1)×(ns+nt ) is

Ỹi j =1 iff i =C + 1 and x j ∈ Ds, otherwise Ỹi j = 0.

(5)

Based on the label matrices Y and Ỹ, the open set loss in
OSDA-ETD can be defined as

Rs(g) + γ Ru,C+1
t (g) − σ Ru,C+1

s (g) + ρ�g�2
k

= �(Y−θTK)B�2
F −σ�(Ỹ−θTK)B̃�2

F +ρ tr(θTKθ) (6)

where θ = [θ1, . . . , θns+nt ]T ∈ R
(ns+nt )× (C+1) , B and B̃ are the

(ns + nt ) × (ns + nt ) diagonal matrix, and K is a (ns + nt) ×
(ns + nt) kernel matrix. If xi ∈ Ds , then Bii = (1/ns)

1/2 and
B̃ii = (1/ns)

1/2. If xi ∈ Dt , then Bii = (γ /nt )
1/2 and B̃ii = 0.

Unfortunately, due to the distribution difference between the
source domain and target domain, the model inferred by (6)
cannot generalize well to the target domain. In the next section,
we will address this issue.

D. Transferability in OSDA-ETD
In this section, following the literature [25], [30], we reduce

the global interdomain difference and the local intraclass
discrepancy. Generally, reducing the distribution differences
denotes improving transferability. However, for open set
domain adaptation, the target domain includes unknown
classes. If we directly increase transferability, it will generate
a negative transfer. Therefore, we enhance transferability after
excluding recognized unknown target samples. In this process,
we utilize the target pseudolabels predicted by classifiers.
In particular, we rethink transferability that involves inter-
domain and intraclass transfer. In terms of enhancing the
interdomain transferability, we utilize the maximum mean dis-
crepancy (MMD) criteria to measure the distribution distance
between Qs and QYs

t , which can be achieved as follows:

Dt
g,k

(
Qs, QYs

t

)
=

∥∥∥∥∥∥
1

ns

ns∑
i=1

g
(
xsi

)− 1

nk
t

nk
t∑

j=1

g
(

xk
t j

)∥∥∥∥∥∥
2

HK

= tr
(
θTKM0Kθ

)
(7)

where nk
t is the number of predicted known target samples, xk

t j

represents the predicted known target samples, and M0 can be
expressed as

M0 =
[

eseT
s eseT

t
et eT

s et eT
t

]
(8)

where

es = 1

ns
Is

ns×1, et = 1

nk
t

It
nt ×1. (9)

In (9), all elements in Is
ns×1 are one. For It

nt ×1, only elements
with known class are one, and the rest are zero.

For the intraclass transfer, we employ the classwise MMD to
approximately measure Qxs |yc

s and Qxt |yĉ
t , and it can be defined

as follows:
C∑

ĉ=1

C∑
c=ĉ

Dt
g,k

(
Qxs |yc

s , Qxt |yĉ
t

)

=
C∑

ĉ=1

C∑
c=ĉ

∥∥∥∥∥∥
1

nc
s

nc
s∑

i=1

g
(
xc

si

) − 1

nĉ
t

nĉ
t∑

j=1

g
(

xĉ
t j

)∥∥∥∥∥∥
2

HK

(10)

where nc
s refers to the number of source samples with label

c, nĉ
t denotes the count of target samples with pseudolabel ĉ,

and xc
si

and xĉ
t j

are the samples of class c.
For the convenience of calculation, following the literature

[31], we utilize the one-hot coding label matrix to calculate the
transferability of intraclass. In particular, the source domain
and predicted target domain one-hot coding label matrices are
written as Ys = [ys,1, . . . , ys,ns

] and Ŷt = [ŷt,1, . . . , ŷt,nk
t
],

where ys,i ∈ R
1×C and ŷt,i ∈ R

1×C . Therefore, (10) can be
expressed as

C∑
ĉ=1

C∑
c=ĉ

Dt
g,k

(
Qxs |yc

s , Qxt |yĉ
t

)
= tr

(
θTKMlKθ

)
(11)

where

Ml =
[

AsAT
s −AsAT

t
−At AT

s At AT
t

]
. (12)

In (12), As and At can be expressed as follows:

As =
[

Ys(:, 1)

n1
s

, . . . ,
Ys(:, C)

nC
s

]
(13)

At =
[

Ŷt(:, 1)

n1
t

, . . . ,
Ŷt (:, C)

nC
t

]
(14)

where Ys(:, c) and Ŷt (:, c) denote the cth column of Ys and
Ŷt(:, c), respectively.

In this section, we consider the transferability from both
global and local perspectives. However, the remote sensing
image characteristics of high interclass similarity determine
that only considering the transferability will degrade the clas-
sification performance. In the next section, we address this
problem.
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E. Discriminability in OSDA-ETD

In this section, to improve the classification performance,
we explore the discriminability based on the remote sens-
ing scene images peculiarity of large interclass similarity.
To achieve discriminability, we leverage classwise MMD to
enlarge the distance of different known class, which can be
expressed as

C∑
ĉ=1

∑
c �=ĉ

Dd
g,k

(
Qxs |yc

s , Qxt |yĉ
t

)

=
C∑

ĉ=1

∑
c �=ĉ

∥∥∥∥∥∥
1

nc
s

nc
s∑

i=1

g
(
xc

si

) − 1

nĉ
t

nĉ
t∑

j=1

g
(

xĉ
t j

)∥∥∥∥∥∥
2

HK

= tr
(
θTKFKθ

)
(15)

where

F =
[

FsFT
s −FsFT

t
−Ft FT

s Ft FT
t

]
. (16)

In (16), Fs and Ft can be defined as

Fs = [
As(:, 1) • (C − 1), . . . , As(:, C) • (C − 1)

]
(17)

Ft = [
At (:, 1 : C)ĉ �=1, . . . , At (:, 1 : C)ĉ �=C

]
(18)

where As(:, 1) represents the 1st column of As , As(:, 1)•(C −
1) repeats As(:, 1) for C − 1 times, and At(:, 1 : C)ĉ �=1 is
composed of the 1st to the Cth (except the first) columns of At .

F. Manifold Regularization

To learn the geometrical relation between the source domain
and the target domain, following the literature [25], [30], [32],
OSDA-ETD employs the manifold regularization, which can
be computed as follows:

Rm(Ds ,Dt ) =
ns+nt∑
i, j=1

�g(xi) − g(x j)�2
2Wi j

=
ns+nt∑
i, j=1

g(xi)Li j g(x j) (19)

where xi , x j ∈ Ds ∪ Dt , L = D − W is the Laplacian
matrix, Di i = ∑ns +nt

j=1 Wi j is the diagonal matrix, and W
is the pairwise affinity matrix. The pairwise affinity matrix
estimates the similarity between samples, and it can be defined
as follows:

Wi j =
{

sim
(
xi , x j

)
, xi ∈ Np

(
x j

)
or x j ∈ Np(xi)

0, otherwise
(20)

where sim (xi , x j ) represents the similarity function, Np(xi)
denotes the set of p-nearest neighbors to point xi , and p is
the parameter.

G. Overall Reformulation of OSDA-ETD

Finally, we combine (6), (7), (11), (15), and (19) to refor-
mulate the optimization problem in (1), which can be achieved
as follows:

θ∗ = argmin
θ∈R(ns+nt )×(C+1)

L(θ) (21)

where

L(θ) = �(Y−θTK)B�2
F −σ�(Ỹ−θTK)B̃�2

F

+ tr(θTK(λ(1−α)M0+λαMl−ηF+μL)Kθ)

+ ρ tr(θTKθ). (22)

There are some negative term in L(θ). Therefore, the opti-
mizer by solving (∂L(θ)/∂θ) = 0 may be a maximum point
or a saddle point. Excitingly, based on the literature [25],
we prove that there exists a unique optimizer in L(θ). It is
worth noting that the optimize can be solved by (∂L(θ)/∂θ) =
0. In the next section, we discuss in detail.

H. Theoretical Proof of the Unique Optimizer
In this section, we provide the theoretical proof for the

optimizer of L(θ), as shown in Lemma 1.
Lemma 1: If the parameters σ < 1, η ≤ (λα/C − 1), and

the kernel function K is universal, then the L(θ) has a unique
optimizer. It can be written as follows:
θ =((

B2−σ B̃2+λ(1 − α)M0+λαMl−ηF+μL
)
K+ρI

)−1(
B2YT−σ B̃2ỸT

)
. (23)

According to the literature [25], we prove Lemma 1 from
three parts.

Claim 1:

lim
�θ�	2 →+∞

L(θ) = +∞. (24)

In (22), it is obvious that

tr
(
θTK(λ(1−α)M0+λαMl+μL)Kθ

)+ρ tr
(
θTKθ

) ≥ 0. (25)

Then, we assume that the following equation holds:
tr
(
θTK(λαMl − ηF)Kθ

) ≥ 0. (26)

To verify the hypothesis of (26), we directly discuss the
relationship between matrix λμMl and ηF; the details are
given as follows:

λαAsAs
T − ηFsFs

T = λαAsAs
T − η(C − 1) AsAs

T

(27)

λαAt At
T − ηFt Ft

T = λαAt At
T − η(C − 1)At At

T

(28)

−λαAsAt
T − (−ηFsFt

T
)

> −λαAsAt
T (29)

−λαAt As
T − (−ηFt Fs

T
)

> −λαAt As
T. (30)

From (27) to (30), we observe that, if η ≤ (λα/C − 1),
then (26) holds.

By combining (25) and (26), we can get the following
formula:
tr
(
θTK(λ(1−α)M0+λαMl−ηF+μL)Kθ

)+ρ tr
(
θTKθ

)≥0.

(31)

Next, we consider the partial term of open set loss function

�(Y − θTK)B�2
F − σ�(Ỹ − θTK)B̃�2

F . (32)

Since the kernel K is universal and σ < 1, the matrix
K(B2 − σ B̃)K is symmetric and positive definite. It can be
achieved as follows:

K
(
B2 − γ B̃2

)
K = O�OT (33)
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where O is the orthogonal matrix and � is the diagonal matrix.
Then,

�(Y − θTK)B�2
F − σ�(Ỹ − θTK)B̃�2

F

= tr[(θTO)�(θTO)T]−2 tr[(YB2K−σ ỸB̃2K)θ]+m

≥ υ tr[(θTO)I(θTO)T] − O(�θ�	2)+m

= υ tr[θTθ ] − O(�θ�	2)+m (34)

where υ is the smallest diagonal element of the diagonal
matrix �, and m is the constant.

Therefore,

lim
�θ�	2 →+∞

L(θ) ≥ lim
�θ�	2 →+∞

υ�θ�2
	2 − O(�θ�	2) + m

= +∞. (35)

Claim 2: There exists optimizers for L(θ).
In Claim 1, (24) indicates that there have a constant r > 0

such that L(θ ) > L(0) for any θ ∈ R
(ns+nt )×(C+1) \ Br(0),

where Br (0) is an open ball, r denotes the radius of open
ball, and the center of open ball is 0.

As L is a continuous function and the closed ball B̄r (0) is
a compact set, hence, there exist optimizers for L, and these
points belong to the Br (0).

Claim 3: The optimizer of L(θ) is unique.
If a point θ0 is a minimizer, then

∂L
∂θ0

= 0. (36)

If the solution of (36) is unique, then the solution is the
unique minimizer. The calculation of (36) can be achieved as
follows:
−2

(
KB2YT − σKB̃2ỸT) + 2ρKθ + 2

(
KB2K − σKB̃2K

)
θ

+2K(λ(1−α)M0+λαMl − ηF + μL)Kθ = 0. (37)

The solution of (37) can be written as in (23).
Based on Claims 1–3, we illustrate that L(θ) has a unique

optimizer. The pseudocode of OSDA-ETD is provided in
Algorithm 1.

III. EXPERIMENTS

In this section, we evaluate the effectiveness of OSDA-ETD.
First, we simply introduce the datasets. Next, we describe
the experimental setup. After that, we show the experimental
results. Finally, we discuss parameter sensitivity. Our code has
been released.

A. Datasets
To verify the performance of OSDA-ETD, we utilize the UC

Merced dataset, the AID dataset, and the NWPU-RESISC45
dataset to construct the cross-domain datasets. The details of
these datasets are given as follows.

1) UC Merced [33]: The UC Merced dataset can be
downloaded from the United States Geological Sur-
vey (USGS) National Map. This dataset is composed
of 21 land-use scene categories. Each class contains
100 images with a spatial resolution of 0.3 m and a
size of 256 × 256 pixels.

2) AID [34]: The AID dataset is collected from Google
Earth imagery and has a number of 10 000 images with

Algorithm 1 OSDA-ETD Algorithm
Input:

Data: source domain data matrix Xs , target domain data
matrix Xt , source domain label Ys ;
Parameter: λ, σ, ρ, α, γ, μ, η, p, and iterations T ;

1: Train the classifier OSNNcv utilizing Xs and Ys , then apply
prediction on Xt to get the initial pseudo label Ỹt ;

2: Calculate Laplacian matrix L;
3: Choose kernel function and compute kernel matrix K;
4: i = 1;
5: while i < T + 1 do
6: Construct discriminability matrix F by Equations (13),

(14), (16), (17) and (18);
7: Compute M1 by Equations (12), (13), (14);
8: Calculate M0 by Equations (8), (9);
9: Update the pseudo labels by Ỹt = θT K ;

10: i = i + 1
11: end while
Output:

Predicted target labels Ỹt and classifier θT K .

TABLE I

COMMON CLASSES EXTRACTED FROM THREE DATASETS

a size of 600 × 600 pixels. These images are divided
into 30 classes. In addition, the spatial resolution of the
image ranges from 8 m to about half a meter.

3) NWPU-RESISC45 [35]: The NWPU-RESISC45 dataset
includes 45 scene categories. Each class contains
700 images with a size of 256 × 256 pixels. The spatial
resolution ranges from about 30 to 0.2 m.

In the above three heterogeneous datasets, the same class
may have different names as they are labeled by different
experts. Hence, following the literature [22], [36], we select
12 public classes from the three datasets to construct the
cross-domain datasets. This means that there have six domain
adaptation tasks: UC Merced → AID, UC Merced → NWPU-
RESISC45, AID → UC Merced, AID → NWPU-RESISC45,
NWPU-RESISC45 → UC Merced, and NWPU-RESISC45
→ AID. The category information of cross-domain datasets
is shown in Table I, and the sample images of cross-domain
datasets are shown in Fig. 3. In addition, we make an open set
protocol for the cross-domain scene datasets, which chooses
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Fig. 3. Sample images of 12 common classes extracted from three datasets. Each column represents the corresponding categories of these datasets, from left
to right are airfield, anchorage, beach, dense residential, farm, flyover, forest, game space, parking space, river, sparse residential, and storage cisterns. The
top row to the bottom row are from the UC Merced dataset, the AID dataset, and the NWPU-RESISC45 dataset.

TABLE II

CLASSIFICATION ACCURACY OF THE AID DATASET AS SOURCE DOMAIN (%)

the top nine categories as the shared classes in alphabetical
order and the last three classes as unknown classes in the
target domain.

B. Experimental Setup

1) Evaluation Metrics: To evaluate the proposed method,
we adopt known classes average accuracy (OS*), all
classes average accuracy (OS), known classes overall

accuracy (ALL*), all classes overall accuracy (ALL), and
classes accuracy (CA) as the evaluation criteria based on
former works [24], [37] and reality. The details are given as
follows:

ALL* = |x : x ∈ Dtk ∧ ĝ(x) = yk |
|(x, yk

) : (
x, yk

) ∈ Dtk | (38)

ALL = |x : x ∈ Dt ∧ ĝ(x) = y|
|(x, y) : (x, y) ∈ Dt | (39)
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TABLE III

CLASSIFICATION ACCURACY OF THE UC MERCED DATASET AS SOURCE DOMAIN (%)

CA =
∣∣x : x ∈ Di

t ∧ ĝ(x) = i
∣∣∣∣x : x ∈ Di

t

∣∣ (40)

OS* = 1

C

C∑
i=1

∣∣x : x ∈ Di
t ∧ ĝ(x) = i

∣∣∣∣x : x ∈ Di
t

∣∣ (41)

OS = 1

C + 1

C+1∑
i=1

∣∣x : x ∈ Di
t ∧ ĝ(x) = i

∣∣∣∣x : x ∈ Di
t

∣∣ (42)

where Dtk denotes the known samples in the tar-
get domain and Di

t is the target samples of the
i th class.

2) Implementation Detail: To analyze the classification per-
formance on the cross-domain dataset, we leverage ResNet50
[38] to extract deep features from each image scene. In this
article, there have several parameters to set. As suggested in
[30], we choose the Gaussian kernel as the kernel function.
To balance the positive term Rt

u,C+1(g) and the negative
term Rs

u,C+1(g) in the open set difference, we follow the
rule of DAOD. In general, we set γ = 0.4 and σ ∈
[0, 0.4]. As for the other parameters λ, ρ, p, μ, and T ,
we also follow DAOD. Different from DAOD, OSDA-ETD
considers the discriminability of interclass. Therefore, we set

that the discriminability parameter is searched in η ∈
[1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0].

3) Compared Methods: We compare the performance of
OSDA-ETD with the following methods.

1) Open Set Nearest Neighbor Class Verification (OSNNcv)
[39]: The OSNNcv is an open set classifier, which
identifies unknown classes and known classes based on
the labels consistency of test samples and two nearest
neighbor samples.

2) Transfer Component Analysis (TCA) [40] +OSNNcv:
TCA aligns the global distribution discrepancy between
domains by using MMD, which is designed for closed
set domain adaptation. In this article, we only replace
classifiers.

3) Subspace Alignment [41] + OSNNcv: SA aligns the
subspace between domains by learning a mapping func-
tion. To implement SA in open set domain adaptation,
we utilize OSNNcv as the classifier.

4) Joint Distribution Adaptation (JDA) [42] + OSNNcv:
We extend JDA to the open set setting and try to reduce
distribution discrepancy of known samples predicted by
OSNNcv.

5) Joint Probability Domain Adaptation (JPDA)
[43]+OSNNcv: JPDA leverage discriminative joint
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TABLE IV

CLASSIFICATION ACCURACY OF THE NWPU-RESISC45 DATASET AS SOURCE DOMAIN (%)

probability MMD to execute closed set domain
adaptation. For the convenience of comparison, we also
extend JPDA into the open set setting.

6) DAOD+OSNNcv: A baseline of OSDA-ETD.

C. Experimental Results
1) Results of AID as Source Domain: Table II

summarizes the results of AID → UC Merced and
AID → NWPU-RESISC45, where the highest accuracy is
boldfaced. In Table II, we can discover that SA and TCA
perform poorly, even worse than the standard classifier
OSNNcv. The reason is that TCA and SA are designed
for closed set domain adaptation. If we directly apply the
two methods to open set domain adaptation, it will cause
a negative transfer. In contrast, the experimental results of
almost all open set methods are superior to OSNNcv. This
phenomenon implies that there have distribution differences
between domains. More importantly, OSDA-ETD achieves
the best performance of all classes’ overall accuracy.
Compared with JDA and DAOD, OSDA-ETD exploits the
discriminability of different classes and, thus, can lead
to better performance. Moreover, different from JPDA,
OSDA-ETD emphasizes interdomain transferability, which
helps to implement intraclass transferability and interclass

discriminability. In Table II, we also find that some open set
domain adaptation methods are inferior to OSDA-ETD and
DAOD. The reason is that they utilize the common space
to reduce the distribution discrepancy, and this may cause
the known class and the unknown class to mix together.
In DAOD and OSDA-ETD, the negative term Rs

u,C+1(g) is
utilized to solve the abovementioned problem.

2) Results of UC Merced as Source Domain: To vali-
date the robustness of OSDA-ETD, we perform experiments
on UC Merced→AID and UC Merced→NWPU-RESISC45;
the results are list in Table III. As shown in Table III,
the average classification accuracy (OS*, OS) and the overall
accuracy (ALL*, ALL) of OSDA-ETD are superior to DAOD.
This phenomenon demonstrates the effectiveness of increasing
discriminability. Furthermore, for recognizing all target sam-
ples, OSDA-ETD can achieve the highest classification accu-
racy among all methods. However, in UC Merced → AID,
JPDA is better than OSDA-ETD in identifying known classes.
The reason is that OSDA-ETD balances the recognition of
known and unknown classes via the positive term Rt

u,C+1(g)
and the negative term Rs

u,C+1(g).
3) Results of NWPU-RESISC45 as Source Domain: The

experimental results on NWPU-RESISC45 → AID and
NWPU-RESISC45 → UC Merced are reported in Table IV.
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Fig. 4. Effectiveness of discriminability on six cross dataset. (a) UC Merced → AID. (b) NWPU-RESISC45 → AID. (c) AID → UC Merced. (d) UC
Merced → NWPU-RESISC45. (e) NWPU-RESISC45 → UC Merced. (f) AID → NWPU-RESISC45.

On the NWPU-RESISC45 → AID dataset, OSDA-ETD
achieves good results in most classes, which verifies the
effectiveness of our proposal. On NWPU-RESISC45 → UC
Merced, JDA performs better than other methods in recogniz-
ing known classes. For identifying unknown classes, DAOD
and OSDA-ETD gain a huge performance. Therefore, DAOD
and OSDA-ETD achieve the highest overall accuracy (ALL)
among all methods. In addition, Table IV shows that the
average classification accuracy (OS*, OS) of OSDA-ETD is
better than DAOD.

D. Parameter Sensitivity

We implement experiments on six cross datasets; exper-
imental results demonstrate that the OSDA-ETD performs
better on most tasks. To further verify the effectiveness
of discriminability, we conduct sensitivity analysis about
η, as shown in Fig. 4. To be specific, we investigate the
sensitivity of η in a range [1, 2]. From Fig. 4, we can
find that, with the increase in η, the OS*, OS, ALL*, and
ALL are also improved in most datasets. This phenomenon
indicates that discriminability is extremely important in remote
sensing scene classification. In Fig. 4(f), with the increase
in η, the evaluation metrics of ALL* increase, while ALL
decreases. This phenomenon is caused by the low recogni-
tion rate of unknown samples. In Fig. 4(f), we utilize the
AID dataset as the source domain to classify the samples
in the NWPU-RESISC45 dataset. Due to the complexity of
AID and NWPU-RESISC45 datasets, the discriminability of
unknown classes is difficult to measure. In the future, we will
further optimize discriminability to improve the recognition
rate of unknown classes. In addition, even though the ALL

of OSDA-ETD is decreasing, most of the performance of
OSDA-ETD is better than DAOD. Note that, we report the
experimental results by fixing η to 1.5 in this article, which
also demonstrates the potential of OSDA-ETD.

IV. CONCLUSION

In this article, we introduce a realistic open set domain
adaptation setting in remote sensing image scene classification,
where the target domain can contain the unknown classes.
To realize open set domain adaptation, the OSDA-ETD algo-
rithm is proposed. Specifically, based on the characteristics of
remote sensing images, OSDA-ETD considers transferability
and discriminability. To improve transferability, OSDA-ETD
reduces the global and local discrepancy. For the discrim-
inability, OSDA-ETD enlarges the difference of interclass.
Finally, we integrate the transferability and the discriminability
into a framework. It is worth noting that we prove that the
OSDA-ETD has a unique optimizer. Extensive experiments
validate the superiority of the OSDA-ETD.

In the future, we will improve the accuracy of unknown
classes and extend the OSTA-ETD to a more general domain
adaptation.
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