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Abstract

It requires pixel-by-pixel annotations to obtain sufficient training data in supervised remote sensing image segmentation,
which is a quite time-consuming process. In recent years, a series of domain adaptation methods were developed for image
semantic segmentation. Generally, these methods are trained on the source domain and then validated on the target domain so as
to avoid repeatedly labelling new data. However, most domain adaptation algorithms only tried to align the source domain and
the target domain in pixel level or representation level, while ignored their cooperation. In this paper, we propose an unsupervised
domain adaptation method by joint pixel and representation level align (JPRNet). The major novelty of JPRNet is that it achieves
joint domain adaptation in an end-to-end manner, so as to avoid the multi-source problem in remote sensing images. JPRNet
is composed of two branches, each of which is a generative adversarial network (GAN). In one branch, the pixel level domain
adaptation is implemented by the style transfer with Cycle GAN, which could transfer the source domain to a target domain.
In the other branch, the representation level domain adaptation is realized by adversarial learning between the transferred source
domain images and the target domain images. The experimental results on public datasets have indicated the effectiveness of
JPRNet.

Index Terms

Remote sensing, semantic segmentation, domain adaptation, GAN.

I. INTRODUCTION

Semantic segmentation, which aims at assigning label to each pixel in an image, is a fundamental and challenging problem
in the field of aerial and satellite images. In recent years, researchers have proposed many semantic segmentation algorithms
based on deep learning for remote sensing images [1]–[3]. However, most of them have to train the models on the large labeled
datasets, while it is a time consuming process to collect such pixel level annotated datasets.

An attractive alternative is to use domain adaptation, which aims to transfer the model learnt on a labeled source domain
to a target domain. During the past decade, researchers have proposed some domain adaptation algorithms for remote sensing
image semantic segmentation [4]–[7]. More recently, the generative adversarial networks (GANs) have achieved promising
performance in addressing the problem. In domain adaptation methods for the semantic segmentation of remote sensing
images, GAN was used in [8]–[12].

However, the above methods only attempted to solve the domain shift problem by aligning either the pixel space or the
representation space. In this paper, inspired by the idea of hierarchical domain adaptation, we propose an end-to-end network,
which can address joint pixel and representation level domain adaptation (JPRNet). JPRNet is developed based on Cycle GAN
[13], which is a popular pixel level backbone. A representation level domain adaptation approach is proposed to improve Cycle
GAN.

To some extent, JPRNet involves the similar idea as Fully Convolutional Adaptation Networks for Semantic Segmentation
(FCAN) [14]. However, they are quite different in the optimization manners. First and foremost, JPRNet is an end-to-end
model while FCAN directly cascades two domain adaptation algorithms. Due to the multi-source problem of remote sensing
images, the images obtained by different satellites are quite different. If not adopt the end-to-end manner for training domain
adaptation networks, users may have to manually select different hyperparameters for any two remote sensing data, which will
significantly increase the artificial interference. Therefore, the end-to-end structure can reduce the human intervention which
helps to improve the robustness of the algorithm.

JPRNet contains the pixel level and representation level domain adaptation branches, each of which is a GAN. In the pixel
level branch, domain adaptation is conducted by Cycle GAN which could transfer image style from the source domain images
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to the transferred source domain images. In another branch, the representation level adaptation network (RAN) is used to realize
domain invariant representation between the transferred source domain images and the target domain images. Our contributions
are summarized as follows:
• We propose a domain adaptation method (JPRNet) for remote sensing imagery semantic segmentation, which can be

trained on a labeled dataset and applied its model to another unlabeled dataset;
• We construct JPRNet with two GANs, which could simultaneously train the pixel and representation level branches via

an end-to-end manner.

Fig. 1. Overall architecture of the proposed method. It consists of two main components: the pixel adaptation network (Cycle GAN) on the left and the
representation adaptation network (RAN) on the right. Cycle GAN could transfer the image style of the source domain. RAN learns the domain-invariant
representations of between the target domain images and the transferred source domain images in an adversarial manner.

II. METHODS

Our proposed adaptive semantic segmentation network is illustrated in Figure 1. It consists of the pixel adaptation network
(Cycle GAN) and the representation adaptation network (RAN). Given images from the source domain and the target domain,
Cycle GAN transfers images from one domain to the other from the perspective of the pixel level in an adversarial manner.
RAN learns the representation domain adaptation in an adversarial manner and a domain discriminator is designed to classify
the image regions corresponding to the receptive field of each spatial unit in the feature map. RAN is to guide the represen-
tation learning in both domains, and makes the discriminator difficult to distinguish between the transferred source domain
representations and the target domain representations. As a result, our algorithm addresses domain adaptation problem from
both the pixel level and the representation level.

A. Pixel level adaptation network (PAN)

PAN is designed to transfer images from one domain to the other under as possible as preserving appearance similarity and
to segment the transferred source domain images. In PAN, this goal is achieved by using Cycle GAN and FCN. The PAN
network consists of five components: GX , GY , DX , DY and FCN, where GX , GY , DX and DY are parts of Cycle GAN,
and FCN is a semantic segmentation network. Suppose that X represents the source domain dataset, Y represents the target
domain dataset, xi∈ X and yi∈ Y. PAN aims to learn two mappings GY (x) and GX(y), and train FCN. GY (x) maps data
from X to Y and GX(y) maps data from Y to X. FCN is trained by using the transferred source domain images and the source
labels. Next, we summarize the objective functions of PAN.

PAN is designed by adding FCN on the basis of Cycle GAN. Therefore, we firstly introduce the objective function of Cycle
GAN, which consists of four components. The adversarial term of the loss function for training GY and DX can be written
as follows:

LX→Y =Ey∼py(y)[log DY (y)]+
Ex∼px(x)[log(1−DY (GY (x)))]

(1)

The most significant difference between Cycle GAN and other GAN networks is that Cycle GAN introduces the cycle
consistency loss. The loss requires that the transferred image can be mapped back to itself in the original domain, namely:
x→GY (x)→GX (GY (x))≈x. It is defined as follows:

Lcyc(GX , GY ) =Ex∼px(x)[‖GX(GY (x))− x‖1]+
Ey∼py(y)[‖GY (GX(y))− y‖1]

(2)
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According to the structure of Cycle GAN, the objective function of Cycle GAN can be written as follows:

Lcyclegan(G̃, D̃) = LX→Y (GY , DY )+
LY→X(GX , DX) + Lcyc(GX , GY )

(3)

where G̃ represents GX and GY , D̃ represents DX and DY .
Compared to the pixel level domain adaptation network AAN in FCAN, Cycle GAN implements pixel level domain adaptation

in a generative-adversarial manner, while AAN implements pixel level domain adaptation in a reconstructed manner. AAN
would use too many artificially set hyperparameters during the reconstruction process, which may lead to excessive human
intervention. Therefore, we selected Cycle GAN with less human intervention as our pixel level domain adaptation network.

Then we introduce the objective function of FCN. Suppose that c ∈ {0,1} represents the pixel-wise binary label of the image
x, the loss function for the segmentation task can be written as:

Lseg(FCN, GY ) = −E(x,c)∼p(x,c)[c log(FCN(GY (x)))
+(1− c) log(1− FCN(GY (x)))]

(4)

So, the objective function of PAN can be defined as follows:

LPAN (G̃, D̃, FCN) =Lcyclegan(G̃, D̃)
+Lseg(FCN, GY )

(5)

B. Representation level adaptation network (RAN)

The purpose of RAN is to learn domain-invariant representations by an adversarial manner. In RAN, the feature represen-
tations of two domains are learnt by fooling a domain discriminator. It consists of FCN, ASPP semantic classifier Seg, and
ASPP discriminators D. FCN is part of the segmentation network as well as the generator of GAN to generate domain-invariant
representations.

Atrous Spatial Pyramid Pooling (ASPP) [15] uses multi-rate dilated convolution to extract multi-scale features in the form
of spatial pyramid, which has proven to be effective in extracting multi-scale information. The ASPP semantic classifier Seg
could promote segmentation results by fusing multi-scale features from different convolutional layers. In the semantic classifier,
the settings of ASPP are the same as those of DeepLab V3.

The ASPP discriminator D attempts to distinguish the representation of the source domain and the target domain. It outputs
the domain prediction of each image region that corresponds to the spatial unit in the final feature map. In the discriminator,
specifically, k dilated convolutions with different sampling rates are exploited in parallel to produce k feature representations
after the outputs of FCN are input into the discriminator. Here, each feature map has c feature channels. Then all feature
channels are combined into c*k channels. These channels pass a 1×1 convolutional layer plus a sigmoid layer to generate the
final score map. Each spatial unit in the final score map represents the probability of belonging to the target domain.

Because buildings in remote sensing images have different sizes, we attempt to use multi-scale representations to enhance
adversarial learning and building segmentation. It is the traditional way for solving multi-scale problems to adjust the resolution
of the input image and use parallel weight sharing network, which will consume a lot of memory and training time. In our
network, ASPP is used not only to solve the multi-scale problem of segmentation, but also to solve the multi-scale discrimination
of adversarial network.

C. Joint Pixel and Representation level Network (JPRNet)

JPRNet adds a representation level domain adaptation on the basis of Cycle GAN. As shown in Figure 1, Cycle GAN can
achieve the pixel level domain adaptation. Its generator can output the target-like images, which have the common labels with
images in the source domain. Then it is to learn domain-invariant representations between the transferred source domain images
and Massachusetts Buildings dataset (the target domain). RAN is used to produce representations across domains and segment
the transferred source domain images. Suppose that Yfake represents the transferred source domain dataset, Y represents the
target domain dataset, yfake ∈ Yfake and y ∈ Y, the adversarial objective function and the objective function of RAN can be
respectively written as:

Ladv(FCN, D) = Ey∼Y [
1
Z

Z∑

i=1

log(Di(FCN(y)))]+

Eyfake∼Yfake
[
1
Z

Z∑

i=1

log(1−Di(FCN(yfake)))]

(6)

LRAN (FCN, D, Seg) = Lseg(FCN, Seg) + µLadv(FCN, D) (7)
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where Z is the number of the spatial units in the output of D, and µ is the tradeoff parameter and the loss Lseg is the same
as equation (4).

Besides, similar to literature [16], we also add the loss of semantic consistency as follow:

Lsem(GX ,F ) = λEx∼px(x)[‖F (x)− F (GY (x))‖1]+
λEx∼px(x)[‖F (GX(GY (x)))− F (x)‖1]

(8)

where F is a pre-trained segmentation network in the source domain, and F is frozen during the training process.
Through fooling the domain discriminator with the transferred source and target representations, RAN is able to produce

domain-invariant representations. Therefore, JPRNet firstly performs the pixel level domain transfer from the source domain
to the target domain, and the transferred images are then input into RAN for representation level domain adaption.

Algorithm 1 JPRNet training details and process
Input:

Data: source domain downsampling Inria images X, target domain Massachusetts Buildings images Y, source domain labels
C, suppose x ∈ X, y ∈ Y, c ∈ C.

Output:
Predicted labels of the target domain: Cy

1: while iteration is effective do
2: yfake ← GY (x) {forward pass}
3: DY map ← DY ({yfake, y}) {forward pass}
4: xfake ← Gx(yfake) {forward pass}
5: Compare(x, xfake) {Consistency comparison}

The above process is a cycle from the source domain to the target domain. The process from the target domain to the
source domain is similar to this.

6: {Rfakey, Ry} ← F ({yfake, y}) {forward pass}
7: Segmap ← Seg({Rfakey, c}) {forward pass}

Dmap ← D({Rfakey, Ry}) {forward pass}
8: GY , DY , GX , DX can be optimized according to equation (3).

FCN, Classifier, and Discriminator can be optimized according to equation (7).
9: end while

JPRNet is an end-to-end network that combines the pixel level domain adaptation with the representation level domain
adaptation. The loss function of JPRNet can be written as follow:

LJPRNet(G̃, D̃, FCN,D, Seg) = Lcyclegan(G̃, D̃)+
LRAN (F, D, Seg) + Lsem(GX , F ) + Lsem(GY , F )

(9)

The major difference between JPRNet and FCAN is that JPRNet proposes an end-to-end training method for remote sensing
image domain adaptation. Due to the ”multi-source” problem of remote sensing images, the images captured by different sensors
can be considered to come from different domains. In natural scenes, there is basically no influence of different cameras on
the domain. It is impossible to set a specific domain adaptation network for any two remote sensing data sets. Therefore, we
propose an end-to-end domain adaptive semantic segmentation network that can reduce human intervention.

The pseudocode of our algorithm is shown in Algorithm 1.

III. EXPERIMENTS

A. Dataset and evaluation Metrics

To verify the performance of JPRNet, it is tested on the downsampled Inria dataset and Massachusetts Buildings dataset.

TABLE I
Results of baselines and our domain adaptation(%)

Methods baseline-1 baseline-2 baseline-3 PAN FCAN JPRNet
+FCN X

+PSPNet X
+DeepLab V3 X X X X

+AAN X
+Cycle GAN X X

+RAN X X
IoU 56.2 57.0 58.8 60.5 61.6 62.5
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Fig. 2. The images from the left column to the right column are the source domain images(downsampled Inria dataset), the transferred source domain images,
the target domain images(Massachusetts Buildings testing dataset), the predicted labels and the ground truth.

Both Massachusetts Buildings dataset and the Inria dataset only contain two categories: buildings and background. Inria
dataset contains 180 images of size 5000×5000. The resolution is 0.3m. Massachusetts Buildings dataset contains 151 images
from aerial images of Massachusetts. The size of images is 1500×1500, and the resolution is 1m. Since Inria dataset has
a higher resolution than Massachusetts Buildings dataset, we downsample the images and labels in Inria dataset from 0.3m
resolution to 1m resolution with the way of average downsampling. Considering the capacity of the GPU, we cut each training
sample to several 500×500 sub-images, and totally obtain 1000 pieces for training. The code of JPRNet was published in our
homepage.1

In experiments, Intersection Over Union (IoU) is used as the evaluation metrics. It is defined as follows:

IoU = NTP /(NFP + NTP + NFN ) (10)

where NTP , NFP and NFN respectively represent the number of the true positive pixels, the false positive pixels and the
false negative pixels in segmentation results.

B. Implementation Details

In the pixel level domain adaptation part, the generator G̃ and the discriminator D̃ use the same configuration as [13]. In the
representation level domain adaptation part, we take FCN as the segmentation network and the generator of representations.
FCN is built based on ResNet-50 by removing its fully connected layers and adding a 1×1 convolution layer. Besides, to
increase the output resolution, we change the stride from 2 to 1 at Conv 3 and Conv 4 to enlarge its output size from 1/32
to 1/8 of its input size. ASPP, which is the classifier of DeepLab V3, is also used as the classifier of RAN. In the adversarial
branch, we use k dilated convolutions in parallel to produce multiple feature maps, each with c channels. The sampling rate of
different dilated convolution kernels is respectively 1, 2, 3 and 4. Finally, after the discriminator of ASPP, a sigmoid layer is
utilized to output the prediction, which is in the range of [0, 1]. In Cycle GAN part, we train Cycle GAN from a pre-trained
model. After JPRNet was trained for 100 epochs, Cycle GAN was fixed, the batch size was set to 8, and another 3 epochs
were trained to converge the network. We set µ = 0.01, k = 4, c = 128 and λ = 10.

C. Comparison and Ablation Study

To validate the performance, JPRNet is compared with the existing methods. These methods include FCN, PSPNet, DeepLab
V3 and FCAN. FCN, PSPNet, DeepLab V3 do not adopt domain adaptation algorithms. FCAN realizes domain adaptation. They
and JPRNet are respectively trained on the downsampled Inria dataset (the source domain) and then tested on Massachusetts
Buildings dataset (the target domain). The experimental results are shown in TABLE I. From the table, we observe that the
results from JPRNet are prior to those from these methods.

To further evaluate the effectiveness of PAN and JPRNet, we use ablation experiments to guide the analysis of the importance
of each component. These components include three baselines, Cycle GAN and RAN. The results are shown in TABLE I.
FCN, PSPNet and DeepLab V3 are firstly evaluated as baselines. According to the evaluated results, DeepLab V3 is chosen
as the baseline in next experiments. Then we gradually integrate Cycle GAN and RAN. And they are compared with FCAN.

1http://levir.buaa.edu.cn/Code.htm
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• DeepLab V3: It is firstly trained on the source domain, and then the model is evaluated on the target domain.
• AAN: It is the pixel level domain adaptation algorithm in FCAN.
• Cycle GAN: Cycle GAN is used to realize the pixel level domain adaptation in this paper.
• RAN: We perform the representation level adaptation on the transferred source domain images and the target domain

images.
The evaluation results are given in Table I. From the results, we could observe that the integration of the pixel level domain

adaptation and the representation level domain adaptation effectively improves the segmentation accuracy. Some pixel-level
domain adaptation results and building segmentation results of JPRNet are shown in Fig.2.

D. Semi-Supervised Adaptation

JPRNet can also be extended to a semi-supervised version by using these labeled images. In experiments, we add a small
number of labeled target domain images during training JPRNet. Results are given in Table III. Here, four cases are compared.
They are respectively JPRNet, JPRNet with 100 target domain labeled images, JPRNet with 200 target domain labeled images
and three baselines on the whole target domain dataset. Experimental results show that the accuracy can be improved by adding
a small amount of target domain images during training. The accuracy is near to that of training and testing on the whole
target domain dataset.

TABLE II
Results of semi-supervised adaptation(%)

`````````method
baseline FCN PSPNet DeepLab V3

JPRNet + 0 target 60.8 61.2 62.5
JPRNet + 100 target 61.5 62.7 63.3
JPRNet + 200 target 62.2 63.8 64.8
1000 target 65.3 66.3 66.5

IV. CONCLUSION

In this paper, we propose an end-to-end adaptive semantic segmentation architecture called JPRNet, which simultaneously
conducts the pixel level and representation level domain adaptation. Pixel level and representation level domain adaptation
could work together and complement each other in JPRNet. To this end, Cycle GAN is utilized to transfer an image style from
the source domain to the target domain, and RAN is integrated to learn the domain invariant representation in an adversarial
manner. Experimental results on the downsampled Inria dataset and Massachusetts Buildings dataset have demonstrated the
effectiveness of JPRNet. Furthermore, the semi-supervised experiments indicate that JPRNet can obtain similar accuracy to
baselines, which are trained and tested on the target domain.
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